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Block Matrices

A block matrix is a matrix with matrix entries, e.g.,

I[AH’AUWI
[A21’A22J

AZJ c R3><2

N

]
X X XX X X
X X XX X X
X X XX X X
X X XX X X

Operations are pretty much “business as usual”, e.g.

{ AH ‘A12 r All ’ A12 } _ Aﬂ ’ A% AH ‘ A12 } _ AﬂAH -+ A%;Agl ‘ etc
A21 ‘ A22 A21 ‘ A22 A?Q ‘ A%; A21 ‘ A22 etc ‘ etc




E.g., Strassen Multiplication

{Cn 012] _ [An A12} {Bu B12}
Co1 O Asy Aoy || Bar Bao

P = (A1 + Aw)(B11 + B)
Py = (A + Ax)Bi

P; = Ay;(Bi2 — By)

Py = Ag(By — Bn)

P; = (Aj+ Ajp)By

Fs = (Ay — An)(Bi1 + Bro)
P = (Ao — Ag) (B2 + Ba)
Cyi=P+P— P+ P
Clo = P3s+ P

Coyy = PL+P— P+ F;




Singular Value Decomposition (SVD)

If A e IR™" then there exist orthogonal U € IR™™ and V € IR™™" so

01 0
0 09
0 0

UTAV = % = diag(oy, ... 0,) =

where 01 > 09 > - -+ > 0, are the singular values.



Singular Value Decomposition (SVD)

If A e IR™" then there exist orthogonal U € IR™™ and V € IR™™" so

01 0
U'AV = ¥ = diag(oy,...,0,) = | 0 o9
0 0
where o1 > 09 > - -+ > 0, are the singular values.
Fact 1. The columns of V' = Dvl vn} and U = Dul

the right and left singular vectors and they are related:
Avj = oju;
7 =1n
ATUj = 0 j’Uj

Unp

are



Singular Value Decomposition (SVD)

If A e IR™" then there exist orthogonal U € IR™™ and V € IR™" so

01 0
0 09
0 0

UTAV = ¥ = diag(oy,...,0,) =

where 01 > 09 > - -+ > 0, are the singular values.

Fact 2. The SVD of A is related to the eigen-decompositions of A7 A and
AAT

VIATAV = diag(oi,...,0%)

UT(AANU = diag(o?, ..., 0



Singular Value Decomposition (SVD)

If A e IR™" then there exist orthogonal U € IR™™ and V € IR™™" so

o1 0]
U'AV = ¥ = diag(oy,...,0,) = | 0 o9
0 O

where o1 > 09 > --- > 0, are the singular values.

Fact 3. The smallest singular value is the distance from A to the set of rank
deficient matrices:

Omin — min H A-B HF
rank(B) < n



Singular Value Decomposition (SVD)

If A e IR™" then there exist orthogonal U € IR™*™ and V € IR™™" so

0
U'AV = ¥ = diag(oy,...,0,) = | 0 02|
10 0]

where o1 > 09 > - -+ > 0, are the singular values.

Fact 4. The matrix alulvlT is the closest rank-1 matrix to A, i.e., it solves the
problem:

Omin = min ||A_B HF
rank(B) =1



The High-Level Message..

e [t is important to be able to think at the block level because of problem
structure.

e It is important to be able to develop block matrix algorithms

e There is a progression...

“Simple” Linear Algebra

!

Block Linear Algebra

l
Multilinear Algebra



Reasoning
at the
Block Level




Uncontrollability

The system

t = Ax + Bu AelR", BeIR"’, n>p

i1s uncontrollable if
G = /Ot A=) B BT AT 41

is singular.
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Nearness to Uncontrollability

The system

t = Ax + Bu AelR", BeIR"’, n>p

is nearly uncontrollable if the minimum singular value of
G = /Ot AT BBTeATdr

1s small.

A BB
0 A

Fi1 Fig

N
|

o

G = Fl Fy,



Developing Algorithms
at the
Block Level




Block Matrix Factorizations: A Challenge

By a block algorithm we mean an algorithm that is rich in matrix-matrix
multiplication.

Is there a block algorithm for Gaussian elimination? I.e., is there a way to
rearrange the O(n?) operations so that the implementation spends at most
O(n?) time not doing matrix-matrix multiplication?



Why?

Re-use ideology: when you touch data, you want to use it a lot.

Not all linear algebra operations are equal in this regard.

Level Example Data Work
1 a=ylz O(n) O(n)

Yy =1y +az O(n) O(n)

2 y=1y+ As O(n?) O(n?)
A=A+yz O(n?) O(n?)

