# Block Matrix Computations 

## and the <br> Singular Value Decomposition

A Tale of Two Ideas

Charles F. Van Loan
Department of Computer Science
Cornell University

Supported in part by the NSF contract CCR-9901988.

## Block Matrices

A block matrix is a matrix with matrix entries, e.g.,

$$
A=\left[\begin{array}{cc|cc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\hline \times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]=\left[\begin{array}{c|c}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right] \quad A_{i j} \in \mathbb{R}^{3 \times 2}
$$

Operations are pretty much "business as usual", e.g.

$$
\left[\begin{array}{l|l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right]^{T}\left[\begin{array}{l|l|l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{l|l|l|l}
A_{11}^{T} & A_{21}^{T} \\
\hline A_{12}^{T} & A_{22}^{T}
\end{array}\right]\left[\begin{array}{l|l|l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11}^{T} A_{11}+A_{21}^{T} A_{21} & \text { etc } \\
\hline \text { etc } & \text { etc }
\end{array}\right]
$$

## E.g., Strassen Multiplication

$$
\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& P_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& P_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& P_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& P_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& P_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& P_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& P_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
& C_{11}=P_{1}+P_{4}-P_{5}+P_{7} \\
& C_{12}=P_{3}+P_{5} \\
& C_{21}=P_{2}+P_{4} \\
& C_{22}=P_{1}+P_{3}-P_{2}+P_{6}
\end{aligned}
$$

## Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ are the singular values.

## Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ are the singular values.

Fact 1. The columns of $\left.V=v_{1} \cdots v_{n}\right]$ and $\left.U=u_{1} \cdots u_{n}\right]$ are the right and left singular vectors and they are related:

$$
\begin{aligned}
& A v_{j}=\sigma_{j} u_{j} \\
& A^{T} u_{j}=\sigma_{j} v_{j}
\end{aligned} \quad j=1: n
$$

## Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ are the singular values.

Fact 2. The SVD of $A$ is related to the eigen-decompositions of $A^{T} A$ and $A A^{T}$ :

$$
\begin{aligned}
V^{T}\left(A^{T} A\right) V & =\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right) \\
U^{T}\left(A A^{T}\right) U & =\operatorname{diag}(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}, \underbrace{0, \ldots, 0}_{m-n})
\end{aligned}
$$

## Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ are the singular values.

Fact 3. The smallest singular value is the distance from $A$ to the set of rank deficient matrices:

$$
\sigma_{\min }=\min _{\operatorname{rank}(B)<n}\|A-B\|_{F}
$$

## Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ are the singular values.

Fact 4. The matrix $\sigma_{1} u_{1} v_{1}^{T}$ is the closest rank-1 matrix to $A$, i.e., it solves the problem:

$$
\sigma_{\text {min }}=\min _{\operatorname{rank}(B)=1}\|A-B\|_{F}
$$

## The High-Level Message..

- It is important to be able to think at the block level because of problem structure.
- It is important to be able to develop block matrix algorithms
- There is a progression...

> "Simple" Linear Algebra $\downarrow$ Block Linear Algebra $\downarrow$ Multilinear Algebra

## Reasoning at the Block Level

## Uncontrollability

The system

$$
\dot{x}=A x+B u \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n>p
$$

is uncontrollable if

$$
G=\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A \tau} d \tau
$$

is singular.

## Uncontrollability

The system

$$
\dot{x}=A x+B u \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n>p
$$

is uncontrollable if

$$
G=\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A \tau} d \tau
$$

is singular.

$$
\tilde{A}=\left[\begin{array}{cc}
A & B B^{T} \\
0 & A^{T}
\end{array}\right] \quad \longrightarrow \quad e^{\tilde{A} t}=\left[\begin{array}{cc}
F_{11} & F_{12} \\
0 & F_{22}
\end{array}\right] \quad \longrightarrow \quad G=F_{11}^{T} F_{12}
$$

## Nearness to Uncontrollability

The system

$$
\dot{x}=A x+B u \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n>p
$$

is nearly uncontrollable if the minimum singular value of

$$
G=\int_{0}^{t} e^{A(t-\tau)} B B^{T} e^{A \tau} d \tau
$$

is small.

$$
\tilde{A}=\left[\begin{array}{cc}
A & B B^{T} \\
0 & A
\end{array}\right] \quad \longrightarrow \quad e^{\tilde{A} t}=\left[\begin{array}{cc}
F_{11} & F_{12} \\
0 & F_{22}
\end{array}\right] \quad \longrightarrow \quad G=F_{11}^{T} F_{12}
$$

## Developing Algorithms at the Block Level

## Block Matrix Factorizations: A Challenge

By a block algorithm we mean an algorithm that is rich in matrix-matrix multiplication.

