Action Recognition: A Region Based Approach
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Abstract

We address the problem of recognizing actions in real-
life videos. Space-time interest point-based approaches
have been widely prevalent towards solving this problem.
In contrast, more spatially extended features such as regions
have not been so popular. The reason is, any local region
based approach requires the motion flow information for a
specific region to be collated temporally. This is challeng-
ing as the local regions are deformable and not well delin-
eated from the surroundings. In this paper we address this
issue by using robust tracking of regions and we show that
it is possible to obtain region descriptors for classification
of actions. This paper lays the groundwork for further in-
vestigation into region based approaches.

Through this paper we make the following contributions
a) We advocate identification of salient regions based on
motion segmentation b) We adopt a state-of-the art tracker
for robust tracking of the identified regions rather than us-
ing isolated space-time blocks c) We propose optical flow
based region descriptors to encode the extracted trajecto-
ries in piece-wise blocks. We demonstrate the performance
of our system on real-world data sets.

1. Introduction

Given a video clip, humans have no problem in under-
standing the actions happening in the video. This is so irre-
spective of the setting of the scene, the persons involved or
the viewpoints. Humans are also able to understand a wide
variety of actions ranging from simple actions such as a per-
son standing up or sitting down, to complexer sequences of
actions like cooking. Achieving the same computationally
is a very challenging problem.

All current approaches try to solve this problem by de-
scribing the motion information in the scene. The features
used to describe the motion information are crucial. There
has been significant progress lately by methods that extract
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space-time interest point features [12, 13]. However, we be-
lieve that it is worthwhile to explore the use of more gener-
ally shaped spatio-temporal regions for describing the mo-
tion in the scene. There have been similar investigations
done by the community for recognizing objects in an im-
age [9, 1]. The use of local regions for describing motion
is however not common in action recognition. This is, be-
cause a local region to describe motion is not as well de-
fined as a space-time interest point. One could use motion
segmentation to obtain an initial segmentation for a frame.
However, describing a segment requires it to be temporally
connected as well. Tracking segments based on individual
frame-wise motion segmentation is difficult, as any specific
segment may deform rapidly. In this paper, we address this
issue and show that using a state-of-the art robust region
tracking algorithm [3] one can now obtain stable region de-
scriptors to describe motion information.

1.1. Overview

An overview of our approach is given in Fig. 1. Given
a training video of an action, we apply motion segmenta-
tion [5] to obtain connected components that correspond to
moving regions. Then, we use a state-of-the-art tracker [3]
that can robustly track arbitrary regions using pixel-wise
posteriors. Local shape changes of the regions are han-
dled by variational level sets. This robust tracking of re-
gions enables us to obtain stable motion flow patterns. We
compute the optical flow in these regions and calculate the
histograms of orientation of the optical flow. During the
training phase, we cluster the histograms from all training
videos using standard k-means to obtain a vocabulary of op-
tical flow. Subsequently, we represent each training video
as a set of vector-quantized motion histograms. Finally, we
train an SVM classifier on the training data. Using that clas-
sifier we can assign action labels to new, previously unseen
videos that have been subjected to the same feature extrac-
tion and quantization stages.
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Figure 1. Overview of the proposed approach.
2. Related Work Our approach uses local information, too, but differs

There has been considerable interest towards address-
ing and understanding human actions. Initially, the meth-
ods for addressing the problem of action recognition were
based on global representations of human motion. Among
these are the early works by Bobick and Davis [4] that cap-
tured view dependent motion and the parameterized motion
models by Yacoob and Black [20]. Ali et al. [2] proposed
kinematic flow features to recognize actions. Another ap-
proach has been correlation based human motion classifica-
tion by Efros et al. [7] and Zelnik-Manor and Irani [22].
Lately this approach has been pursued by Shechtman and
Irani [16] where they match self-similarities across images
and videos.

