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Overview

I Homotopy Type Theory is a recently discovered connection
between Logic and Topology.

I It is based on an interpretation of intensional Martin-Löf type
theory into homotopy theory.

I Univalent Foundations is an ambitious new program of
foundations of mathematics based on HoTT.

I New constructions based on homotopical intuitions are added
as Higher Inductive Types, providing many classical spaces,
quotient types, truncations, etc.

I The new Univalence Axiom is also added. It implies that
isomorphic structures are equal, in a certain sense.



Overview

I Homotopy Type Theory is a recently discovered connection
between Logic and Topology.

I It is based on an interpretation of intensional Martin-Löf type
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Overview

I And a new “synthetic” style of axiomatics is used, simplifying
and shortening many proofs.

I A large amount of classical mathematics has been developed
in this new system: basic homotopy theory, higher category
theory, analysis, algebra, cumulative hierarchy of set theory,
. . . .

I Proofs are formalized and verified in computerized proof
assistants (e.g. Coq and Agda).

I Applications to software verification are current work in
progress.

I There is a comprehensive book containing the informal
development, which was written at a year-long special research
program at the Institute for Advanced Study in Princeton.
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Type theory

Martin-Löf constructive type theory consists of:

I Types: X ,Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of typed terms and equations, presented as a
deductive system by rules of inference.
Intended as a foundation for constructive mathematics, but now
used also in the theory of programming languages and as the basis
of computational proof assistants.



Type theory
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Martin-Löf constructive type theory consists of:

I Types: X ,Y , . . . ,A× B, A→ B, . . .

I Terms: x : A, b : B, 〈a, b〉, λx .b(x), . . .
I Dependent Types: x : A ` B(x)

I
∑

x :A B(x)
I
∏

x :A B(x)

I Equations s = t : A

Formal calculus of typed terms and equations, presented as a
deductive system by rules of inference.
Intended as a foundation for constructive mathematics, but now
used also in the theory of programming languages and as the basis
of computational proof assistants.



Type theory
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Propositions as Types

The system has a dual interpretation:

I once as mathematical objects: types are “sets” and their
terms are “elements”, which are being constructed,

I once as logical objects: types are “propositions” and their
terms are “proofs”, which are being derived.

This is known as the Curry-Howard correspondence:

0 1 A + B A× B A→ B
∑

x :A B(x)
∏

x :A B(x)

⊥ T A ∨ B A ∧ B A⇒ B ∃x :AB(x) ∀x :AB(x)

Gives the system its constructive character.
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Identity types
It’s natural to add a primitive relation of identity between any
terms of the same type:

x , y : A ` IdA(x , y)

Logically this is the proposition “x is identical to y”.

But what is it mathematically?

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of “Lawvere’s law”:

c : IdA(a, b) x : A ` d(x) : R
(
x , x , r(x)

)
Jd(a, b, c) : R(a, b, c)

Schematically:

“ a = b & R(x , x) ⇒ R(a, b) ”
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Intensionality

The rules are such that if a and b are equal as terms:

a = b

then they are also logically identical:

t : IdA(a, b) (for some t).

I But the converse is not true — this is called intensionality.

I Terms that are identified logically may nonetheless remain
distinct syntactically — e.g. different expressions may
determine “the same” function.

I Allowing such distinctions gives the system good
computational and proof-theoretic properties.

I It also gives rise to a structure of great combinatorial
complexity.
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The homotopy interpretation (Awodey-Warren)
Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types  Spaces

Terms  Maps

a : A  Points a : 1→ A

p : IdA(a, b)  Paths p : a⇒ b

α : IdIdA(a,b)(p, q)  Homotopies α : p V q

...
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The homotopy interpretation: Type dependency

We still need to interpret dependent types x : A ` B(x).

The identity rules imply the following:

p : IdA(a, a′) b : B(a)

p∗b : B(a′)

Logically, this just says “a = a′ & B(a)⇒ B(a′)”.