Is there a block algorithm for Gaussian elimination? I.e., is there a way to rearrange the $O\left(n^{3}\right)$ operations so that the implementation spends at most $O\left(n^{2}\right)$ time not doing matrix-matrix multiplication?

## Why?

Re-use ideology: when you touch data, you want to use it a lot.
Not all linear algebra operations are equal in this regard.

| Level | Example | Data | Work |
| :---: | :---: | :---: | :---: |
| 1 | $\alpha=y^{T} z$ | $O(n)$ | $O(n)$ |
|  | $y=y+\alpha z$ | $O(n)$ | $O(n)$ |
| 2 | $y=y+A s$ | $O\left(n^{2}\right)$ | $O\left(n^{2}\right)$ |
|  | $A=A+y z^{T}$ | $O\left(n^{2}\right)$ | $O\left(n^{2}\right)$ |
| 3 | $A=A+B C$ | $O\left(n^{2}\right)$ | $O\left(n^{3}\right)$ |

Here, $\alpha$ is a scalar, $y, z$ vectors, and $A, B, C$ matrices

## Scalar LU

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
a_{11}=u_{11} \\
a_{12}=u_{12} \\
a_{13}=u_{13} \\
a_{21}=\ell_{21} u_{11} \\
a_{31}=\ell_{31} u_{11} \\
a_{22}=\ell_{21} u_{12}+u_{22} \\
a_{23}=\ell_{21} u_{13}+u_{23} \\
a_{32}=\ell_{31} u_{12}+\ell_{32} u_{22} \\
a_{33}=\ell_{31} u_{13}+\ell_{32} u_{23}+u_{33}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
u_{11}=a_{11} \\
u_{12}=a_{12} \\
u_{13}=a_{13} \\
\ell_{21}=a_{21} / u_{11} \\
\ell_{31}=a_{31} / u_{11} \\
u_{22}=a_{22}-\ell_{21} u_{12} \\
u_{23}=a_{23}-\ell_{21} u_{13} \\
\ell_{32}=\left(a_{32}-\ell_{31} u_{12}\right) / u_{22} \\
u_{33}=a_{33}-\ell_{31} u_{13}-\ell_{32} u_{23}
\end{array}\right.
$$

## Recursive Description

If $\alpha \in \mathbb{R}, v, w \in \mathbb{R}^{n-1}$, and $B \in \mathbb{R}^{(n-1) \times(n-1)}$ then

$$
A=\left[\begin{array}{ll}
\alpha & w^{T} \\
v & B
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
v / \alpha & \tilde{L}
\end{array}\right]\left[\begin{array}{cc}
\alpha & w^{T} \\
0 & \tilde{U}
\end{array}\right]
$$

is the LU factorization of $A$ if

$$
\tilde{L} \tilde{U}=\tilde{A}
$$

is the LU factorization of

$$
\tilde{A}=B-v w^{T} / \alpha
$$

Rich in level-2 operations.

## Block LU: Recursive Description

$$
\begin{array}{r}
{\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=} \\
\left.p \begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \begin{array}{c}
p \\
n-p
\end{array} \\
p \begin{array}{cc}
n-p
\end{array}
\end{array}
$$

$$
\begin{aligned}
& A_{11}=L_{11} U_{11} \\
& A_{21}=L_{21} U_{11} \\
& A_{12}=L_{11} U_{12} \\
& A_{22}=L_{21} U_{12}+L_{22} U_{22}
\end{aligned}
$$

Get $L_{11}, U_{11}$ via LU of $A_{11}$
Solve triangular systems for $L_{21}$
Solve triangular systems for $U_{12}$
Form $\tilde{A}=A_{22}-L_{21} U_{12}$


Get $L_{22}, U_{22}$ via LU of $\tilde{A}$

## Block LU: Recursive Description

$$
\begin{array}{r}
{\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=} \\
\left.p \begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \begin{array}{c}
p \\
n-p
\end{array} \\
p \quad n-p
\end{array}
$$

$$
\begin{aligned}
A_{11} & =L_{11} U_{11} \\
A_{21} & =L_{21} U_{11} \\
A_{12} & =L_{11} U_{12} \\
A_{22} & =L_{21} U_{12}+L_{22} U_{22} \\
& \quad \text { Recur } \rightarrow \quad \rightarrow
\end{aligned}
$$

Get $L_{11}, U_{11}$ via LU of $A_{11}$
$O\left(p^{3}\right)$
Solve triangular systems for $L_{21} \quad O\left(n p^{2}\right)$
Solve triangular systems for $U_{12} \quad O\left(n p^{2}\right)$
Form $\tilde{A}=A_{22}-L_{21} U_{12} \quad O\left(n^{2} p\right)$

Get $L_{22}, U_{22}$ via LU of $\tilde{A}$

Rich in level-3 operations!!!