There has been more widespread interest lately in meth-
ods that use space-time interest points (STIP). Initial work
towards using these features was by Schuldt et al. [15]
where the authors used features extracted using the frame-
work of Laptev and Lindeberg [11]. Subsequently there
have been other a large number of variants of space time
interest points. Dollar et al. [6] extracted cuboids with a
detector using a 2D Gaussian kernel in spatial domain and
Gabor quadrature filters temporally. Kléser et al. [10] pro-
posed spatio-temporal descriptor based on 3D gradients. In
the work by Wang er al.[17], the authors comprehensively
evaluate the various spatio-temporal descriptors and also
propose uniform dense extraction of features. In the work
by Willems et al. [18], the authors propose an exemplar
based method for action recognition where they use an ex-
tended SURF [19] based spatio-temporal detector and also
obtain probable hypotheses to localize the action. Laptev
et al. [12] proposed a data set extracted from Hollywood
movies. This data set was considerably more challenging
than previously used simple data sets as it contains a lot
more variation of viewpoints, background clutter and sce-
narios. Marszalek et al.[13] extended that data set further
and use contextual information in their approach. Lately,
Yeffet and Wolf [21] have used a spatio-temporal extension
of local binary patterns for action recognition and a recent
work by Messing et al. [14] explicitly tracks interest point
features for action classification.

from the methods above in that we use a region based
feature description. Further, we also handle the features
rather differently. Rather than considering isolated spatio-
temporal regions we are interested more in the temporal
continuity of regions.

3. Action Representation

We use a bag of words classification system for classify-
ing action [12]. There are three steps towards obtaining the
features for this representation. We first detect salient mo-
tion regions, we track these regions, and we then describe
these regions with an optical flow descriptor.

3.1. Detecting Salient Regions

In order to detect the salient motion regions we employ
a simple motion segmentation algorithm [5]. This segmen-
tation algorithm uses a temporal motion history image and
is computationally fast. The segmentation algorithm uses
frame differencing to identify the most recent silhouette and
extends it using a flood fill algorithm to connect areas of
motion. The advantage of this simple approach is that it
enables us to quickly identify the regions of interest. This
algorithm provides us with a coarse region mask, i.e. the
detected region includes some background. These regions
are subsequently refined in our framework using level-set
based segmentation and tracking described in 3.2, where the
actual region used shrinks to the correct object boundary.

We eliminate all regions with an area less than 7 pixels
and motion magnitude less than 2 pixels. We show exam-
ples of this motion segmentation in Fig. 2. There are cases
when this algorithm fails to segment the motion. This does
not have an adverse effect as we are continuously track-
ing each detected region. As indicated in the examples,
the regions provided by motion segmentation coarsely iden-
tify the approximate location where action is happening by
various patches. We perform motion segmentation in each
frame. In case some region is not identified correctly in one
frame, it will most likely be segmented in some of the fol-
lowing frames. As a result, we obtain an over segmentation
of the motion region. This is desirable in order to compre-
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Figure 2. Motion Segmentation Examples. The left column (a,c,e)
shows the frames and right column (b,d,f) shows motion segmen-
tation examples corresponding to these frames.

hensively describe the motion region. In order to partially
alleviate the redundancy in segments we do pruning of these
regions during the tracking phase.

3.2. Robust region tracking

Our tracking method is based on a recently published
method for robust visual tracking using pixel-wise poste-
riors [3]. The posterior based tracker incorporates non-
parametric distributions into a region-based level-set func-
tion that allows it the online adaptation of the region’s ap-
pearance model. The appearance model is modeled by a
foreground model M and a background model Mj, that are
HSV histograms of the region and its immediate surround-
ing background. The foreground regions are obtained by
motion segmentation as described above. The foreground
region is inflated by a factor s and its difference to the orig-
inal foreground region is taken as background region.