3 A=A+ BC O(n?) O(n?)

Here, «v is a scalar, y, z vectors, and A, B, C' matrices



aii
ai2
ais

a21
a3y
a22
a23
a32

ass

Scalar LU

ail aiz2 Aais
ao21 429 G923
31 32 ass

Uil

U2

Uis

5211011

5311&11

Co1u19 + Uso
Co1u13 + U3
l31u12 + £30U99

U31u13 + C30U03 + Uss3

1 00
= |l 1 0

U1 U12 Uis

U3y U3 1]

0 w99 us3
0 0 u33 |
uip = ail
U2 = a2
Uiz = dams
b1 = CL21/U11
l31 = CL31/U11
Uy = g2 — Lo1Upo
U3 = Q3 — L2113
U3 = (CL32—£31U12)/U22
U3z = agg — £31u13 — £32U93



Recursive Description

faelR, v,we IR, and B € R"*(=1 then

o 0 e

A= 5 1= le zllo

is the LU factorization of A if

1s the LU factorization of
A= B —vw'/a.

Rich in level-2 operations.



Block LU: Recursive Description

L1 O Uy Up {An Aqo p
Loy Loy 0 Uss - Ay Ap| n—p
p n—p
Ay = L Uy Get L1y, Uyp via LU of Ay
Aoy = LoyUyy Solve triangular systems for Lo;
Ao = L11Upo Solve triangular systems for Ui
Ay = LU + LUz Form A = Ao — Lo1Unz
N

Get Log, Uy via LU of A



Block LU: Recursive Description

I[ L11 0 ] { Ull
| Lor Lo || O
An = LUy
A9y = LoyUypy
Ao = LUy

Ago = LogUjs + LooUso

Recur — —

Rich in level-3 operations!!!

Ui | A A o

Uy | Ay Ap| n—p

p n—p

Get L1y, Uyy via LU of Ay
Solve triangular systems for Lo;
Solve triangular systems for Ui
Form A = Aoy — Lo1Uio

Lo
Get Log, Uy via LU of A



Ao — Lo Uys

t

A

Consider

X
X
X

X X X X X
X
X

X X X X

X
X X X X X

X

X

p must be “big enough” so that the advantage of data re-use is realized.



Block Algorithms for (Some) Matrix Factorizations

e LU with pivoting:

PA=LU P permutation, L lower triangular, U upper triangular

e Cholesky factorization for symmetric positive definite A:

A=GG! G lower triangular

e The QR factorization for rectangular matrices:

A=QR @ e IR™"™ orthogonal R € IR™"" upper triangular




Block Matrix Factorization
Algorithms
via Aggregation




Developing a Block QR Factorization

The standard algorithm computes () as a product of Householder reflections,

Q"A =H, --HA =R

After 2 steps...

HyH A =

o o o o X X
X X X X X X
X X X X X X
X X X X X X

O OO OO X

The H matrices look like this:

H=1— 20! v a unit 2-norm column vector



Developing a Block QR Factorization

The standard algorithm computes () as a product of Householder reflections,

Q"A =H, --HA =R

After 2 steps...

HyH A =

X X X X X X
X X X X X X

O oo o X X
KK K K X X

O OO OO X

The H matrices look like this:

H=1— 20! v a unit 2-norm column vector



Developing a Block QR Factorization

The standard algorithm computes () as a product of Householder reflections,

Q"A =H, --HA =R

After 3 steps...

M HH A —

X X X X X X
X X X X X X

O O O X X X

oo oo o X
OO O O X X

The H matrices look like this:

H=1— 2w’ v a unit 2-norm column vector



Aggregation

AQ] p<<n

e Generate the first p Householders based on Aj:
H,---H{A = Ry, (upper triangular)

o Aggregate Hy, ..., H):
H,---H =I-2WYyl W)Y cR™?

e Apply to rest of matrix:
(H,---H1)A = (Hy---Hy)A ‘ (I — QWYT)AQ}



The WY Representation

e Aggregation:
(I —2WY (I —2v!) = T—2W. Y]

where

W, = W |([I-2WYT)]
Y_|_ = u}/ ‘ /U}

e Application
A — (I -2WYHA=A—-(2W)(YTA)



The Curse of
Similarity Transforms




A Block Householder Tridiagonalization?

A symmetric. Compute orthogonal () such that

X X 0 0 0 0]
X X X 0 0 0
0 X X X 0 0
T
QAR = 0 0 X X X 0
0 0 0 X X X
0O 0 O O><><_

The standard algorithm computes () as a product of Householder reflections,



A Block Householder Tridiagonalization?

H introduces zeros in first column

H'A =

X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

oo o o X X

Scrambles rows 2 through 6.



A Block Householder Tridiagonalization?

Must also post-multiply...

HIAH, =

X X X X X X
X X X X X O
X X X X X O
X X X X X O
X X X X X O

O o o o X X

H{ scrambles columns 2 through 6.



A Block Householder Tridiagonalization?

Hs introduces zeros into second column

H'AH, =

X X X X X O
X X X X X O
X X X X X O
X X X X X O

K KKK X X

O oo o X X

Note that because of H;’s impact, Hy depends on all of A’s entries.

