
Tmote Implementation of BMAC and SMAC protocols
Kiran Kumar
Y5111047

vkirankr@iitk.ac.in

Phani Kumar
Y5104042

phani@iitk.ac.in

ABSTRACT

 SMAC(sensor MAC) and BMAC (Berkeley MAC) are two
most widely used protocols for sensor network applications.
Currently their implementations are available for only Mica2
motes. Our intent is to implement the two protocols for tmotes.
We modified the unicast preamble Send/Receive part of BMAC
protocol, synchronization part in SMAC protocol. We added
fragmentation of message and overhear avoidance features to
BMAC, optional ACK, outlier based CCA (Clear Channel
Assessment) features to SMAC. In this paper we explain the
details of our implementation, modifications we have made, and
the effects of the modifications. With our implementation of
SMAC, we can disprove the statement "BMAC outperforms
SMAC in all scenarios". We make a statement that "BMAC
outperforming SMAC and SMAC outperforming BMAC is
purely scenario based rather than a general statement."

1. INTRODUCTION

 Due to sensor mote's small size and their ability to
communicate through wireless, sensor networks are gaining
popularity in recent years. Some applications of sensor network
are Habitat monitoring, countersnipper detection, traffic
monitoring etc. Limitations of Sensor motes are limited power,
memory, CPU execution speed and range of communication.
Many researchers focused on reduction of power usage by
increasing the delay of communication. It is a known fact that
power consumption for transmitting one bit is equivalent to
processing 1000 or more instructions. Some of the known
techniques to reduce power consumption are data aggregation,
on-demand Adhoc routing etc. MAC protocol has greater
responsibility to conserve power than any other protocols in
higher layers. Many MAC protocols exist for sensor networks,
out of which SMAC, TMAC, and BMAC have implementations
in TinyOS.
 SMAC [1] is CSMA based protocol, neighbor schedules
are maintained at each node for synchronization, RTS/CTS is
used to avoid hidden node problem. TMAC [2] is same as
SMAC with a timeout added, for any node if none of transmit or
receive event occurs within the timeout period then node goes to
sleep, node will refresh the timeout period for each transmit or
receive event. Under homogenous load SMAC and TMAC
performs equally, under variable load TMAC out performs
SMAC by factor of 5 [2]. BMAC [3] is also CSMA based
protocol, avoids synchronization problem by sending a long
preamble before the data packet. Unlike SMAC and TMAC,
BMAC is a light weight protocol, with ACK as option. In order
to make sure that whether channel is free or busy, BMAC uses
outlier based CCA rather than threshold based CCA
(SMAC/TMAC uses). We expect that the reader knows the

features of SMAC and BMAC protocols, if not, we recommend
to refer the references [1] and [3]. We mention the details of
these protocols in abstract manner. We donot expect the reader
to know the details of Tmote and CC2420. We mention the
specific details whenever needed.
 The problem with these efficient MAC protocols is that their
availability is confined to only Mica2 CC1000 radio. These
protocols are not implemented for other radios, e.g. Tmote's
CC2420. Tmotes are gaining popularity because of their low
cost. Known currently ongoing applications using Tmote are
Bridge Monitoring [], and Vibration Analysis of bearings[].
These applications are under development. To our knowledge,
SMAC and BMAC are not implemented for Tmotes. For
Tmotes only CSMA MAC is available. These applications are
using CSMA MAC unsatisfactorily. We intended to solve the
problem, we implemented major part of BMAC and partly
SMAC. We haven't solved the problem for the ongoing projects,
but we may solve this problem for projects which start in near
future.
 Current implementation of BMAC (CC1000 specific) lacks
proper documentation and merges the radio level details with
the MAC features. It becomes hard to figure out which part of
the code should be modified to port to CC2420 radio and this
problem remains same if anyone wants to port for other type of
radios. Documentation of SMAC is better than BMAC, but the
code is complex to understand, every one of us believe that
"BMAC outperforms SMAC" and is not worth to implement it
for new radios. We feel these are the reasons why SMAC and
BMAC are not ported for CC2420 radio.
 Our problem definition is as follows "Implementing BMAC
and SMAC code to CC2420, removing possible inefficiencies,
easily portable to any other radio platforms". This problem
statement made us to rewrite the code from the scratch.
Currently CC2420 radio implements CSMA, Radio Send, Radio
Receive modules. Our assumption is that CC2420 also
implements Radio sleep, Radio wakeup, and Outlier based
CCA. These assumptions aren't unrealistic; one of the members
in our sensor network group implemented these features for
CC2420. At the time we started implementation these were the
assumptions made by us. Currently, they arenot considered as
assumptions.
 Current results are BMAC's MAC layer components (will
be explained later) are working as expected if Radio
sleep/wakeup and outlier CCA aren't used. SMAC components
(will be explained later) are coded but not tested. The rest of the
paper is organized as follows, Section 2 gives a brief overview
of our approach and modifications done for the basic protocols,
Section 3 discusses the added or modified features to SMAC
and BMAC, Section 4 discusses the architecture of SMAC and