But topologically, it is a familiar lifting property:

B

��

b // p∗b

A a p
// a′

This is the notion of a “fibration” of spaces.
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The homotopy interpretation: Type dependency

Thus we continue the homotopy interpretation as follows:

Dependent types x : A ` B(x)  Fibrations B

��
A

The type B(a) is the fiber of B → A over the point a : A

B(a)

��

// B

��
1 a

// A.
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The homotopy interpretation: Identity types

To interpret the identity type x , y : A ` IdA(x , y), we thus require
a fibration over A× A.

Take the space AI of all paths in A:

Identity type x , y : A ` IdA(x , y)  Path space AI

��
A× A

The fiber IdA(a, b) over a point (a, b) ∈ A× A is the space of
paths from a to b in A.

IdA(a, b)

��

// AI

��
1

(a,b)
// A× A.
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The homotopy interpretation: Identity types

The path space AI classifies homotopies ϑ : f ⇒ g between maps
f , g : X → A,

AI

��
X

ϑ

77

(f ,g)
// A× A.

So given any terms x : X ` f , g : A, an identity term

x : X ` ϑ : IdA(f , g)

is interpreted as a homotopy between f and g .
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The homotopy interpretation: Summary

This takes the familiar topological interpretation of the
simply-typed λ-calculus:

types spaces

terms continuous functions

and extends it to dependently typed λ-calculus with Id-types, via
the basic idea:

p : IdX (a, b)  p is a path from point a to point b in X

This forces:

I dependent types to be fibrations,

I Id-types to be path spaces,

I homotopic maps to be identical.
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The fundamental groupoid of a type (Hofmann-Streicher)

Like path spaces in topology, identity types endow each type in the
system with the structure of a (higher-) groupoid:

•
a

•
a

•
b
//

p
•
a

•
b

p

##

q

;;��
α

�!

α

}�

β*4
ϑ

•
a

•
b

p

��

q

EE



Fundamental groupoids

As in topology, the terms of order 0 and 1, (“points” and “paths”)
bear the structure of a groupoid.

•
a

•
b
//

p

Definition
A groupoid is a category in which every arrow has an inverse.

x1x 99 p
//

q·p

��

y

p−1

yy

q

��
z
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The fundamental groupoid of a type

The laws of identity are then the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b → c



The fundamental groupoid of a type

But also just as in topology, the groupoid equations of
associativity, inverse, and unit:

p · (q · r) = (p · q) · r
p−1 · p = 1 = p · p−1

1 · p = p = p · 1

do not hold strictly, but only “up to homotopy”.



The fundamental groupoid of a type

This means they are witnessed by terms of the next higher order:

α : IdId
(
p−1 · p, ra

)

•a

•
b

• a

p
22

p−1

��

ra

66��

α



The fundamental groupoid of a type

In this way, each type in the system is endowed with the structure
of an “∞-groupoid”, with terms, identities between terms,
identities between identities, ...

��

α

�	

β*4
ϑ

a b

p

��

q

DD



Homotopy n-types (Voevodsky)

The universe of all types is naturally stratified by “homotopical
dimension” or “truncation level”: the level at which the
fundamental groupoid becomes trivial.

A type X is called:

contractible iff
∑

x :X

∏
y :X IdX (x , y),

Such a type has essentially one term.

A type X is called a:

proposition iff
∏

x ,y :X Contr(IdX (x , y)),
Such a type has at most one term.

set iff
∏

x ,y :X Prop(IdX (x , y)),
Identity of terms in such a type is a proposition.

1-type iff
∏

x ,y :X Set(IdX (x , y)),
Identity of identity terms in such a type is a
proposition.

(n+1)-type iff
∏

x ,y :X nType(IdX (x , y)).
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The Hierarchy of n-Types
This gives a new view of the mathematical universe, in which some
types have intrinsic higher-dimensional structure.

propositions sets 1-types ... n-types

U0

U1

U2

U3

h-level

size



Machine implementation

Now one can combine:

I the representation of homotopy theory and other mathematics
in constructive type theory,

I the well-developed implementations of type theory in
computational proof assistants like Coq and Agda.

