
ResourceSharing forGPUs
Vishwesh Jatala (IITK), Jayvant Anantpur (IISc), Amey Karkare (IITK)

Problem
Resource allocation at thread block gran-
ularity in Graphics Processing Units
(GPUs) has the following disadvan-
tages [1]:

1. Resource underutilization

• Registers and Scratchpad
Memory get underutilized

2. Reduction in thread level paral-
lelism (TLP)

• Limited number of resident
threads and blocks in stream-
ing multiprocessors (SMs)

3. Potential reduction in throughput

Motivating Example
Number of resources per SM: 35K Units

Resource requirment per block: 10K Units

Thread block size: 10 Warps

Warp 0

Warp 1

Warp 9

Block-0

10K 10K 10K

Utilized Unutilized

5K

Warp 10

Warp 11

Warp 19

Block-1

Warp 21

Warp 22

Warp 29

Block-2

Resource Underutilization

0%
5%

10%
15%
20%
25%
30%

backprop

b+tree

hotspot

LIB
M

U
M
m

ri-q

sgem
m

stencil

Register Underutilization

0%
5%

10%
15%
20%
25%
30%

C
O
N
V1

C
O
N
V2

lavaM
D

N
W

1
N
W

2
SR

AD
1

SR
AD

2

Scratchpad Underutilization

Solution: Resource Sharing
Idea: Share the resources between
thread blocks
Strategy:

• Increase the TLP by launching
additional thread blocks in each
SM

• Minimize the resource wastage
with the help of addition thread
blocks that:

1. Use wasted resource
2. Share the resources with

other resident blocks

• Access resources effectively to
avoid deadlocks and to guaran-
tee minimum number of blocks
that always make progress.

Example (Resource Sharing)
Number of resources per SM: 35K Units

Resource requirment per block: 10K Units

Thread block size: 10 Warps

Warp 0

Warp 1

Warp 9

Block-0

10K 10K 5K

Utilized

5K

Warp 10

Warp 11

Warp 19

Block-1

Warp 21

Warp 22

Warp 29

Block-2

Resource Sharing: 50%

Warp 31

Warp 32

Warp 39

Block-3

5K

Unshared Unshared Unshared UnsharedShared

(Unshared) (Unshared) (Shared) (Shared)

Note: In register sharing, pair of warps, one from each
shared block, share their registers appropriately.

Resource Access Mechanism

A shared warp can access unshared register
directly, but it can access shared register
only after acquiring an exclusive lock.

(WarpId,
Unshared
Warp?

RegNo

Acquired
Lock?

Register

File
RegNo)

Yes

No

(Retry)

Yes

No

Yes

NoShared
Reg

Rw: Number of registers required for a warp

t: Threshold, used for computing %ge of resource sharing

≤ Rwt

Note: The scratchpad access mechanism is imple-
mented in the similar way The details of our approach
are discussed in [3].

Optimizations
Type of warps in the SM:

• Unshared warps (warps from unshared
thread block)

• Owner warps (warps that have exclu-
sive lock)

• Non-owner warps (warps without lock)

1. Owner Warp First (OWF):

• Schedule the warps according to
the priority: owner warp, un-
shared warp, and non-owner warp

2. Unroll Register Declarations:

• Unroll and re-order register decla-
rations to delay access to shared
registers

3. Dynamic Warp Execution (Dyn):

• Control the execution of long la-
tency instructions from non-owner
warps to reduce cache misses.

Results

 0
 2
 4
 6
 8

 10

backprop

b+tree

hotspot

LIB
M

U
M
m

ri-q

sgem
m

stencil

#
T

h
re

a
d
 B

lo
c
k
s

Unshared-LRR

Shared-OWF-Unroll-Dyn

-15%
0%

15%
30%

backprop

b+tree

hotspot

LIB
M

U
M
m

ri-q

sgem
m

stencilIm
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-LRR-NoOpt

Shared-LRR-Unroll

Shared-LRR-Unroll-Dyn

Shared-OWF-Unroll-Dyn

-20%
0%

20%
40%
60%
80%

100%

backprop

b+tree

hotspot

LIB
M

U
M
m

ri-q

sgem
m

stencil

R
e
d
u
c
ti
o
n
 i
n
 c

y
c
le

s

Pipeline Stall Cycles

Idle Cycles

 0

 2

 4

 6

 8

 10

C
O
N
V
1

C
O
N
V
2

la
va

M
D

N
W

1

N
W

2

S
R
A
D
1

S
R
A
D
2

#
T

h
re

a
d
 B

lo
c
k
s

Unshared-LRR

Shared-OWF

-5%
0%
5%

10%
15%
20%
25%
30%

C
O
N
V1

C
O
N
V2

lavaM
D

N
W

1
N
W

2
SR

AD
1

SR
AD

2

Im
p
ro

v
e
m

e
n
t
in

 I
P

C

Shared-LRR-NoOpt

Shared-OWF

-20%
0%

20%
40%
60%
80%

100%

C
O
N
V1

C
O
N
V2

N
W

1
N
W

2
SR

AD
1

SR
AD

2

R
e
d
u
c
ti
o
n
 i
n
 c

y
c
le

s

Pipeline Stall Cycles

Idle Cycles

Increase in TLP Improvement in IPC Reduction in idle and stall cycles
Note: First row of the results corresponds to register sharing, second row corresponds to scratchpad sharing

Experimental Setup
Resource GPU Configuration [2]
No of SMs 14
Max Num of TBs 8
Max Num of Threads 1536
Number of Registers 32768
Scratchpad Memory 16KB
Warp Scheduling LRR

References
[1] CUDA C Programming Guide. https://docs.

nvidia.com/cuda/cuda-c-programming-guide/.
[2] GPGPU-Sim. http://www.gpgpu-sim.org.
[3] V. Jatala, J. Anantpur, and A. Karkare. Improv-

ing GPU Performance Through Resource Sharing.
CoRR, http://arxiv.org/abs/1503.05694, 2015.

