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3. Potential reduction in throughput

Solution: Resource Sharing

Idea: Share the resources between Example (Resource Sharing) Resource Access Mechanism
thread blocks
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2. Unroll RegISteI' Declarations: Increase in TLP Improvement in IPC Reduction in idle and stall cycles

Note: First row of the results corresponds to register sharing, second row corresponds to scratchpad sharing

e Unroll and re-order register decla-
rations to delay access to shared
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e Control the execution of long la-
tency instructions from non-owner
warps to reduce cache misses.