BMAC, Section 5 discusses how App layer and MAC
communicate, Section 6 discusses the what are the parameters to
be modified to improve the performance of BMAC protocol,
Section 7 discusses the implementation details and issues of
BMAC, Section 8 presents the power calculations of BMAC
protocol, Section 9 presents the results and current progress of
SMAC and BMAC implementation, and section 10 concludes
the paper.

2. Our approach
 As mentioned in previous section that our implementation
not concentrated on just porting protocols to CC2420 radio, we

also tried to add/modify features to the protocols to save power
and increase flexibility. We differentiate our features with
existing implementations by tables 1 and 2 given below. We
explain each modification in detail in the later sections.

Feature CC1000 impl. CC2420 impl. Reason to change

Broadcast Preamble Send/
Receive

Stream of preamble bytes Stream of preamble packets implementation issue
with CC2420

Unicast Preamble Send/ Receive stream of preamble bytes sequence of preamble packets to conserve power
wastage.

Send/ Receive broadcast message only one packet is transferred, no
fragmentation

added fragmentation, virtually
seems to App layer that its long
message is transferred at a time.

to improve flexibility.

Send/ Receive unicast message ACK is option, only one packet is
transferred, no fragmentation

ACK is option, added
fragmentation.

to improve flexibility.

Overhear avoidance not implemented. implemented. to conserve power
wastage.

Implementation details hard to understand the code. Layered architecture, hide radio
details at MAC layer code.

to improve readability,
and easy portability.

Table.1 Comparison of CC1000 and CC2420 implementations of BMAC

Feature CC1000 impl. CC2420 impl. Reason to change

Synchronization

maintains neighbors' schedules,
modifies node's local time with
its synchronized node's time,
maintains the time difference of
other neighbors' time.

doesn't modify node's time,
maintains the time difference of
neighbor's time. SYNC frame is
divided into SYNC frame1,
SYNC ACK frame and SYNC
frame2.

modification of node's local
time doesn't solve the problem.
To avoid network partitioning
and to avoid logical asymmetric
links.

Send/Receive broadcast
message.

only one packet is transferred,
no fragmentation. added fragmentation. to improve flexibility.

Send/Receive unicast message ACK is compulsory,
fragmentation available.

ACK is optional, fragmentation
available.

to conserve power wastage, for
unreliable data.

Clear Channel Assessment Threshold based Outlier based to better assess the channel
state.

Table.2 Comparison of CC1000 and CC2420 implementations of SMAC

3. Added/modified features of SMAC
and BMAC
3.1 BMAC features
 As the design features of BMAC protocol were
efficient, we haven't made many modifications to the
protocol.
 One problem we identified with BMAC protocol is
that application designer has to select the preamble
period which determines number of preambles to be
sent before sending a data packet. Finding an
optimistic value of length of preamble period is
difficult, because setting it to small value doesn’t
guarantee that the receiving node will wakeup in the
assumed preamble length time, setting it to a high
value solves the synchronization problem but
increases power wastage. Choosing a value for
preamble length based on theoretical calculations may
not match in real deployments. We don't mean that
finding an optimal value is too difficult, but it is not
easy. So, we tried to make this problem a bit easy. We
let the application designer to choose the preamble
period to large value considering the worst case
scenario that the receiving node is guaranteed to wake
up within the chosen value. Our protocol doesn't send
preamble packets for this whole period, but uses this
value as a timeout value. We use the terms preamble-
block, to denote the one preamble packet that sender
sends. Our protocol works as follows:

