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Outline

e Review the Kronecker Product (KP) Operation
e Explain Why the KP is Increasingly Important in Scientific Computing
e [llustrate Some Nicely Solved KP Problems

e Discuss KP Methods for Decomposing 3-dimensional Tensors (Arrays)



Review
of the
Kronecker Product




Definition

biicii  biiciz  biicrs biaci1 biaci2  bi2ci3

biicor  bricaa  biicas | biacar  biacoa  bracas

[b11 b2 | [C” C12 613] B biicgi  biicza  bricss | biocgr biacza  biacss
b b | 2 S

C31 C32 C33 borci1  barciz  boiciz | bagcir bopcia boocis

ba1ca1  ba1caa  baicas | baacar  Dagcoa  boocas

barcgi  barcga  baicss | baacsi baacsa  Daacss

B my-by-nq (mymes)-by-(n1n9) matrix of scalars

then B® C is a
C' mo-by-ns mq-by-nq block matrix with mo-by-ns blocks




Properties

Quite predictable:

(B® C)! = B!
(B® C)™1 = Bl C!
(BRC)DRF) = BD®CF
B® (C®D) = (BQC)® D
Think twice:
BRC#C®B

B®C = (Perfect Shuffle)(C ® B)(Perfect Shuffle)”



The Perfect Shuffle S),
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Takes the length-pqg “card deck” z, splits it into p piles of length-q each, and
then takes one card from each pile in turn until the deck is reassembled.



B®C(C =

Example: (2 X2)® (2 x 3)

biicii biicia biicis | biecir biscio biocis
biicor  biicee  biices | biacor  biacae  biacas
521011 521012 521013 b22011 b22612 522013
barcor  borcao  borcas | boacar  boocas  boacas
Reorder rows |1 3 2 4] and reorder columns |14 25 3 6]:
biici1 biocii |biicio biscio | biicis  biscys
521011 522011 521012 522012 521013 522013
CQ®B =
511021 512021 511622 b12022 b11€23 512023
i ba1car  baacor | ba1can  boocan | baicaz  baacas |




If B and C are

Inheriting Structure

nonsingular
lower(upper) triangular
banded

symmetric

positive definite
stochastic

Toeplitz

permutations
orthogonal

then B ® C'is

nonsingular
lower(upper)triangular
block banded
symmetric

positive definite
stochastic

block Toeplitz

a permutation
orthogonal




Factoring B ® C

If you have the { LU, Cholesky, QR} factorization of B and C,
then you have the { LU, Cholesky, QR} factorization of B ® C...

B ® C — (PgLBUB> ® (PchUc) — (PB ® Pc)T(LB ® LC)(UB ® Ucf>
B®C = (GsGy) ® (GoGL) = (G ®Ge) (G ® Go)'

B®C = (QzRz) ® (QcRe) = (@ ®Qc)(Rz @ Re)



Factoring B ® C

If you have the { Eigenvalue, Singular Value} decomposition of B and C,
then you sort of have the { Eigenvalue, Singular Value} decomposition of B ® C'...

B®C = (QusN\sQp) ® (QcAcQl) = (Q5® Qc)(As @ Ac)(Qp ® Qc)”

B ® C — (UBZBVBT) ® (UCZCVCZ’—’) — (UB ® UC><ZB ® ZC)(VB ® VC)T



“Sort of”




Unhappy Factoring of B&® C

If you have the CS decomposition of B and C,
then you do not have the CS decomposition of B ® C.

The CS decomposition says that the blocks of an orthogonal matrix have related
SVDs:

T

¢ S
-S C

U 0
0 Us

Vi 0
0 Vs

K Qll Q12 ]
QQl Q22

C' = diag(cos(6y),...,cos(6,,)) S = diag(sin(#,),...,sin(6,,))

where Uy, Us, V1, and V5 are orthogonal.



The vec Operation

e Example... -
1
1 10] X
A=12 20 = vec(A) = 10
3 30 50
_30_
e In General...
X (5, 1)
X e R™" = vec(X) = X(z,2)
X(:;,n)

e Big Fact...
Y=CXB' = vec(Y)=(B® C)vec(X)



Turning Matrix Equations into Vector Equations

Sylvester:
FX+XG'=C

([, ®F + G® I,) vec(X) = vec(C)

Generalized Sylvester:

FXH' + KXG'=C

(HOF + G® K)vec(X) = vec(C)

Lyapunov:

FX+XF'=C

([, @F + F®I,)vec(X) = vec(C)



“Fast” Factoring means “Fast” Solving

If B,C € IR™™, then the m?-by-m? system

(B®C)x = f CXB"'=F 1z =ve«X), f=vec(F)

can be solved in O(m?) flops:

CY

via factorizations of B and C.