This allows for computer verified proofs in homotopy theory and
related fields, in addition to classical and constructive
mathematics. This is being very actively pursued right now.
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A computational example

A classical result states that the higher homotopy groups of a
space are always abelian.

We can formalize this very simply in homotopy type theory:

I the fundamental group π1(X , b) of a type X at basepoint
b : X consists of all terms of type IdX (b, b).

I the second homotopy group π2(X , b) consists of all terms of
type IdIdX (b,b)(r(b), r(b)).

I Each of these types has a group structure, and so the second
one has two group structures that are compatible.

I Now the Eckmann-Hilton argument shows that the two
structures on π2(X , b) agree, and are abelian.

This argument can be formalized in Coq and checked by a
computer. In this way, we can use the homotopical interpretation
to give machine-checked proofs in homotopy theory.
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A computational example

(** ** The 2-dimensional groupoid structure *)

(** Horizontal composition of 2-dimensional paths. *)

Definition concat2 {A} {x y z : A} {p p’ : x = y} {q q’ : y = z} (h : p = p’) (h’ : q = q’)

: p @ q = p’ @ q’

:= match h, h’ with idpath, idpath => 1 end.

Notation ‘‘p @@ q" := (concat2 p q)

(** 2-dimensional path inversion *)

Definition inverse2 {A : Type} {x y : A} {p q : x = y} (h : p = q) : p^ = q^

:= match h with idpath => 1 end.

(** *** Whiskering *)

Definition whiskerL {A : Type} {x y z : A} (p : x = y) {q r : y = z} (h : q = r) : p @ q = p @ r

:= 1 @@ h.

Definition whiskerR {A : Type} {x y z : A} {p q : x = y} (h : p = q) (r : y = z) : p @ r = q @ r

:= h @@ 1.

(** *** Unwhiskering, a.k.a. cancelling. *)

Lemma cancelL {A} {x y z : A} (p : x = y) (q r : y = z) : (p @ q = p @ r) -> (q = r).

Proof.

destruct p, r. intro a. exact ((concat_1p q)^ @ a).

Defined.

Lemma cancelR {A} {x y z : A} (p q : x = y) (r : y = z) : (p @ r = q @ r) -> (p = q).

Proof.

destruct r, p. intro a. exact (a @ concat_p1 q).

Defined.



(** Whiskering and identity paths. *)

Definition whiskerR_p1 {A : Type} {x y : A} {p q : x = y} (h : p = q) :

(concat_p1 p) ^ @ whiskerR h 1 @ concat_p1 q = h

:=

match h with idpath =>

match p with idpath =>

1

end end.

Definition whiskerR_1p {A : Type} {x y z : A} (p : x = y) (q : y = z) :

whiskerR 1 q = 1 :> (p @ q = p @ q)

:=

match q with idpath => 1 end.

Definition whiskerL_p1 {A : Type} {x y z : A} (p : x = y) (q : y = z) :

whiskerL p 1 = 1 :> (p @ q = p @ q)

:=

match q with idpath => 1 end.

Definition whiskerL_1p {A : Type} {x y : A} {p q : x = y} (h : p = q) :

(concat_1p p) ^ @ whiskerL 1 h @ concat_1p q = h

:=

match h with idpath =>

match p with idpath =>

1

end end.

Definition concat2_p1 {A : Type} {x y : A} {p q : x = y} (h : p = q) :

h @@ 1 = whiskerR h 1 :> (p @ 1 = q @ 1)

:=

match h with idpath => 1 end.

Definition concat2_1p {A : Type} {x y : A} {p q : x = y} (h : p = q) :

1 @@ h = whiskerL 1 h :> (1 @ p = 1 @ q)

:=

match h with idpath => 1 end.



(** The interchange law for concatenation. *)

Definition concat_concat2 {A : Type} {x y z : A} {p p’ p’’ : x = y} {q q’ q’’ : y = z}

(a : p = p’) (b : p’ = p’’) (c : q = q’) (d : q’ = q’’) :

(a @@ c) @ (b @@ d) = (a @ b) @@ (c @ d).