1. Sender sends a preamble-block, waits for a
preamble ACK from receiver for a small
amount of time.

2. If receiver wakes up and receives preamble,
sends preamble ACK to sender.

3. After receiving preamble ACK, sender stops
sending preamble and starts sending data
fragments.

 Two obvious questions comes into mind "How
long the sender waits for preamble ACK?" and "Will
the sender sends preamble continuously, if receiver
fails?", we solved these two problems using two
timeouts. Sender starts a small timeout called
preamble-block ACK timeout when sending the
preamble (this value is not the user sets as preamble
length, this timeout is very less than the preamble
length), if it doesn't receive preamble ACK from
receiver within preamble-block ACK timeout, sender
again sends another preamble-block. Coming to the
second question, now the user specified preamble
length period is used as timeout, sender send preamble
only for preamble length period, if receiver doesn't
respond within this time an exception is raised to App
layer indicating that receiver is not responding. We
haven't made the sending preamble part automated.
Still selection of optimum preamble length remains
same for broadcast messages, because broadcast
preamble there is no ACK. We solved the problem
only for unicast case only.

 We added the fragmentation feature to BMAC, this
doesn't add any power to the protocol, but increases
the flexibility to use. We have hidden the radio level
details to application layer and defined a message
structure to application layer, which allows the
application layer to Send/Receive 100 bytes at a time.
The value 100 is variable; user can set a value to suit
the need. We explain the fragmentation in the detail in
implementation section. Fragmentation feature is
borrowed from SMAC protocol.
 BMAC doesn’t say any thing about hidden node
problem and overhear avoidance at the initial stages of
implementation we were unable to decide whether to
include these features at MAC layer or to leave the
implementation to upper layers. We felt that overhear
avoidance is essential feature for every application,
rather than making every application to implement it,
we implemented for application layer. We didn't
attempt solve the hidden node problem (using
RTS/CTS), we found that using even using RTS/CTS,
the hidden node problem is unsolved and is not worth
to implement.

3.2 SMAC features
 Some design features of SMAC also were not as
efficient as BMAC in terms of power savings, so
added the best fit features of BMAC to SMAC, so that
the basic protocol is not violated. We made ACK as
option for unicast messages, replaced threshold based
CCA with outlier based CCA. SMAC doesn't provide
fragmentation to broadcast messages, but we added
fragmentation feature to broadcast messages too. The
heart of SMAC protocol is synchronization, but we
identified that synchronization cannot be achieved by
maintaining schedules; we explain this with an
example.
 Consider the topology shown in Figure.1, Let us
suppose that node 1 selects the smallest random wait
value. Node 1 broadcasts its schedule, node 2 and 3
receive schedule packet, adjusts their local time, back
offs for random time to broadcast node 1 schedule,
when node 4 and 5 receive the packet corrects their
time and back offs for random amount time to
broadcast node 1 schedule. Node 6 and 7 corrects their
time with node 1 time. It can be noted that how far
times of nodes 6 and 7 are in synchronization with
node 1 time.

Figure.1 Topology considered

 ‡ We thought that changing node's local time with
neighbor's time doesn't help to solve the
synchronization problem, so we made our protocol
implementation not to change the node's local time,
but maintains only neighbor's time difference, rest is
similar to SMAC protocol to send data to its neighbor.
One other modification made is that SYNC frame is
divided into three sub frames, SYNC Frame1, SYNC
ACK frame, SYNC Frame2. In SYNC Frame1, each
node sends its local time even though it receives
SYNC frame from its neighbors (this is not the case
with original SMAC, if a node receives SYNC packet
from its neighbor it stops transmitting its SYNC
packet, but transmits received schedule packet). If a
node receives SYNC packet from other node, includes
in neighbor table then the other node is considered as
neighbor. The above point means that not all nodes
from which a node receives SYNC packets are
considered as neighbors. Only from nodes it receives
first m packets are considered as neighbors. This is
simplistic, but inefficient way of choosing neighbors.
We leave RSSI based neighborhood table maintenance
as future work. The value m is the size of neighbor
table, which is a constant, selected by application
designer.
 In SYNC_ACK frame every node broadcasts its
neighborhood list. The necessity of this frame will be
clear shortly. Each node after receiving others’
neighborhood list, checks whether it is a neighbor of
any other node. In SYNC_Frame2, only nodes which
are not neighbor of any other node sends SYNC
packet again. In SYNC_Frame1 collision probability

