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Problem
Resource allocation at thread block gran-
ularity in Graphics Processing Units
(GPUs) has the following disadvan-
tages [1]:

1. Resource underutilization

• Registers and Scratchpad
Memory get underutilized

2. Reduction in thread level paral-
lelism (TLP)

• Limited number of resident
threads and blocks in stream-
ing multiprocessors (SMs)

3. Potential reduction in throughput

Motivating Example
Number of resources per SM: 35K Units

Resource requirment per block: 10K Units

Thread block size: 10 Warps
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Solution: Resource Sharing
Idea: Share the resources between
thread blocks
Strategy:

• Increase the TLP by launching
additional thread blocks in each
SM

• Minimize the resource wastage
with the help of addition thread
blocks that:

1. Use wasted resource
2. Share the resources with

other resident blocks

• Access resources effectively to
avoid deadlocks and to guaran-
tee minimum number of blocks
that always make progress.

Example (Resource Sharing)
Number of resources per SM: 35K Units

Resource requirment per block: 10K Units

Thread block size: 10 Warps
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Resource Sharing: 50%
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Note: In register sharing, pair of warps, one from each
shared block, share their registers appropriately.

Resource Access Mechanism

A shared warp can access unshared register
directly, but it can access shared register
only after acquiring an exclusive lock.
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Rw: Number of registers required for a warp

t: Threshold, used for computing %ge of resource sharing

≤ Rwt

Note: The scratchpad access mechanism is imple-
mented in the similar way The details of our approach
are discussed in [3].

Optimizations
Type of warps in the SM:

• Unshared warps (warps from unshared
thread block)

• Owner warps (warps that have exclu-
sive lock)

• Non-owner warps (warps without lock)

1. Owner Warp First (OWF):

• Schedule the warps according to
the priority: owner warp, un-
shared warp, and non-owner warp

2. Unroll Register Declarations:

• Unroll and re-order register decla-
rations to delay access to shared
registers

3. Dynamic Warp Execution (Dyn):

• Control the execution of long la-
tency instructions from non-owner
warps to reduce cache misses.
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Idle Cycles
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Increase in TLP Improvement in IPC Reduction in idle and stall cycles
Note: First row of the results corresponds to register sharing, second row corresponds to scratchpad sharing

Experimental Setup
Resource GPU Configuration [2]
No of SMs 14
Max Num of TBs 8
Max Num of Threads 1536
Number of Registers 32768
Scratchpad Memory 16KB
Warp Scheduling LRR
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