The H; can be aggregated, but A must be completely updated along the way
destroys the advantage.



Jacobi Methods for Symmetric Eigenproblem

These methods do not initially reduce A to “condensed” form.

They repeatedly reduce the sum-of-squares of the off-diagonal elements.

1T

[ X X X X ] ‘1 0 0 0 1 0 0 0
X X X 0 0 ¢ 0 s 0 ¢ 0 s
A = X X X X = 0 0 1 0 A 0O 0 1 0
X 0 X X | 0 —-s 0 ¢ 0 —-s 0 c|
The (2,4) subproblem:
0] [ o] o[ o]
| 0 dy] |—s c¢| | a2 Qu || —S ]|

¢ + s* = 1 and the off-diagonal sum of squares is reduced by 2a3,.



Jacobi Methods for Symmetric Eigenproblem

Cycle through subproblems:

(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

(1,2):

01
0

0
0

0

0

1_

0 0 O

01"

0

0

0

1_

0 0 O

(1,3):

0

0

1_

0 0 O

0

0

1_

0 0 O

etc.



Parallel Jacobi

Parallel Ordering:

1(1,2), B4}, {(1L,4), (2,3)7,1(1,3), (2,4)}

(1,2):

0

1_

0 0 0

0
0 0 0

0

1_

(3,4):

07
0

0
0

C .

0 0 —s

017

0

C_

0 0 —s




Block Jacobi

x x x x] [I o o ol [I 0 0 o0
ol x ox o ox 0 0 Quu 0 Qo 0 Qu 0 Qo
A = X X X X = 0 0 I 0 A 0 0 I 0
X 0 X X 0 Qu 0 Q2 0 Qa 0 Qan

The (2,4) subproblem:

Dy 0] | Qu Q2] [ Az Ay [ Qu Qu2]
{ 0 Dz‘ [Qm Q22‘ lA42 A44HQ21 QQQ‘

Convergence analysis requires an understanding of 2-by-2 block matrices that
are orthogonal...



The CS Decomposition

The blocks of an orthogonal matrix have related SVDs:

T

¢ S
-S C

Qll Q12
QQl QQZ

C = diag(cos(y),...,cos(0,,))
S = diag(sin(6),...,sin(6,,))

U 0
0 U

Vi 0
0 Vs

UlQuVi = C
UlQpVs = S
U QuV, = =S

Ul QunVy = C



The Curse of
Sparsity




How to Extract Level-3 Performance?

Suppose we want to solve a large sparse Ax = b problem.

[terative methods for this problem can often be dramatically accelerated if you
can find a matrix M with two properties:

e [t is easy/efficient to solve linear systems of the form Mz = r.

e )M approximates the “essence” of A.

M is called a preconditioner and the original iteration is modified to effectively
solve the equivalent linear system (M 1A)x = (M~1b).



Idea: Kronecker Product Preconditioners

“Replicated Block Structure”

biici1 biicis 511013 bioci1  biacio 512613

biicor  biicos  biices | biocor  biocoe  biacas

% {CH €12 Cl3]| bricsi  bucsa  biicss | biacs biacsa  biacss
| |021 C22 023} =

| C31 C32 C33 | borcii bo1cio borcis | boscyr boocia boocs

borcor  borcoo 521023 boocor  booCoo 522623

b21031 1921032 b21033 522031 522632 Z?22(333




Some Properties and a Big Fact

Properties:
(B® ) = B Ct
(B® C)™1 = B1leC!
(BRC)DRF) = BD®CF
B® (C® D) = (BQC)® D
Big Fact:

If B and C are m-by-m, then the m*by-m? linear system (B ® C)z = r can
be solved in O(m?) time rather than O(m?°) time.



Capturing Essence with a Kronecker Product

Given

A A A
A = | Ay Axn Ass A € IR™™
| A1 Asp Ass |

choose B and C to minimize

Ay Ajg Ajs |  011C b12C by3C' |
H A-—B®C HF = A21 A22 A23 — b210 bQQC b230
| Az Aszp Ass | b31C" b3aC' bg3C | 2

The exact solution can be obtained via the SVD..



Solution of the min || A— B®C| Problem

e Makes the blocks of A into vectors and arrange block-column major order:

A= col (A1) ’col (A1) ’col (As1) ‘col (A1o) ‘ ‘col (As3) |

e Compute the largest singular value o,,,, and the corresponding singular
vectors Uy,qy and Vg

® Byyi = \/Omaz - Teshape(vimaz, 3,3)).

opt = A/Omaz - reshape(wyqq, m, m)).



Conclusions

e [t is important to be able to think at the block level because of problem
structure.

e It is important to be able to develop block matrix algorithms

e There is a progression...

“Simple” Linear Algebra

!

Block Linear Algebra

!
Multilinear Algebra (Thursday)