Proof.

case d.

case c.

case b.

case a.

reflexivity.

Defined.

(** The interchange law for whiskering. Special case of [concat_concat2]. *)

Definition concat_whisker {A} {x y z : A} (p p’ : x = y) (q q’ : y = z) (a : p = p’) (b : q = q’) :

(whiskerR a q) @ (whiskerL p’ b) = (whiskerL p b) @ (whiskerR a q’)

:=

match b with

idpath =>

match a with idpath =>

(concat_1p _)^

end

end.

(** Structure corresponding to the coherence equations of a bicategory. *)

(** The "pentagonator": the 3-cell witnessing the associativity pentagon. *)

Definition pentagon {A : Type} {v w x y z : A} (p : v = w) (q : w = x) (r : x = y) (s : y = z)

: whiskerL p (concat_p_pp q r s)

@ concat_p_pp p (q@r) s

@ whiskerR (concat_p_pp p q r) s

= concat_p_pp p q (r@s) @ concat_p_pp (p@q) r s.

Proof.

case p, q, r, s. reflexivity.

Defined.



(** The 3-cell witnessing the left unit triangle. *)

Definition triangulator {A : Type} {x y z : A} (p : x = y) (q : y = z)

: concat_p_pp p 1 q @ whiskerR (concat_p1 p) q

= whiskerL p (concat_1p q).

Proof.

case p, q. reflexivity.

Defined.

(** The Eckmann-Hilton argument *)

Definition eckmann_hilton {A : Type} {x:A} (p q : 1 = 1 :> (x = x)) : p @ q = q @ p :=

(whiskerR_p1 p @@ whiskerL_1p q)^

@ (concat_p1 _ @@ concat_p1 _)

@ (concat_1p _ @@ concat_1p _)

@ (concat_whisker _ _ _ _ p q)

@ (concat_1p _ @@ concat_1p _)^

@ (concat_p1 _ @@ concat_p1 _)^

@ (whiskerL_1p q @@ whiskerR_p1 p).



Formalization of mathematics
I The idea of logical foundations of math has great conceptual

and philosophical interest, but in the past this was too lengthy
and cumbersome to be of much use.

I Explicit formalization of math is finally feasible, because
computers can now take over what was once too tedious or
complicated to be done by hand.

I Formalization can provide a practical tool for working
mathematicians and scientists: increased certainty and
precision, supports remote collaborative work, cumulativity of
results, searchable library of code, ... perhaps mathematics
will one day be fully formalized.

I UF uses a “synthetic” method involving high-level axiomatics
and structural descriptions. Allows for shorter, more abstract
proofs that are closer to mathematical practice than the
“analytic” method of ZFC.

I Software verification should also benefit from higher
dimensional methods: current work in progress at CMU.
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Homotopy Type Theory: Summary

I Under the new homotopical interpretation, constructive type
theory provides a “logic of homotopy”.

I Logical methods capture some homotopically significant
structures: e.g. the fundamental ∞-groupoid of a space is a
logical construction, and the notion of an n-type is logically
definable.

I Many basic results have already been proved and formalized in
computational proof assistants, e.g. calculations of many
homotopy groups of spheres.

I Other areas are also being developed:

I Foundations: quotient types, inductive types, cumulative
hierarchy of sets, ...

I Elementary mathematics: basic algebra, real numbers, cardinal
arithmetic, ...

I Some new logical ideas are suggested by the homotopy
interpretation: Higher inductive types, Univalence axiom.
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Higher inductive types (Lumsdaine-Shulman)

The natural numbers N are implemented as an (ordinary) inductive
type:

N :=

{
0 : N
s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X
rec(a, f ) : N→ X

with computation rules:

rec(a, f )(0) = a

rec(a, f )(sn) = f (rec(a, f )(n))
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Higher inductive types (Lumsdaine-Shulman)

In other words, (N, 0, s) is the free structure of this type:

1
0
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Higher inductive types: The circle S1

The homotopical circle S = S1 can be given as an inductive type
involving a “higher-dimensional” generator:

S :=

{
base : S
loop : IdS(base, base)

where we think of loop : IdS(base, base) as a path

loop : base base.
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In other words, (S, base, loop) is the free structure of this type:
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Higher inductive types: The circle S1

Here is a sanity check:

Theorem (Shulman 2011)

The type-theoretic circle S has the correct homotopy groups:

πn(S) =

{
Z, if n = 1,

0, if n 6= 1.