The algorithm includes three main steps, a rigid regis-
tration between the frames through a warp W, segmenta-
tion of the shape kernel ®(x) and appearance learning. The
registration computes the rigid motion, segmentation han-
dles the shape deformations and appearance learning up-
dates the foreground and the background models. During
tracking, the pixels inside and outside the computed con-
tour are used to update those histograms online. The fore-
ground and background models M}, M, are marginalized
and the pixel-wise posterior probability of the shape ® and

the position parameter vector p given the pixel location x
and values y in the object frame are obtained. The pixel-
wise posteriors P(M|y;) are fused to update the shape and
position of the tracker in each frame:
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where IV denotes the total number of pixels in the region.

Instead of solving the problem directly in a segmentation
framework, the authors [3] decompose the tracking into two
steps, a rigid registration and segmentation. The segmen-
tation is achieved by evolving the level set using calculus
of variations. This is done by carrying out gradient ascent
using the gradient flow. As a result, any extraneous back-
ground pixels in the motion segmented region are removed.
Incorporating a warp W (z, Ap) into eqn. 1 and taking logs
the resultant cost function is then given by eqn. 2 which can
be further optimized to compute frame-to-frame rigid trans-
formation:
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The authors [3] suggest approximating the warp by a first
order Taylor series expansion that suffices for rigid registra-
tion. Having registered the embedding function first by us-
ing optimization result from eqn. 2, local shape changes are
handled by evolving the variational level-set P(®, p|x,y).
Further details are explained in the paper [3]. The tracked
regions for a few sample frames are shown in Fig. 3. The
transformed region & is compared with the new motion seg-
ments obtained by the segmentation routine. If the overlap
between the regions indicates that they are similar then the
new motion segment is pruned. Through this method for
tracking, we are able to track arbitrarily shaped regions and
obtain longer and more stable trajectories.

3.3. Describing Regions

We describe each trajectory using contiguous optical
flow descriptors. The process of computing the descriptor
is illustrated in Fig. 4. For each frame we compute the op-
tical flow using the two-frame motion estimation algorithm
[8]. The magnitude and direction of the resulting optical
flow field for each region is shown in Fig. 3(a,b,c). We then
compute the histogram from the orientation of optical flow
for a specific region bounded by the region boundary ®. We
use sixteen bins for the histogram of optical flow.



Figure 3. Tracking Examples. The figures show different frames to illustrate the regions tracked. The direction and magnitude of the optical

flow are also indicated in these frames.

In the next stage, in order to capture the varying motion
flow pattern over time, we accumulate the optical flow over
different temporal windows. We specifically use number
of frames 7 = {1,2,4,8}. For the i'" frame we add the
histogram from the current frame and the following 7 — 1
frames and obtain a cumulative histogram of optical flow.
This histogram is normalized.

The final descriptor is obtained by concatenating the his-
togram for the different 7 values. The resulting descriptor
contains 64 values. There are significant differences in the
region descriptor proposed here as compared to the HoF de-
scriptor [12] used to describe space-time interest points. In
this descriptor, we specifically restrict the optical flow com-
putation spatially to the region of interest. This descriptor
is captured along the trajectory of motion. Therefore, even
temporally, the region described is the same. This is dif-
ferent from the usual axis aligned cuboid used to capture
the motion information around an interest point. Since a re-
gion is more spatially extended than a point, an axis aligned
cuboid around a region would capture far too much extra-
neous information. Thus by using the trajectory we are able
to obtain a more coherent region descriptor.

This descriptor is computed for the trajectory at each
frame. We explored use of a stepping interval to skip
frames but found that computing the descriptor for each
frame worked better. We intend in future to further evalu-
ate various modifications of the proposed region descriptor.
Note that each descriptor individually describes a region at
a frame. It would be interesting to consider grouping of dif-
ferent regions belonging to same object. This is however
not explored currently.