‡: This idea was suggested by our instructor Dr.
Bhaskaran Raman, Asst. professor , Dept of CS&E ,
IIT Kanpur, India.

will be high. So, SYNC packet sent by a node may be
lost; and this node will not be neighbor for any other
node. No node will sent unicast packets to this node.
If a node does not receive any SYNC packet and if all
other nodes doesn’t receive its SYNC packet, this
node will be isolated from the network. Though it may
seem that probability of this problem occurrence is
low, but effect is high if it occurs and difficult to
debug the problem. In order to avoid this problem, we
introduced SYNC_ACK frame. With this frame each
nodes knows it’s receive neighbors. If a node doesn’t
have at least one receive neighbors, sends SYNC
frame again in SYNC_Frame2.

4. Architecture
 In this section we explain our implementation style
of two protocols. First we explain the BMAC
architecture then we show SMAC architecture and
point out the similarities between BMAC and SMAC
features.

4.1 BMAC Architecture
 To make the code more readable, we used a layered
architecture, most common architecture for network
protocol implementation. The architecture is
illustrated in Figure 2. We defined four layers App
layer, MAC layer, PhyCommlayer, and CC2420 radio
layer. We define App layer as union of routing layer,
TCP layer and Application layer. MAC layer
components are Send/Receive Broadcast Preamble for
specified preamble period, Send/Receive Unicast
Preamble with Preamble ACK enabled, Send/Receive
Broadcast messages with fragmentation added,
Send/Receive Unicast messages with ACK as option
and fragmentation added, and Overhearing avoidance.
CC2420 layer components are CSMA, Radio
Send/Receive, Outlier based CCA, Radio
Sleep/Wakeup. It can be noted there are no
components in PhyComm layer, the reason the
functionality included in PhyComm layer is tunneling
BMAC packet into TOS_Msg. In otherwords,
PhyComm layer is an adapter between MAC layer and
CC2420 layer. The necessity of this layer is to hide
the TOS_Msg details (radio details) at MAC layer
code, we expect that this improves code readability
and also help in porting our protocol to any other
radio type.

1

2 3

4 5

6 7

Figure.2. BMAC Layered Arch.
 Radio Send/Receive and CSMA components are
readily available in CC2420 radio package. As
mentioned earlier one of the members in our sensor
network group implemented Outlier based CCA,
Radio Sleep/Wakeup. Considering CC2420 layer as
black box, we started implementing MAC layer
components.

4.2 SMAC Architecture
 For SMAC also, we used a layered architecture.
SMAC CC1000 implementation also used Layered
Architecture. The architecture is illustrated in Figure
3. It can be noticed that most of the components are
same as BMAC components, componets reused from
BMAC implementation are Outlier CCA, Radio
Sleep/Wakeup, Overhearing avoidance, Receive
Broadcast messages, Recive Unicast messages with
optional ACK and RTS/CTS.
 We were unable to reuse Send Broadcast and
Unicast messages, because in BMAC Send operation
is preamble based, but in SMAC it is synchronization
based. Implementation of Sending Broadcast message
with fragmentation was a difficult part in SMAC,
because next fragment should be transmitted if
previous fragment is transmitted to all neighbors,
which is not possible by calling send operation once,
but should be called multiple times for a fragment.
But most of functionality of Unicast Send message
with fragmentation are reused from BMAC.

Figure.3. SMAC layered Arch.

5. Interaction between App layer and
MAC layer
 In order App layer to communicate with the MAC
it has to use the SendInterface, ReceiveInterface,
MsgToMAC structure, MsgFromMAC structure. App
layer should also understand the type of exception
codes sent by MAC layer. Whether the MAC protocol
is BMAC or SMAC, the interaction between App
layers doesn't change. The reason for this is SMAC
provides all features of BMAC to App layer.