The proof combines classical homotopy theory with methods from
constructive type theory, and uses Voevodsky’s Univalence Axiom.
It has been formalized in Coq.
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Higher inductive types: The interval I

The unit interval I = [0, 1] is also an inductive type, on the data:

I :=

{
0, 1 : I
p : IdI(0, 1)

now thinking of p : IdI(0, 1) as a “free path”

p : 0 1.

Slogan:

In topology, we start with the interval and use it to define the
notion of a path.

In HoTT, we start with the notion of a path, and use it to define
the interval.
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Higher inductive types: Conclusion

Many basic spaces and constructions can be introduced as HITs:

I higher spheres Sn, cylinders, tori, cell complexes, . . . ,

I suspensions ΣA,

I homotopy pullbacks, pushouts, etc.,

I truncations, such as connected components π0(A) and
“bracket” types [A],

I quotients by equivalence relations and general quotients,

I free algebras, algebras for a monad,

I (higher) homotopy groups πn, Eilenberg-MacLane spaces
K (G , n), Postnikov systems,

I Quillen model structure,

I real numbers,

I cumulative hierarchy of sets.



Univalence

Voevodsky has proposed a new foundational axiom to be added to
HoTT: the Univalence Axiom.

I It captures the informal mathematical practice of identifying
isomorphic objects.

I It is very useful from a practical point of view, especially
when combined with HITs.

I It is formally incompatible with the assumption that all
types are sets.

I Its status as a constructive principle is the focus of much
current research.
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Isomorphism and Equivalence

In type theory, the usual notion of isomorphism A ∼= B is definable:

A ∼= B ⇔ there are f : A→ B and g : B → A
such that gf (x) = x and fg(y) = y .

Formally, there is the type of isomorphisms:

Iso(A,B) :=
∑

f :A→B

∑
g :B→A

(∏
x :A

IdA(gf (x), x)×
∏
y :B

IdB(fg(y), y)
)

Thus A ∼= B iff this type is inhabited by a closed term, which is
then just an isomorphism between A and B.
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Isomorphism and Equivalence

I There is also a more refined notion of equivalence of types,

A ' B

which adds a further “coherence” condition relating the proofs
of gf (x) = x and fg(y) = y .

I Under the homotopy interpretation, this is the type of
homotopy equivalences.

I This subsumes categorical equivalence (for 1-types),
isomorphism of sets (for 0-types), and logical equivalence (for
(-1)-types).
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Invariance

One can show that all definable properties P(X ) of types X
respect type equivalence:

A ' B and P(A) implies P(B)

In this sense, all properties are invariant.
Moreover, therefore, equivalent types A ' B are indiscernable:

P(A)⇒ P(B), for all P

How is this related to identity of types A and B?
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Univalence

To reason about identity of types, we need a type universe U ,
with an identity type,

IdU (A,B).

Since identity implies equivalence there is a comparison map:

IdU (A,B)→ (A ' B).

The Univalence Axiom asserts that this map is an equivalence:

IdU (A,B) ' (A ' B) (UA)

So UA can be stated: “Identity is equivalent to equivalence.”
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The Univalence Axiom: Remarks

I Since UA is an equivalence, there is a map coming back:

IdU (A,B)←− (A ' B)

In this sense, equivalent objects are identical.

I So logically equivalent propositions are identical, and
isomorphic sets, groups, etc., can be identified.

I UA implies that U , in particular, is not a set (0-type).