More Dramatic

If By,...,B; € IR™™ then the m%by-m¢ system

(B1® B, ® -+ @ Bylz = f

can be solved in O(m®™!) flops (instead of O((m%)?) flops.)



The Growing Importance
of the
Kronecker Product




Tensoring Low Dimensional Ideas

Quadrature in one dimension:

[ f(x)dx

&
s
g
Py
5

Quadrature in three dimensions:

bi rbo b ng "y ny T >
b s g Fy,2) dwdydz = £ 5w w iy, )

= (WP @ uwY WM flzr @y ® 2)



Notes on Tensoring Vectors

_:1:1y1 _
1Yo
Y1
I L1Y3
R —
T 52 L2Y1
’ L2Yo
| L2Y3 |

L1
L2

T1Y1r T1Y2 T1Y3
oY1 TaY2 T2Y3

vec (

Y1 Y2 y3]) ZVGC( ) = YR



Generalizations of the Familiar

e Higher-order statistics. Instead of looking at the expected value of zz!, look
at the expected value of the cumulant

e=rQR®rK - --- Q.

Note that vec(zz!) =z ® z.

e Multidimensional Arrays. Instead of looking for patterns in 2-dimensional
arrays via (for example) the SVD, look for patterns in d-dimensional arrays
using generalized notions of the SVD. (More later.)



Sparse Factorizations

Kronecker products are proving to be a very effective way to look at fast linear
transforms such as the FFT"

0 0 0 0 0 0 0 0
Wg Wg Wg Wg Wg Wg Wg Wy
0 1 9 3 4 5 6 7
Wg Wy Wg Wg Wg Wg Wg Wy
0 9 4 6 8 10 12 14
Wg Wg Wg Wg Wg Wg Wg Wy
0 3 6 9 12 15 18 21
o Wg Wg Wy Wy Wg Wy Wy Wy .
Yy=rInl = 0 4 8 12 16 20 24 28

Wg Wg Wg Wg Wy Wg Wg Wy

0 5 10 15 20 25 30 35
Wg Wg Wg Wg Wy Wg Wg Wy

0 6 12 18 24 30 36 49
Wg Wg Wg Wg Wy Wg Wy Wy

0 7 14 21 28 35 49 49
Wy Wg Wg Wyt Wg Wy Wg Wy

wg = cos(2m/8) + 1 - sin(27/8).



Recursive Block Structure

F,, /2 “shows up” when you permute the columns of F}, so that the odd-indexed

columns come first.

1 00 0/ 1 0 0 O
01 00 0 ws 0 0
0010 0 0 w 0
00010 0 0 w
1 00 0/-1 0 0 0
0 1 00 0 —wg 0 0
001 0[0 0 —wi 0
00010 0 0 —w

(Io ® Fy)



A Sparse Factorization of the DFT Matrix

n = 2
F,=A--- AP,

Py = 55,2(Io® Sy a) -+ (L5 4 @ Sa2)

I Qpp

A, =1® L=21 r=n/L

IL/Q _QL/2

Oy = diag(1,wy, ..., wr”™")  wy = exp(—27i/L)




Different FFTs/Different Factorizations of F},

The Cooley-Tukey FFT is based on y = F,,x = A;--- A1Px

r <+ P.x

for k = 1:t
T A

end

Yy

The Gentleman-Sande FFT is based on y = Fp,xz = Flo = PTAl ... Al'x

for k =1¢: — 1:1
ZE%A?ZE

end

y <+ Plx



Matrix Transpose

B = A’ corresponds to vec(B) = S, - vec(A).

a12
a13
a21
a22

a1
a12
| a13

aii

_a23_

1 0 0 0 0
0O 0 1 0 O
10 0 0 0 1
0 1 0 0 O
0O 0 0 1 O
00 0 0 0
a21] T
| a1l a1z ais
Ao | =
Qo1 A22 Q23

_ o O O O O




Multiple Pass Transpose

To compute B = A" where A € IR™*" factor Snm = L'y -+ - I'1 and then execute

a =vec(A)
for k = 1:t

a <+ 1'La
end

Define B € IR"™*™ by vec(B) = a.

Different transpose algorithms correspond to different factorizations of

Sn,m'



An Example

If m=pn, then S, =121 = (I, ® 5,,)(Sny @ I,)

The first pass b)) = I'1vec(A) corresponds to a block transposition:

A= — B(l):DAllAzlAg‘Agl].