4. Learning feature sets

In order to learn the features we follow the framework
used commonly in action recognition [12, 13] based on bag
of features. We specifically follow the setting described by
Wang et al. [17]. Given a training set, we extract optical
flow descriptors from trajectories. We then randomly sam-
ple 100,000 features from the training set and cluster them

“ ‘ ’ Temporal Samples
$ 2 ¢ 4

. Histograms
' ‘ e v J
Wysi e’
[ e
Il g | d 4
o F o -
»,/l ’ .l,,"m o P [ ——
Concatenated
=8 =4 1=2 =1 .
Descriptor

Figure 4. Illustration of the process of computing the region de-
scriptor.

with k-means to obtain a fixed spatio-temporal feature vo-
cabulary of 4000 words. The vocabulary is then used to
quantize the features and obtain a histogram of these fea-
tures. This is the feature vector used for classification.

We classify the feature vectors using a non-linear support
vector machine with a kernel based on y2-distance. The dis-
tance between two encoded feature sets is the y2-distance
between the two feature vectors given by
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where h;, and h;, are the individual histogram bins of

the histograms H; and H; respectively. The kernel on the
histograms is then given by the following Gaussian kernel
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Here, C;,C; are the feature vectors corresponding to

video clips ¢ and j respectively. We obtain the parameter
~ through cross-validation on the training data set.



(a) AnswerPhone (b) ChopBanana

(f) AnswerPhone

(g) GetOutCar

(h) HandShake

Figure 5. Sample frames from daily living (top row) and Hollywood2 (bottom row) data sets.

(d) UseSilverWare (e) WriteOnWhite-
Board

(i) HugPerson

() Kiss

answerPhone 0 0 0 0 0 0 0 0 0
chopBanana |0.067 Ik 0 0 0 0 0 ]0.067| 0 0
dialPhone |0.133(0.067 0 [0.067| O 0 0 0 0
drinkWater | O 0 0 0 0 0 (0.133| O 0
eatBanana |0.13310.13310.267| 0 0 0 0 0 0
eatSnack | O 0 0 0 0 0.133| 0 [0.133| O
lookUpInPB 0 0 0 0 0 [0.067 0.067]0.133| 0
peelBanana | 0 0 [0.267|0.067 [0.067| O 0 0.133] 0
useSilverware | 0 [0.067| 0 [0.133| O 0 |0.133| 0 670 ]

writeOnWB [0.133| 0 0 0 0 0 0 0 0
o 68\20‘56,&\@; %\Q\\ﬁ&@ﬂ?’\i&w&\z ﬁﬁﬁi\w\f:%z:g@?ﬁ\@ (§ ®

Table 1. Confusion matrix for the activities of the daily living data set.

5. Experimental Evaluation

We have experimentally evaluated our method on two
different challenging data sets which we obtained from the
authors’ websites. Foremost we considered the activities of
daily living data set [ 14]. This contains ten different types of
complex actions (like looking up a phone number in a tele-
phone directory, and eating food with silverware). These ac-
tivities are performed three times by five people with differ-
ent sizes, genders, shapes and ethnicities. Videos are taken
at high resolution (1280 x 720 pixels). A few samples of
the actions are shown in Fig. 5.

Next we consider the performance of our method on the
Hollywood?2 data set [13]. This data set is comprised of
12 actions (like answering the phone, driving car, eating,
etc.) that have to be recognized from real-world challenging

movie sequences. Some examples of the actions and the
clips are shown in Fig. 5. In our experiments, we used the
same data set setting as used by Wang et al. [17] in their
evaluation.

As explained in section 4, we obtain feature vectors us-
ing a fixed vocabulary size of 4000 words. We evaluate the
results using the standard criterion as used in the original
data set evaluation.