## Consider: $\tilde{A}=A_{22}-L_{21} U_{12}$

$$
\begin{aligned}
& p=3: \\
& {\left[\begin{array}{ccccccc}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times
\end{array}\right]-\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times
\end{array}\right]\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times \\
\times & \times & \times & \times & \times & \times \\
& \times
\end{array}\right]}
\end{aligned}
$$

$p$ must be "big enough" so that the advantage of data re-use is realized.

## Block Algorithms for (Some) Matrix Factorizations

- $L U$ with pivoting:

$$
P A=L U \quad P \text { permutation, } L \text { lower triangular, } U \text { upper triangular }
$$

- Cholesky factorization for symmetric positive definite $A$ :

$$
A=G G^{T} \quad G \text { lower triangular }
$$

- The QR factorization for rectangular matrices:

$$
A=Q R \quad Q \in \mathbb{R}^{m \times m} \text { orthogonal } R \in \mathbb{R}^{m \times n} \text { upper triangular }
$$



## Developing a Block QR Factorization

The standard algorithm computes $Q$ as a product of Householder reflections,

$$
Q^{T} A=H_{n} \cdots H_{1} A=R
$$

After 2 steps...

$$
H_{2} H_{1} A=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{array}\right]
$$

The $H$ matrices look like this:

$$
H=I-2 v v^{T} \quad v \text { a unit 2-norm column vector }
$$

## Developing a Block QR Factorization

The standard algorithm computes $Q$ as a product of Householder reflections,

$$
Q^{T} A=H_{n} \cdots H_{1} A=R
$$

After 2 steps...

$$
H_{2} H_{1} A=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \boxtimes & \times & \times \\
0 & 0 & \boxtimes & \times & \times \\
0 & 0 & \boxtimes & \times & \times \\
0 & 0 & \boxtimes & \times & \times
\end{array}\right]
$$

The $H$ matrices look like this:

$$
H=I-2 v v^{T} \quad v \text { a unit 2-norm column vector }
$$

## Developing a Block QR Factorization

The standard algorithm computes $Q$ as a product of Householder reflections,

$$
Q^{T} A=H_{n} \cdots H_{1} A=R
$$

After 3 steps...

$$
H_{3} H_{2} H_{1} A=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
$$

The $H$ matrices look like this:

$$
H=I-2 v v^{T} \quad v \text { a unit 2-norm column vector }
$$

## Aggregation

$$
A=\begin{aligned}
& \left.A_{1} \mid A_{2}\right] \\
& p n-p
\end{aligned} \quad p \ll n
$$

- Generate the first $p$ Householders based on $A_{1}$ :

$$
H_{p} \cdots H_{1} A_{1}=R_{11} \quad \text { (upper triangular) }
$$

- Aggregate $H_{1}, \ldots, H_{p}$ :

$$
H_{p} \cdots H_{1}=I-2 W Y^{T} \quad W, Y \in \mathbb{R}^{m \times p}
$$

- Apply to rest of matrix:

$$
\left.\left(H_{p} \cdots H_{1}\right) A=\left(H_{p} \cdots H_{1}\right) A_{1} \mid\left(I-2 W Y^{T}\right) A_{2}\right]
$$

## The WY Representation

- Aggregation:

$$
\left(I-2 W Y^{T}\right)\left(I-2 v v^{T}\right)=I-2 W_{+} Y_{+}^{T}
$$

where

$$
\begin{aligned}
W_{+} & \left.=W \mid\left(I-2 W Y^{T}\right) v\right] \\
Y_{+} & =Y \mid v]
\end{aligned}
$$

- Application

$$
A \leftarrow\left(I-2 W Y^{T}\right) A=A-(2 W)\left(Y^{T} A\right)
$$



## A Block Householder Tridiagonalization?

$A$ symmetric. Compute orthogonal $Q$ such that

$$
Q^{T} A Q=\left[\begin{array}{cccccc}
\times & \times & 0 & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 & 0 \\
0 & \times & \times & \times & 0 & 0 \\
0 & 0 & \times & \times & \times & 0 \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right]
$$

The standard algorithm computes $Q$ as a product of Householder reflections,

$$
Q=H_{1} \cdots H_{n-2}
$$

## A Block Householder Tridiagonalization?

$H_{1}$ introduces zeros in first column

$$
H_{1}^{T} A=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times
\end{array}\right]
$$

Scrambles rows 2 through 6.