Send message. In order to send a message the App
layer should specify the following details to MAC
layer: data of the message, length of the message,
receiver node address/id, type of message (unicast or
broadcast) and reliability level (ACK needed or not).
To transfer mentioned information from App layer to
MAC layer, we defined a message structure
MsgToMAC.

struct MsgToMAC {
 int8_t *data; // pointer to data to be sent
 uint8_t len; // length of the message
 uint8_t toAddr; // address of destination
 bool isReliable; // ACK as option
 bool isUnicast; // unicast or broadcast
 };
 For broadcast messages MAC doesn't use the
toAddr and isReliable fields. For broadcast the
receiver address is set to 0xff.

Receive message. When a message is received,
BMAC should specify the following details to App
layer: data of the received message, length of the
received message, sender node address/id. To transfer
mentioned information from MAC layer to App layer,
we defined a message structure MsgFromMAC.
struct MsgFromMAC {
 int8_t data[MAX_MAC_MSG_SIZE];
 uint8_t len; // length of the message
 uint16_t fromAddr; // source address
 };
MAX_MAC_MSG_SIZE is the size of receive buffer.

Send Interface. SendIntrerface is defined as follows
interface SendInterface {
 command result_t send(void* msg);
 event result_t sendDone(void* msg,
 uint8_t errorcode);
 }
App layer calls the send command to send
MsgToMAC object to BMAC layer, MAC layer
fragments the message, sends the message, depending
on its type, to the specified receiver's address and
signals the sendDone event to App layer.

Receive Interface. ReceiveIntrerface is defined as
follows
interface ReceiveInterface {
 event void* receiveDone(void* msg,
 uint8_t errorcode);
}
When all the specified number of fragments are
received from sender the receiver signals an event to
App layer that a message has received.

Type of exceptions: Following are the list of
exceptions raised by MAC layer to the App layer:

• NO_EXCEPTION. Indication of success.

• NOT_READY_ERR. Rises if App layer
tries to send a message to MAC layer when
it is not in idle mode.

• NULL_DATA_ERR. Rises if App layer
sets the data field of message to null.

• ZERO_LEN_ERR. Rises if the length of
the message to be sent is zero.

• LEN_OVERFLOW_ERR. Rises if the
length of the message to be sent is greater
than the receive buffer size. This exception
will be raised at sender and message will not
be sent.

• SOURCE_NOT_RESPONDING. Rises if
the receiver times out waiting for a fragment
from sender.

• PHY_FAILED_ERR. Rises if the CC2420
doesn’t signal SendDone event with the
specified time.

• PREAMBLE_TX_ERR. Rises if the
receiver doesn’t send Preamble ACK within
the Preamble period.

• DATA_PKT_TX_ERR. Rises if the
receiver doesn’t send Data ACK even after
maximum number of retransmissions.

6. Performance Tuning
 In addition to best design features, performance
(power savings) of a protocol to a specific application
depends on the values of the tunable parameters. For
BMAC, these parameters are Preamble period,
Maximum number of retransmissions, Receive buffer
length, and Payload size of TOS_Msg
(TOSH_DATA_LENGTH).
 With our implementation preamble length may not
be a an issue for unicast transmissions, but will be a
tradeoff for power savings for broadcast messages,
because preamble packets packets are sent
continuously in the specified period. We used the
preamble period as 20 preamble packets as default.
 More the number of retransmissions, more the
consumed. But it is the tradeoff between level of
reliability and power wastage. We limit the maximum
number of retransmissions to 16, can be tuned from 0
to 15 by application designer. Default value is set to 8.
 As we know that for sensor mote, size of main
memory is minimal. So, memory savings is also
important issue. The length of data sent from App
layer to MAC layer is limited by receive buffer size.
The size of receive buffer size is purely application’s
choice. The minimum value is 21 bytes (payload of
one BMAC packet) and maximum size is
application’s choice. We set the default buffer size to
100.

 Changing the payload length of TOS_Msg
(TOSH_DATA_LENGTH) is not feature of our
protocol, but is a feature of CC2420 radio module.
The upper and lower limits of the
TOSH_DATA_LENGTH can be referred from
CC2420 data sheet. Setting TOSH_DATA_LENGTH
greater than receive buffer size doesn’t cause any
harm to the functionality of protocol, but our protocol
uses only receive buffer size number of bytes, rest of
the bytes are transmitted with garbage value. Default
value is set to 28, we found for another version of
tinyos it was 29.