I The computational character of UA is still an open question.
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The Univalence Axiom: How it works

To compute the fundamental group of the circle S, we shall
construct the universal cover:

R

S

cov

base

0

1

2

This will be a dependent type over S, i.e. a type family

cov : S // U .
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The Univalence Axiom: How it works

To define a type family

cov : S −→ U ,

by the recursion property of the circle, we just need the following
data:

I a point A : U
I a loop p : A A

For the point A we take the integers Z.
By Univalence, to give a loop p : Z Z in U , it suffices to give an
equivalence Z ' Z.
Since Z is a set, equivalences are just isomorphisms, so we can
take the successor function succ : Z ∼= Z.



The Univalence Axiom: How it works

To define a type family

cov : S −→ U ,

by the recursion property of the circle, we just need the following
data:

I a point A : U
I a loop p : A A

For the point A we take the integers Z.

By Univalence, to give a loop p : Z Z in U , it suffices to give an
equivalence Z ' Z.
Since Z is a set, equivalences are just isomorphisms, so we can
take the successor function succ : Z ∼= Z.



The Univalence Axiom: How it works

To define a type family

cov : S −→ U ,

by the recursion property of the circle, we just need the following
data:

I a point A : U
I a loop p : A A

For the point A we take the integers Z.
By Univalence, to give a loop p : Z Z in U , it suffices to give an
equivalence Z ' Z.

Since Z is a set, equivalences are just isomorphisms, so we can
take the successor function succ : Z ∼= Z.



The Univalence Axiom: How it works

To define a type family

cov : S −→ U ,

by the recursion property of the circle, we just need the following
data:

I a point A : U
I a loop p : A A

For the point A we take the integers Z.
By Univalence, to give a loop p : Z Z in U , it suffices to give an
equivalence Z ' Z.
Since Z is a set, equivalences are just isomorphisms, so we can
take the successor function succ : Z ∼= Z.



The Univalence Axiom: How it works

R

S

cov

base

0

1

2

Definition (Universal Cover of S1)

The dependent type cov : S // U is given by circle-recursion, with

cov(base) := Z
cov(loop) := ua(succ).



The Univalence Axiom: How it works
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As in classical homotopy theory, we use the universal cover to
define the “winding number” of any path p : base base by
wind(p) = p∗(0).

This gives a map

wind : Ω(S) // Z,

which is inverse to the map Z // Ω(S) given by

z 7→ loopz .
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The formal proof

(** * Theorems about the circle S^1. *)

Require Import Overture PathGroupoids Equivalences Trunc HSet.

Require Import Paths Forall Arrow Universe Empty Unit.

Local Open Scope path_scope.

Local Open Scope equiv_scope.

Generalizable Variables X A B f g n.

(* *** Definition of the circle. *)

Module Export Circle.

Local Inductive S1 : Type :=

| base : S1.

Axiom loop : base = base.

Definition S1_rect (P : S1 -> Type) (b : P base) (l : loop # b = b)

: forall (x:S1), P x

:= fun x => match x with base => b end.

Axiom S1_rect_beta_loop

: forall (P : S1 -> Type) (b : P base) (l : loop # b = b),

apD (S1_rect P b l) loop = l.

End Circle.



(* *** The non-dependent eliminator *)

Definition S1_rectnd (P : Type) (b : P) (l : b = b)

: S1 -> P

:= S1_rect (fun _ => P) b (transport_const _ _ @ l).

Definition S1_rectnd_beta_loop (P : Type) (b : P) (l : b = b)

: ap (S1_rectnd P b l) loop = l.

Proof.

unfold S1_rectnd.

refine (cancelL (transport_const loop b) _ _ _).

refine ((apD_const (S1_rect (fun _ => P) b _) loop)^ @ _).

refine (S1_rect_beta_loop (fun _ => P) _ _).

Defined.

(* *** The loop space of the circle is the Integers. *)

(* First we define the appropriate integers. *)

Inductive Pos : Type :=

| one : Pos

| succ_pos : Pos -> Pos.