## A Block Householder Tridiagonalization?

Must also post-multiply...

$$
H_{1}^{T} A H_{1}=\left[\begin{array}{cccccc}
\times & \times & 0 & 0 & 0 & 0 \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times
\end{array}\right]
$$

$H_{1}$ scrambles columns 2 through 6.

## A Block Householder Tridiagonalization?

$H_{2}$ introduces zeros into second column

$$
H_{1}^{T} A H_{1}=\left[\begin{array}{cccccc}
\times & \times & 0 & 0 & 0 & 0 \\
\times & \times & \times & \times & \times & \times \\
0 & \boxtimes & \times & \times & \times & \times \\
0 & \boxtimes & \times & \times & \times & \times \\
0 & \boxtimes & \times & \times & \times & \times \\
0 & \boxtimes & \times & \times & \times & \times
\end{array}\right]
$$

Note that because of $H_{1}$ 's impact, $H_{2}$ depends on all of $A$ 's entries.

The $H_{i}$ can be aggregated, but $A$ must be completely updated along the way destroys the advantage.

## Jacobi Methods for Symmetric Eigenproblem

These methods do not initially reduce $A$ to "condensed" form.
They repeatedly reduce the sum-of-squares of the off-diagonal elements.

$$
A=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & 0 \\
\times & \times & \times & \times \\
\times & 0 & \times & \times
\end{array}\right] \leftarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c & 0 & s \\
0 & 0 & 1 & 0 \\
0 & -s & 0 & c
\end{array}\right]^{T} A\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c & 0 & s \\
0 & 0 & 1 & 0 \\
0 & -s & 0 & c
\end{array}\right]
$$

The $(2,4)$ subproblem:

$$
\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right]=\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]^{T}\left[\begin{array}{ll}
a_{22} & a_{24} \\
a_{42} & a_{44}
\end{array}\right]\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]
$$

$c^{2}+s^{2}=1$ and the off-diagonal sum of squares is reduced by $2 a_{24}^{2}$.

## Jacobi Methods for Symmetric Eigenproblem

Cycle through subproblems:

$$
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)
$$

$(1,2)$ :

$$
A=\left[\begin{array}{cccc}
\times & 0 & \times & \times \\
0 & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \leftarrow\left[\begin{array}{rrrr}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{T} A\left[\begin{array}{rrrr}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$(1,3):$

$$
A=\left[\begin{array}{cccc}
\times & \times & 0 & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \leftarrow\left[\begin{array}{rrrr}
c & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
-s & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{T} A\left[\begin{array}{rrrr}
c & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
-s & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

etc.

## Parallel Jacobi

Parallel Ordering:

$$
\{(1,2),(3,4)\},\{(1,4),(2,3)\},\{(1,3),(2,4)\}
$$

(1,2):

$$
A=\left[\begin{array}{cccc}
\times & 0 & \times & \times \\
0 & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \leftarrow\left[\begin{array}{rrrr}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{T} A\left[\begin{array}{rrrr}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$(3,4)$ :

$$
A=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & 0 \\
\times & \times & 0 & \times
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & s \\
0 & 0 & -s & c
\end{array}\right]^{T} A\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & s \\
0 & 0 & -s & c
\end{array}\right]
$$

## Block Jacobi

$$
A=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & 0 \\
\times & \times & \times & \times \\
\times & 0 & \times & \times
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & Q_{11} & 0 & Q_{12} \\
0 & 0 & I & 0 \\
0 & Q_{21} & 0 & Q_{22}
\end{array}\right]^{T} \quad A\left[\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & Q_{11} & 0 & Q_{12} \\
0 & 0 & I & 0 \\
0 & Q_{21} & 0 & Q_{22}
\end{array}\right]
$$

The $(2,4)$ subproblem:

$$
\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]=\left[\begin{array}{cc}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]^{T}\left[\begin{array}{cc}
A_{22} & A_{24} \\
A_{42} & A_{44}
\end{array}\right]\left[\begin{array}{cc}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]
$$

Convergence analysis requires an understanding of 2-by-2 block matrices that are orthogonal...