The second pass b2 = ', carries out the transposition of the blocks.

BW = Ay[A,|As|A] - B® = AT|Al|AT|AT].

Note that B = AT,



Semidefinite Programming

Some sample problems...

(X®X+A'DA)u=

0o Al I Ax T
A 0 0 Ay| = |rp| -
ZQ1 0 X1 ||Az T,

See Alizadeh, Haeberly, and Overton (1998).



Symmetric Kronecker Products

For symmetric X € IR™" and arbitrary B, C' € IR™™" this operation is defined
by
1 T T
(B & C)svec(X) = svec (2 (CXB" + BXC ))
where the “svec” operation is a normalized stacking of X’s subdiagonal columns,
e.g.,
L11 L12 213 . T

X = | X1 To Xoz| = svec(X) — T11 \/§$21 \/55631 L22 \/§$32 51333] :

X331 I32 I33

svec stacks the subdiagonal portion of X’s columns.



Some Nicely
Solved

Kronecker Product Problems




The Nearest Kronecker Product Problem

Given A € IR™" with m = myms and n = nino.
Find B € R™”*™ and C € [R™”*™ 5o

#(B,C) = A=B®C||; = min

A bilinear least squares problem. But we can do better...



The NKP is a Nearest Rank-1 problem

a21 Q221023 A24
as; asg | a asq4 bll 612 [Cll 012]
¢(B,C) = LTSS TR by byy | ®
41 Q42043 Q44 bar b Co1 C22
31 032

ail Gs1 G12 G292 b11
as1 41 A32 Q42 bo1
as1 a1 Gs2 Qg2 b3y | -
= — b C11 C21 Ci12 C22
ai13 Q23 A14 A24 12
A33 Q43 Q34 Q4 boo




An SVD solution...

vec(Byy) =

Solution Procedure




The Kronecker Product SVD

Ordinary SVD:
U'AV =X — A = > akukvg

where wuy 1s the k-th column of U and vy is the k-th column of V.

KP SVD:

T rank(A)
U"AV = = kgl o, U ® Vi

where vec(Uy) is the k-th column of U and vec(V%) is the k-th column of V.



Some Modified Least Squares Problems

How do we solve

(1) min|| W(B ® C)z —d) || (weighted least quares)

(2) U'Be®C|dV =% (total least squares)
given that these problems

(1) min|| (B ® C)x — d ||

(2) U'BC)V =X

are easy



Weighted Least Squares Problems

min || W_l/Q((B Rz —D) |,

| —— |

Compute the QR factorizations



The augmented system transforms to

B FEiy Rp®Rc||7r] by |
E9 E99 0 Fo | = | by
RLORL 0 0 T 0
where
B By
E91 E9o

is a simple permutation of (Qp ® Qc)! W (Qp ® Qc¢). Solve the Ey system
via congugate gradients exploiting structure.



Total Least Squares

LS: min (Rl Arys = b+ rop
b+r € ran(A)

TLS: min LE 7+ 73 (A + Eopt)Tris = b+ Topt
b+r cran(A+ F)

“Krrors in Variables”



Total Least Squares Solution

To solve

min IEIz+171  (A+ Egp)ons = b+rop
b+r ecran(A+ F)

compute the SVD of [A | b] € IR™*"
UT Alb|V =3
and set

s = —V({In,n+1)/V(in+1,n+1)



TLS When A is a Kronecker Product

We need the last column of V in U'FV = ¥ where
F= B®C|b]
First compute the SVDs of B and C"
ULBVy =%y ULCOVe =%
If

~

U:UB®UC ‘7:

VB®V0’ 0
0 |1

then

~

U'FV = $3®%: | g| = F  where g=U"b

We need the smallest right singular vector of F.



Frequency Response

Suppose we wish to evaluate the following function for many different values of
H T 1
o(p) = ¢ (A—pl)"d

It pays to triangularize A via the real Schur decomposition:

X X X X X |

QTAQ = T =

O O OO
X X X X

O O O X
O O X X
o X X X

o(p) = QT — p)'QYd  (O(n?) per evaluation)



Solving (F® G — A\l)x =b.

| fuG — A, J12G J13G fuuG ||
0 J22G — AL, f23G JoaG y2 | _
0 0 J33G — AL, J34G Y3
0 0 0 JuaG — ALy, | | ya |

Solve the triangular system

(f1uG — M) ys = ¢4
for 44. Substituting this into the above system reduces it to

G — AL, fi1oG fisG | ¢y |
0 JooG — AL, fG l Y2 ’ = | Co
0 0 f33G — M | | 3 | | C3]

where ¢; = ¢; — fiuGyy, 1 = 1:3.