Definition one_neq_succ_pos (z : Pos) : ~ (one = succ_pos z)

:= fun p => transport (fun s => match s with one => Unit | succ_pos t => Empty end) p tt.

Definition succ_pos_injective {z w : Pos} (p : succ_pos z = succ_pos w) : z = w

:= transport (fun s => z = (match s with one => w | succ_pos a => a end)) p (idpath z).

Inductive Int : Type :=

| neg : Pos -> Int

| zero : Int

| pos : Pos -> Int.



Definition neg_injective {z w : Pos} (p : neg z = neg w) : z = w

:= transport (fun s => z = (match s with neg a => a | zero => w | pos a => w end)) p (idpath z).

Definition pos_injective {z w : Pos} (p : pos z = pos w) : z = w

:= transport (fun s => z = (match s with neg a => w | zero => w | pos a => a end)) p (idpath z).

Definition neg_neq_zero {z : Pos} : ~ (neg z = zero)

:= fun p => transport (fun s => match s with neg a => z = a | zero => Empty

| pos _ => Empty end) p (idpath z).

Definition pos_neq_zero {z : Pos} : ~ (pos z = zero)

:= fun p => transport (fun s => match s with pos a => z = a

| zero => Empty | neg _ => Empty end) p (idpath z).

Definition neg_neq_pos {z w : Pos} : ~ (neg z = pos w)

:= fun p => transport (fun s => match s with neg a => z = a

| zero => Empty | pos _ => Empty end) p (idpath z).

(* And prove that they are a set. *)

Instance hset_int : IsHSet Int.

Proof.

apply hset_decidable.

intros [n | | n] [m | | m].

revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].

exact (inl 1).

exact (inr (fun p => one_neq_succ_pos _ (neg_injective p))).

exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (neg_injective p)))).

destruct (IHn m) as [p | np].

exact (inl (ap neg (ap succ_pos (neg_injective p)))).

exact (inr (fun p => np (ap neg (succ_pos_injective (neg_injective p))))).

exact (inr neg_neq_zero).

exact (inr neg_neq_pos).

exact (inr (neg_neq_zero o symmetry _ _)).

exact (inl 1).



exact (inr (pos_neq_zero o symmetry _ _)).

exact (inr (neg_neq_pos o symmetry _ _)).

exact (inr pos_neq_zero).

revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].

exact (inl 1).

exact (inr (fun p => one_neq_succ_pos _ (pos_injective p))).

exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (pos_injective p)))).

destruct (IHn m) as [p | np].

exact (inl (ap pos (ap succ_pos (pos_injective p)))).

exact (inr (fun p => np (ap pos (succ_pos_injective (pos_injective p))))).

Defined.

(* Successor is an autoequivalence of [Int]. *)

Definition succ_int (z : Int) : Int

:= match z with

| neg (succ_pos n) => neg n

| neg one => zero

| zero => pos one

| pos n => pos (succ_pos n)

end.

Definition pred_int (z : Int) : Int

:= match z with

| neg n => neg (succ_pos n)

| zero => neg one

| pos one => zero

| pos (succ_pos n) => pos n

end.

Instance isequiv_succ_int : IsEquiv succ_int

:= isequiv_adjointify succ_int pred_int _ _.

Proof.

intros [[|n] | | [|n]]; reflexivity.

intros [[|n] | | [|n]]; reflexivity.

Defined.



(* Now we do the encode/decode. *)

Section AssumeUnivalence.

Context ‘{Univalence} ‘{Funext}.

Definition S1_code : S1 -> Type

:= S1_rectnd Type Int (path_universe succ_int).

(* Transporting in the codes fibration is the successor autoequivalence. *)

Definition transport_S1_code_loop (z : Int)

: transport S1_code loop z = succ_int z.

Proof.

refine (transport_compose idmap S1_code loop z @ _).

unfold S1_code; rewrite S1_rectnd_beta_loop.

apply transport_path_universe.

Defined.

Definition transport_S1_code_loopV (z : Int)

: transport S1_code loop^ z = pred_int z.