7. Implementation
 In this section we present reasons behind the
following implementation issues:

• Separation of data from code.

• Send and Receive interfaces.

• Tunneling.

• Fragmentation.

7.1. Separation of data from code. We
separated the data which any two layers share, from
code of lower layer. The data files are BmacConst.h,
BmacMsg.h, PhyCommMsg.h and source code files
are BMacM.nc, BmacC.nc, PhyCommM.nc, and
PhyCommC.nc.
 BmacConst.h contains the values defined for
tunable parameters and constant values defined for
exceptions. BmacMs.h contains the message
structures of send message and receive message
to/from MAC layer. PhyMsg.h contains the message
structures through which MAC layer and PhyComm
layer communicate with each other.
 BmacM.nc and BmacC.nc are module of
configuration files of BMAC layer, PhyCommM.nc
and PhyCommC.nc are module and configuration files
of physical layer.

7.2. Send and Receive interfaces. It
can be noted from Figure.2 and Figure.3 that App
layer and MAC layer, MAC and PhyComm layer
communicate through SendInterface and
ReceiveInterface, but PhyComm and CC2420 layer
communicate through BareSendMsg and ReceiveMsg
interfaces. We defined SendInterface and
ReceiveInterface.
 The reason for this involves C language pointer
details. The parameters to BareSendMsg and
ReceiveMsg is TOSMsgPtr, this doesn’t work for our
implementation. The SendInterface from App layer to
MAC layer should be of type pointer to MsgToMAC,
and MAC layer to physical layer should be of type
pointer to PktToPhy, similarly for receive interface
from MAC layer to App layer should be of type
pointer to MsgFromMAC, and PhyComm layer to
MAC layer should be of type pointer to PktFromPhy.

 To serve our requirements we defined
SendInterface and ReceiveInterface with parameter of
type void pointer. Void pointer allows to pass pointer
parameters of any data type.

7.3. Tunneling. Tunneling is the most frequently
used technique in network protocol designs. We
defined the BMAC packet structure as follows:
struct PktToPhy {
 uint8_t length; // length of packet
 uint8_t toAddr; // receiver address
 uint8_t fromAddr; // sender address
 uint8_t timeRemaining;
 struct type_retx typeinfo;
 struct msgid_seqno msginfo;
 int8_t data[PHYCOMM_LENGTH];
 uint16_t crc; // checksum
 }
 In order to send BMAC packet over wireless
medium, we fit BMAC packet into payload field of
TOS_Msg. Figure.4 illustrates tunneling. BMAC
packet is defined such that its length matches exactly
with payload size of TOS_Msg. As we discussed
earlier that length of TOS_Msg can be varied. The
payload length of BMAC packet adjusts itself with the
varying length of TOS_Msg.

Figure.4. Tunneling of BMAC packet into
TOS_Msg

7.4. Fragmentation.
 Our implementation of BMAC protocol supports
fragmentation, which is not supported by CC1000
implementation of BMAC. Fragmentation is
illustrated in Figure.5. With the default values of
receive buffer size equal to 100 and
TOSH_DATA_LENGTH equal to 28, a message of
length 100 bytes from App layer is fragmented into 5
packets (20 bytes in each packet) and sent to receiver.
The receiver appends the data from each packet and
sends an 100 bytes message to App layer.
Fragmentation is invisible to App layer. Number of

fragments for a message is informed to receiver in the
preamble packet.
 Providing fragmentation doesn’t mean that App
layer should send 100 bytes message each time, it can
send message of any length between 1 and 100. With
a message of length less than or equal to 20 bytes, no
fragmentation is needed. This means that
fragmentation is an option but not compulsory to App
layer.

