Resource Sharing for GPUSs

CGO 2016 Vishwesh Jatala (II'TK), Jayvant Anantpur (IISc), Amey Karkare (IITK)

Problem

Resource allocation at thread block gran- Motivating Example Resource Underutilization
ularity in Graphics Processing Units Number of resources per SM: 35K Units Register Underutilization
(GPUs) has the following disadvan- Resource requirment per block: 10K Units 30%
tages [1]: Thread block size: 10 Warps 5822 -
e 5%+ N g s
1. Resource underutilization Block-0 Block-1 Block-2 1840_ ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I ,,,,,,,,,,,, I ,,,,,,,,,,,,, P B
AN EEEEE 11 I fffffffff
e Registers and Scratchpad 0%
5 . b Warp 0 Warp 10 Warp 21 4 O, ’50/ (49@0’/‘), S0 %
Memory get underutilized %f@@ S %o @%)/)Q/
% ”
2. Reduction in thread level paral- Warp 1 Warp 11 Warp 22
- Scratchpad Underutilization
lelism (TLP) . . .
- . . 30%
. - 5% | T
o Limited number O.f resident Warp 9 Warp 19 Warp 29 0%l K -
threads and blocks in stream- 5% K -

ing multiprocessors (SMs)

10% I fffffffffffffffffffffffffffffffff —
50/0 I . B T e e . . i
IR EN

Utilized Unutilized SO XN

3. Potential reduction in throughput

Solution: Resource Sharing

Idea: Share the resources between Example (Resource Sharing) Resource Access Mechanism
thread blocks

Number of resources per SM: 35K Units A sh d h d ot
Strategy: Resource requirment per block: 10K Units . SHATC W&I’P Call aCCess unshare reg%s €L
Thread block size: 10 Warps directly, but it can access shared register
additional thread blocks in each Block-0 Block-1 Block.2 Block.3 P -
SM (Unshared) (Unshared) (Shared) (Shared) w: NHHDEEOL TESISLEES TEqUITEE 10T a Watp
t: Threshold, used for computing %ge of resource sharing
e Minimize the resource wastage Warp 0 Warp 10 Warp 21 Warp 31
with the help of addition thread
Warp 1 Warp 11 Warp 22 Warp 32
blocks that: P P oP T oP Register
1. U ted - - - - File
' SC Wasted TESOULee Warp 9 Warp 19 Warp 29 Warp 39
2. Share the resources with — Ve
other resident blocks
e Access resources effectively to
avoid deadlocks and to guaran- Utilized
tee minimum number of blocks Note: The scratchpad access mechanism is imple-
that alWayS make progress. Note: In register sharing, pair of warps, one from each mented in the similar way The details of our approach
shared block, share their registers appropriately. are discussed in [3].

Optimizations Results

Unshared-LRR [1 Shared-LRR-NoOpt [1 Pipeline Stall Cycles
Shared-OWF-Unroll-Dyn Shared-LRR-Unroll s |dle Cycles I

Type of warps in the SM:

Shared-LRR-Unroll-Dyn = 0
U) _ _ _ —
¢ Unshared warps (warps from unshared g 10 g SharedOWF-Unroll-Dyn e 2. 1909
O 8 Oo _—
thread block) D 6 = 30% = 0% 1
S 4 5 15% f- S 20% | 1
e 2 . B £ 0% il NI B = 202 |
e Owner warps (warps that have exclu- = 0 I I S 15% s S 20% ——
. B e é(?oéx/,‘?of&(@@O/)) % 6:9@\9/@/) s Q?oéx/fo é/é)@oé)/)fbe‘?/é/) &3 6Qoéx /f O/&(/é)@O /;:‘?Q@‘Vé/)
sive lock) 4%@@ Yo, %0 0 £ %,O@@oO/ o0y %6@@00/ o0
0 20 0
® NOD—OWIleI' WarpS (WarpS Wlth()ut IOCk) Unshared-LRR 1 Shared-LRR-NoOpt Pipeline Stall Cycles
Shared-OWF Shared-OWF |dle Cycles I
@) n
1. Owner Warp First (OWF): 2 10 T 30% 2 100%
& g < 25% S 80%
: D 6 1 £ 997 ~ £ 60%
e Schedule the warps according to g 4 e s 10% I 1 § 40%
he DroMy- A IERRERE AR L LNEE ¥ s Nl Nl s
the priority: owner warp, un- =0 S 537 . = I
C~C~, V1, oS S NN TR AL Q "elo '
shared warp, and non-owner warp QO %, 2, 5700 = QL b, 2, 525 % = 0,0 M, S S
’ Wty < 0%, Wity S Y0, %, W, = 0%
2. Unroll RegISteI' Declarations: Increase in TLP Improvement in IPC Reduction in idle and stall cycles

Note: First row of the results corresponds to register sharing, second row corresponds to scratchpad sharing

e Unroll and re-order register decla-
rations to delay access to shared

registers Experimental Setup References

Resource GPU Configuration 2] 1] CUDA C Programming Guide. https://docs.
No of SMs 14 nvidia.com/cuda/cuda-c-programming-guide/.

3. Dynamic Warp Execution (Dyn):

Max Num of TBs 3 2| GPGPU-Sim. http://www.gpgpu-sim.org.
Max Num of Threads 1536 .

Number of Registers 32768 3] V. Jatala, J. Anantpur, and A. Karkare. Improv-
Scratchpad Memory 16KB ing GPU Performance Through Resource Sharing.

Warp Scheduling LRR CoRR, http://arxiv.org/abs/1503.05694, 2015.

e Control the execution of long la-
tency instructions from non-owner
warps to reduce cache misses.