Proof.

refine (transport_compose idmap S1_code loop^ z @ _).

rewrite ap_V.

unfold S1_code; rewrite S1_rectnd_beta_loop.

rewrite <- path_universe_V.

apply transport_path_universe.

Defined.



(* Encode by transporting *)

Definition S1_encode (x:S1) : (base = x) -> S1_code x

:= fun p => p # zero.

(* Decode by iterating loop. *)

Fixpoint loopexp {A : Type} {x : A} (p : x = x) (n : Pos) : (x = x)

:= match n with

| one => p

| succ_pos n => loopexp p n @ p

end.

Definition looptothe (z : Int) : (base = base)

:= match z with

| neg n => loopexp (loop^) n

| zero => 1

| pos n => loopexp (loop) n

end.

Definition S1_decode (x:S1) : S1_code x -> (base = x).

Proof.

revert x; refine (S1_rect (fun x => S1_code x -> base = x) looptothe _).

apply path_forall; intros z; simpl in z.

refine (transport_arrow _ _ _ @ _).

refine (transport_paths_r loop _ @ _).

rewrite transport_S1_code_loopV.

destruct z as [[|n] | | [|n]]; simpl.

by apply concat_pV_p.

by apply concat_pV_p.

by apply concat_Vp.

by apply concat_1p.

reflexivity.

Defined.



(* The nontrivial part of the proof that decode and encode are equivalences is showing that decoding

followed by encoding is the identity on the fibers over [base]. *)

Definition S1_encode_looptothe (z:Int)

: S1_encode base (looptothe z) = z.

Proof.

destruct z as [n | | n]; unfold S1_encode.

induction n; simpl in *.

refine (moveR_transport_V _ loop _ _ _).

by apply symmetry, transport_S1_code_loop.

rewrite transport_pp.

refine (moveR_transport_V _ loop _ _ _).

refine (_ @ (transport_S1_code_loop _)^).

assumption.

reflexivity.

induction n; simpl in *.

by apply transport_S1_code_loop.

rewrite transport_pp.

refine (moveR_transport_p _ loop _ _ _).

refine (_ @ (transport_S1_code_loopV _)^).

assumption.

Defined.



(* Now we put it together. *)

Definition S1_encode_isequiv (x:S1) : IsEquiv (S1_encode x).

Proof.

refine (isequiv_adjointify (S1_encode x) (S1_decode x) _ _).

(* Here we induct on [x:S1]. We just did the case when [x] is [base]. *)

refine (S1_rect (fun x => Sect (S1_decode x) (S1_encode x))

S1_encode_looptothe _ _).

(* What remains is easy since [Int] is known to be a set. *)

by apply path_forall; intros z; apply set_path2.

(* The other side is trivial by path induction. *)

intros []; reflexivity.

Defined.

Definition equiv_loopS1_int : (base = base) <~> Int

:= BuildEquiv _ _ (S1_encode base) (S1_encode_isequiv base).

End AssumeUnivalence.



Final Example: The cumulative hierarchy

Given a universe U , we can make the cumulative hierarchy V of
sets in U as a HIT:

I for any small A and any map f : A→ V , there is a “set”:

set(A, f ) : V

We think of set(A, f ) as the image of A under f , i.e. the
classical set {f (a) | a ∈ A}

I For all A,B : U , f : A→ V and g : B → V such that(
∀a : A∃b : B f (a) = g(b)

)
∧
(
∀b : B ∃a : A f (a) = g(b)

)
we put in a path in V from set(A, f ) to set(B, g).

I The 0-truncation constructor: for all x , y : V and p, q : x = y ,
we have p = q.



The cumulative hierarchy of sets

Membership x ∈ y is then defined for elements of V by:

(x ∈ set(A, f )) := (∃a : A. x = f (a)).

One can show that the resulting structure (V ,∈) satisfies most of
the axioms of Aczel’s constructive set theory CZF.

Assuming AC for sets (0-types), one gets a model of ZFC set
theory.

The proofs make essential use of UA.
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