 Figure.5. Fragmentation of message

8. Power Calculation.
 The current characteristics of CC2420 is given
Table.3. The Tmote data sheet of doesn't specify
scaling unit of these values, we expect the scaling unit
is time in milliseconds. Although CC2420 data sheet
says that data rate is 250kbps, practical observed data
rate was only 40kbps.

mode Normal (mA) Max (mA)

Standby 5.1 21.0

Transmit 19.5 21

Receive 21.8 23

 Table.3. current specifications of CC2420
 Since our implementation of BMAC doesn't
implement sleep/wakeup, if only BMAC running on
motes the radio will be in idle listening mode, because
BMAC itself cannot generate any packets by itself.
With 3.3Ah battery, the lifetime of a mote is
3.3*1000/5.1 hours (or) 647.05 hours. The lifetime of
a node is purely dependent on application (rate of
transmitting messages) running on top of BMAC
layer. We calculate the power in the following
scenarios:

• Transmitting a broadcast message.

• Transmitting a unicast message with ACK
disabled.

• Transmitting a unicast message with ACK
enabled.

• Receiving a broadcast message.

• Receiving a unicast message with ACK
disabled.

• Receiving a unicast message with ACK
enabled.

 In our implementation, maximum of 20 preamble
packets are sent before sending data message. With
fragmentation, 100 byte message is fragmented into
five BMAC packets (with TOSH_DATA_LENGTH
= 28). To avoid timing errors temporarily, we set
inter packet delay to 250ms (large value, to be
optimized).
 Whether it is preamble or data packet, the packet
size sent/received on radio is 38 bytes (CC2420
header (10 bytes) + payload (28 bytes)). With 40
kbps data rate, radio will be in transmit/receive mode
for (38* 8)/(40 * 1000) seconds (or) 7.6ms to
transmit/receive a packet.
 We explain current calculations for an application,
we ran to test BMAC. The message size used in that
application is 100 bytes.

8.1. Transmitting a broadcast message
 For broadcast messages all 20 preamble packets are
sent.

ITxBcast = ITxPreamble + ITxData

ITxPreamble = ITx20pkt + I19InterPktDelay

 = 20 * 7.6 * 19.5 mA + 19 * 250 * 5.1 mA
 = 27189 mA.

ITxData = ITx5DataPkt + I4InterPktDelay
 = 5 * 7.6 * 19.5 mA + 4 * 250 * 5.1 mA

 = 5481mA.

 ITxBcast = 27189 + 5481
 = 32670mA.

8.2. Transmitting a unicast message
with ACK disabled.
 For unicast messages number of preamble packets
sent depends on receiver response (preamble ACK)
for preamble. Number of preamble packets sent is
probabilistic rather deterministic. We assume that
receiver didn't fail, implies receiver sends preamble
ACK for one of preamble packet.
Expected number of preamble packets sent =
 1 * pr {receiver responds for first packet}
+ 2 * pr {receiver responds for second
 Packet} +..
+ 20 * pr { receiver responds for 20th packet}.
= 1 * 1/20 + 2 * 1/20 + .. + 20 * 1/20
= 10.5 packets

ITxUnicastNoACK = ITxPreamble + ITxData

ITxPreamble = ITx10.5pkt + IRxPreambleACK +
I10InterPktDelay

 =10.5*7.6*9.5 + 7.6*21.8 + 10*250*5.1
 = 14471.78 mA.

ITxData = 5481mA (same as broadcast).
ITxUnicastNoACK = 14471.78 + 5481
 = 19952.78 mA.

8.3. Transmitting a unicast message
with ACK enabled.
ITxUnicastWithACK = ITxPreamble + ITxData

ITxPreamble = 14471.78 mA.(same as unicast with
 ACK disabled)
ITxData = ITx5DataPkt + IRx5DataACK + I4InterPktDelay
 = 5*7.6 *19.5 + 5*7.6* 21.8 + 4*250*5.1 mA
 = 6309.4 mA.

ITxUnicastWithACK = 14471.78 + 6309.4
 = 20781.18 mA.

8.4. Receiving a broadcast message.
 Number of preambles received by receiver is
probabilistic, the mean number of received preamble
packets is 10.5

IRxBcast = IRxPreamble + IRxData

IRxPreamble = IRx10.5pkt + I10InterPktDelay
 = 10 .5 * 7.6 * 21.8 + 10 * 250 * 5.1 mA
 = 14489.64 mA

IRxData = IRx5DataPkt + I4InterPktDelay
 = 5 * 7.6 * 21.8 + 4 * 250 * 5.1 mA
 = 5924 mA
IRxBcast = 14489.64 + 5924
 = 20413.64mA.