## The CS Decomposition

The blocks of an orthogonal matrix have related SVDs:

$$
\begin{aligned}
{\left[\begin{array}{cc}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]=} & {\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right]\left[\begin{array}{cc}
C & S \\
-S & C
\end{array}\right]\left[\begin{array}{cc}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]^{T} } \\
C= & \operatorname{diag}\left(\cos \left(\theta_{1}\right), \ldots, \cos \left(\theta_{m}\right)\right) \\
S= & \operatorname{diag}\left(\sin \left(\theta_{1}\right), \ldots, \sin \left(\theta_{m}\right)\right) \\
& U_{1}^{T} Q_{11} V_{1}=C \\
& U_{1}^{T} Q_{12} V_{2}=S \\
& U_{2}^{T} Q_{21} V_{1}=-S \\
& U_{2}^{T} Q_{22} V_{2}=C
\end{aligned}
$$



## How to Extract Level-3 Performance?

Suppose we want to solve a large sparse $A x=b$ problem.
Iterative methods for this problem can often be dramatically accelerated if you can find a matrix $M$ with two properties:

- It is easy/efficient to solve linear systems of the form $M z=r$.
- $M$ approximates the "essence" of $A$.
$M$ is called a preconditioner and the original iteration is modified to effectively solve the equivalent linear system $\left(M^{-1} A\right) x=\left(M^{-1} b\right)$.


## Idea: Kronecker Product Preconditioners

$$
\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \otimes\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]=\left[\begin{array}{ccc|ccc}
b_{11} c_{11} & b_{11} c_{12} & b_{11} c_{13} & b_{12} c_{11} & b_{12} c_{12} & b_{12} c_{13} \\
b_{11} c_{21} & b_{11} c_{22} & b_{11} c_{23} & b_{12} c_{21} & b_{12} c_{22} & b_{12} c_{23} \\
b_{11} c_{31} & b_{11} c_{32} & b_{11} c_{33} & b_{12} c_{31} & b_{12} c_{32} & b_{12} c_{33} \\
\hline b_{21} c_{11} & b_{21} c_{12} & b_{21} c_{13} & b_{22} c_{11} & b_{22} c_{12} & b_{22} c_{13} \\
b_{21} c_{21} & b_{21} c_{22} & b_{21} c_{23} & b_{22} c_{21} & b_{22} c_{22} & b_{22} c_{23} \\
b_{21} c_{31} & b_{21} c_{32} & b_{21} c_{33} & b_{22} c_{31} & b_{22} c_{32} & b_{22} c_{33}
\end{array}\right]
$$

"Replicated Block Structure"

## Some Properties and a Big Fact

Properties:

$$
\begin{array}{ll}
(B \otimes C)^{T} & =B^{T} \otimes C^{T} \\
(B \otimes C)^{-1} & =B^{-1} \otimes C^{-1} \\
(B \otimes C)(D \otimes F) & =B D \otimes C F \\
B \otimes(C \otimes D) & =(B \otimes C) \otimes D
\end{array}
$$

Big Fact:
If $B$ and $C$ are $m$-by- $m$, then the $m^{2}$-by- $m^{2}$ linear system $(B \otimes C) z=r$ can be solved in $O\left(m^{3}\right)$ time rather than $O\left(m^{6}\right)$ time.

## Capturing Essence with a Kronecker Product

Given

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \quad A_{i j} \in \mathbb{R}^{m \times m}
$$

choose $B$ and $C$ to minimize

$$
\|A-B \otimes C\|_{F}=\left\|\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]-\left[\begin{array}{ccc}
b_{11} C & b_{12} C & b_{13} C \\
b_{21} C & b_{22} C & b_{23} C \\
b_{31} C & b_{32} C & b_{33} C
\end{array}\right]\right\|_{F}
$$

The exact solution can be obtained via the SVD..

## Solution of the min $\|A-B \otimes C\| \quad$ Problem

- Makes the blocks of $A$ into vectors and arrange block-column major order:

$$
\left.\tilde{A}=\operatorname{col}\left(A_{11}\right)\left|\operatorname{col}\left(A_{21}\right)\right| \operatorname{col}\left(A_{31}\right)\left|\operatorname{col}\left(A_{12}\right)\right| \cdots \mid \operatorname{col}\left(A_{33}\right)\right]
$$

- Compute the largest singular value $\sigma_{\max }$ and the corresponding singular vectors $u_{\max }$ and $v_{\text {max }}$.
- $\left.B_{o p t}=\sqrt{\sigma_{\text {max }}} \cdot \operatorname{reshape}\left(v_{\text {max }}, 3,3\right)\right)$.
- $\left.C_{o p t}=\sqrt{\sigma_{\max }} \cdot \operatorname{reshape}\left(u_{\max }, m, m\right)\right)$.


## Conclusions

- It is important to be able to think at the block level because of problem structure.
- It is important to be able to develop block matrix algorithms
- There is a progression...
"Simple" Linear Algebra
$\downarrow$
Block Linear Algebra
$\stackrel{\downarrow}{\text { Multilinear Algebra (Thursday) }}$