Orthogonal Decompositions
of
3-Dimensional Arrays




Think Matrix +— Think Vector

Suppose A = UBV! where A and B are m-by-n and

U=luy, ug, -+, Up | V =lvg, vg, -+, vy ].

Then we can write A as a linear combination of rank-1 matrices

i=1j=1 J
and vec(A) as a linear combination of rank-1 tensors

vec(A) = gl %1 bij (v; ®u; )
i=17j=



The SVD in Tensor Notation

If Ais m-by-n and has SVD
A=UxV’

with r = rank(A), then

vec(A) = i§1j§1 oii (ViQu;) = /El o (vp @ ug )

The SVD represents an mn-by-1 vector as a minimal
combination of rank-1 tensors that are mutually orthogonal.




Representing A = A(1:m, 1:n, 1:p)

Turn A into a vector

vec(A(:, 5, 1))
vec(A) = :
vec(A(:, 1, p))

and represent it as a sum of rank-1 tensors

m n P
vec(A)=> ¥ ¥ o (wpr ®uv; @ uy)
1=17=1 k=1

where each of the following is orthogonal:

U:[ul,...,um] V:[’Ul,...,vn] W:[wl,...



Concentrating Mass

e [t can be shown that

vec(A) = ,?:1 fjlk%laijk(wk Ru;Qu;) =(WRVU)o
i=1j=1 k=

where o = vec(X), ¥ = X(1:m, Lin, 1:p).

e This representation is “good” if most of ¢’s mass is concentrated in as few
components as possible.

e But you can forget this...

VGC(A) = ];i:l Okkk (wk 09 Vi 039 uk)



The Kronecker Product SVD (KPSVD)

It ] ]
Ay A - Alq
A — 421 422 14.2q Az’j c IRS*
_Apl Ap? APQ_
then

A= _Erjl o, B; ® C; r = min{pq, st}
1=
where B; € IRP*?. C;, e IR**' Jand oy > 09 > --- > 0, > 0.

Moreover, vec(By),...,vec(B,) are mutually orthogonal and so are vec(Ch),...,vec(C).



Algorithm (m =n = p for clarity)

e Set up

~

A= [A,...,A)] A =A(,0) € R

~

and note that vec(A) = vec(A).

e Compute the KPSVD

~

A:kglek(wkT@Bk)

where W = [wy, ..., w, | is orthogonal and By, ..., B, are each n-by-n. it
follows that

~

vec(A) = vec(A) = él Tk (Wi ® vee(By) )



e Compute the SVD

T
n 91
[Bb"'aBn] — _leuzuz E
1=
9ni
where U = |uq, ..., u, ] and
_911 gi2 - 91n_
a — 9:21 9:22 g?n gin € R"

L 9nl Gn2 " YGnn |

have orthogonal columns.

o vec(A) = 121 e (wy, @ vee(By,) ) = kizﬁl ¢§1 Tilti (Wi @ gri ® ;)



e Set G = [911, 921, 931, 912, 922, 932, 413, G923, 933] and compute its QR
factorization

~

G=VR V=]uvy,...,v,| (orthogonal)

e Since gp; = _ﬁl T k+(i—1)n¥; 1t follows that
]:

n n

vec(A) = kgl El (7h - i) (Wr @ gri @ ;)
= 121 j§1 El( Th* Hi - Tjger(i—1)n ) (Wk @ v @ w;)

— kgl jgl @-; Oijk (wk 0% V; 0% uz)

Oijk = Tk " Wi " Tj k+(i—1)n




De Lathauwer, De Moor, Vandewalle (2000)

Compute the SVDs:

[A<17:7:)7 ,A(H,Z,I)i — VDlG{
DA(:,l,:)T,...,A(:,n,:)T: = WDyGY
[A(,5,1), ... ,A(G,;,n)] = UD3GE

Set ¥ = reshape(D2 (W ® V)) and then

vec(A) = > % % oiji (Wr ® v; @ u;)
k=1 j=11=1



Research Goals

e To heighten the profile of the Kronecker product and develop an “infrastruc-
ture” of methods thereby making it easier for the numerical linear algebra
community to spot Kronecker “opportunities”.

e To understand better the concept of “rank” as it applies to multidimensional
arrays and to develop effective algorithms for its calculation.