8.5. Receiving a unicast message with
 ACK disabled.

IRxUnicastNoACK = IRxPreamble + IRxData
IRxPreamble = IRx10.5pkt +ITxPreambleACK +
I10InterPktDelay
 = 10.5*7.6*21.8 + 7.6*19.5 + 10*250*5.1
 = 14637.64 mA.

IRxData = 5924mA (same as broadcast).
IRxUnicastNoACK = 14637.64 + 5934
 = 20571.64 mA.

8.6. Receiving a unicast message with
 ACK enabled.
IRxUnicastWithACK = IRxPreamble + IRxData

IRxPreamble = 14637.64 mA. (same as unicast with
 ACK disabled)
IRxData = IRx5DataPkt + ITx5DataACK + I4InterPktDelay

 = 5*7.6*21.8 + 5*7.6*19.6 + 4 * 250 * 5.1

 = 6309.4 mA.
IRxUnicastWithACK = 14637.64 + 6309.4
 = 20947.04 mA.
 With above calculations, the lifetime of a node
depends on number and type of messages transmitted
and received. The calculations are done for a specific
application (bottom up manner), one can easily
generalize the calculations for other applications.

9. Results.
 BMAC executes as expected for Send/Receive
broadcast preamble, Send/Receive unicast preamble,
Send/Receive broadcast message (with
fragmentation), Send/Receive unicast message
without ACK (with fragmentation), Send/Receive
unicast message with ACK(with fragmentation).
Though BMAC is functionally working properly, we
don’t expect/suggest to use our current
implementation of protocol in applications, because it
works correctly in the following preconditions:

• No radio sleep (100% radio wakeup)

• Inter packet delay is 250ms
 We know that, sensor MAC protocol without
integrating radio sleep/wakeup don’t have much
value. Till now we concentrated only on functional
attributes of BMAC, but not its quality attributes. Our
future work for BMAC includes

• integrating radio sleep/wakeup and CCA.

• reducing inter packet delay.

• thorough testing of actions taken for each
timeout conditions.

 SMAC is coded, we are out of compilation errors.
We don’t claim this as completed work, but we feel
that our first step for its implementation is finished.
The implementation details mentioned in sections 6
and 7 are specific only to BMAC, SMAC is not
mentioned in those sections.

10. Conclusion.
 In this paper, we discussed the architecture and
implementation details of SMAC and BMAC to
Tmote. We mentioned some implementation features
of SMAC and BMAC implementations for Mica2, and
discussed how we improved them. Some
modifications are done at design level (Division of
SMAC SYNC frame into SYNC frame1, SYNC ACK
frame, and SYNC frame2, optional ACK for SMAC
unicast messages, replacing threshold based CCA with
outlier based CCA, and reduction of preamble period
in BMAC) and some modifications at implementation
level (added fragmentation feature for BMAC
broadcast/unicast and SMAC broadcast, changing the
code structure of BMAC). In the theoretical view, we
feel that our implementation of SMAC can outperform
BMAC in many scenarios, thus we contradict the
statement “BMAC outperforms SMAC in all

scenarios” and we support for “performance of
SMAC and BMAC are application dependent, each
can be considered as alternatives for any application”.

11. Acknowledgements
 We thank our instructor Bhaskar Raman, who gave
an opportunity to handle this interesting problem,
encouraged and guided us in all respects to make this
project successful. We also thank Jagan, who
implemented Radio wakeup/sleep and outlier based
CCA and co-operated with us in many cases. We also
thank Nilesh and Hemanth, helped us in debugging
problems.

12. References
[1] W. Ye, J. Heidemann, and D. Estrin. An energy-

efficient mac protocol for wireless sensor
networks. In Proceedings of the 21st
International Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM 2002), New York, NY, USA, June
2002.

[2] T. van Dam and K. Langendoen. An adaptive
energy-efficient mac protocol for wireless sensor
networks. In Proceedings of the FirstACM
Conference on Embedded Networked Sensor
Systems, Nov. 2003.

[3] Joseph Polastre, Jason Hill, and David Culler,
“Versatile low power media access for wireless
sensor networks,” in SenSys’04, 2004.