The daily living data set [14] contains 150 videos of 10
different actions performed by 5 different persons. The ac-
tion recognition is done by training on 4 persons and test-
ing on the remaining person. This leave-one-out strategy is
used on all subjects and the results are averaged as has been
done in Messing et al. [14]. For this data set we obtain with
our method an average multi-class classification accuracy of
74%. In comparison, the authors have reported an accuracy



Action Laptev Region
(Harris-Laplace+HoF)

AnswerPhone | 19.1161% 21.8692 %
DriveCar 80.1843% 84.4855%
Eat 60.2143% 49.6258%
FightPerson 72.3462 % 59.2258%
GetOutCar 25.5588% 24.0142%
HandShake 18.9112% 12.2471%
HugPerson 32.06% 21.3516%
Kiss 47.8484% 49.3406 %
Run 68.8282% 61.7558%
SitDown 49.1482% 40.9759%
SitUp 9.9289% 20.7945 %
StandUp 49.0278% 50.4238 %
Mean AP 44.431% 41.3424%

Table 2. Classification performance for Hollywood2 data set.

of 63% based on velocity histories only and an accuracy of
67% by using latent velocity histories. Note that they also
explicitly use tracking. However, our region based tracking
performs better than tracking of feature points. They also
report an accuracy of 89% obtained by augmenting the ba-
sic features with additional information like birth/death rate
of features, and relative face information from a face detec-
tor, appearance description and colour information. These
additional cues could also be used for improving the accu-
racy of our system.

The confusion table for this data set is given in Table 1.
Our method performs well in actions that are very dis-
tinct, like answerPhone, chopBanana and writeOnWhite-
Board and drinkWater. Other actions like eatBanana and
dialPhone are semantically very different, however, the per-
formance of all these actions includes the hand being around
the same position and undergoing a slight upward motion.
Since the major motion is the slight upward movement
of the hand, our method easily confuses the classification
among these actions.

For the Hollywood2 data set we use a one-against-all
SVM classification. Each action is learned by a binary clas-
sifier. We have also experimentally compared our method
to space-time interest points detected by the Harris-Laplace
detector and described by HoF as done by Laptev et al. [12].
The Hollywood?2 data set is a significantly more challenging
data set. There are videos that feature a wide range of cam-
era motion, peripheral actions in the clips and a large vari-
ance in viewpoints and action sequences. Inherently, this
data set is especially difficult for a region-tracking based
approach. However, we are able to show that with the pro-
posed approach we obtain a performance that is competitive
with state of the art space time interest point (STIP) based
methods. The performance of the system and its compar-
ison with STIP features for each action is provided in Ta-
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Figure 6. Representative Precision/Recall curves for Hollywood?2
data set.

ble 2. The results show that the region based approach is
complementary to interest point based approach. It is also
significant to note that the proposed approach is especially
suited when it comes to understanding subtle actions like
Sit-Up. The poor performance on actions like HandShake
is mainly due to the challenging nature of the data set (for
e.g. video not featuring the hands in performing the Hand-
Shake action).

6. Discussion

The proposed region descriptor has been evaluated in
section 5 and compared to space-time interest point fea-
tures and tracked point features. The region based features
clearly show better performance than tracked point features.
However, for the challenging Hollywood2 data set, on aver-
age, STIP features perform better. Given this, it is pertinent
to consider whether region based descriptors hold merit.
There are several points that suggest that it is worthwhile
to further explore the proposed approach: a) With region
based descriptors one can obtain better spatial localization



of the action. b) Obtaining the region trajectory ensures
that the relevant region is covered. Hence one can use a
denser extraction of features along the trajectory. c) The
knowledge of the trajectory enables us to more easily dis-
criminate peripheral features not related to the action being
performed. d) Continuous feature sets can help us in ex-
plicit temporal modeling of the action using latent variables.
Additionally there are implementational aspects that can be
improved like better motion segmentation and optical flow
components. We are also interested in exploring the joint
performance of interest point and region based approaches.

7. Conclusion

In this paper we have proposed a region based action
recognition system. We have shown that regions detected
using motion segmentation can be described with region
descriptors when they are robustly tracked. The trajecto-
ries yield stable motion flow patterns that are meaningful
for understanding the action performed. Moreover, once
described using contiguous region descriptors they can be
matched reliably. We thus provide the basis for further ex-
ploration of local region descriptors for action recognition.
We have evaluated our system on challenging state-of-the-
art real-world data sets and have obtained good performance
on them.
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