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Abstract In this paper we propose a generic frame-

work to incorporate unobserved auxiliary information

for classifying objects and actions. This framework al-

lows us to automatically select a bounding box and its

quadrants from which best to extract features. These

spatial subdivisions are learnt as latent variables. The

paper is an extended version of our earlier work [2],

complemented with additional ideas, experiments and

analysis.

We approach the classification problem in a discrim-

inative setting, as learning a max-margin classifier that

infers the class label along with the latent variables.

Through this paper we make the following contribu-

tions: a) we provide a method for incorporating latent

variables into object and action classification; b) these

variables determine the relative focus on foreground vs.

background information that is taken account of; c) we

design an objective function to more effectively learn in

unbalanced data sets; d) we learn a better classifier by

iterative expansion of the latent parameter space. We

demonstrate the performance of our approach through
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experimental evaluation on a number of standard ob-

ject and action recognition data sets.
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1 Introduction

In object detection, which includes the localization of

object classes, people have trained their systems by giv-

ing bounding boxes around exemplars of a given class

label. Here we show that the classification of object

classes, i.e. the flagging of their presence without their

localization, also benefits from the estimation of bound-

ing boxes, even when these are not supplied as part of

the training. The approach can also be interpreted as

exploiting non-uniform pyramidal schemes. As a mat-

ter of fact, we demonstrate that similar schemes are

also helpful for action class recognition.

In this paper we address the classification of objects

(e.g. person or car) and actions (e.g. hugging or eating)

[27] in the sense of PASCAL VOC [10], i.e. indicat-

ing their presence but not their spatial/temporal local-

ization (the latter is referred to as detection in VOC

parlance). The more successful methods are based on

a uniform pyramidal representation built on a visual

word vocabulary [20,39,5]. The focus then is often on

the best features to use. In this paper, we augment the

classification through an orthogonal idea, i.e. by adding

more flexible spatial information. This will be formu-

lated more generally as inferring additional unobserved

or ‘latent’ dependent parameters. In particular, we fo-

cus on two such types of parameters:

– The first type specifies a cropping operation. This

determines a bounding box in the image. This box
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serves to eliminate non-representative object parts

and background.

– The second type specifies a splitting operation. It

corresponds to a non-uniform image decomposition

into 4 quadrants or temporal decomposition of a

spatio-temporal volume into 2 video sub-sequences.

Apart from using these operations separately, we

also study the effect of applying and jointly learning

both these types of latent parameters, resulting in a

bounding box which is also split. In any case, uniform

grid subdivisions are replaced by more flexible opera-

tions.

At the time of our initial work [2], there was ear-

lier work using latent variables, but typically for object

detection and not classification [12,37,4]. A notable ex-

ception is a contribution by Nguyen et al. [24]. They

proposed a method for joint localization (only crop-

ping) and classification. We believe that our learning

approach is more principled however, and we go beyond

cropping by also offering splits and crop + split combi-

nations. This comes with improved results. Moreover,

we propose iterative learning for these non-convex opti-

mization problems, thereby more successfully avoiding

local minima, as well as an objective function that can

better deal with unbalanced data sets. In the mean-

time, the use of latent variables has gained traction in

the area of classification [3,32,31].

While it is possible to learn our latent variables by

using a separate routine [29], we adopt a principled

max-margin method that jointly infers latent variables

and class label. This we solve using a latent structural

support vector machine (LSVM) [40]. Self-paced learn-

ing has recently been proposed as a further extension

for the improved learning of latent SVMs [16], but was

not used here. Instead, we explore an extension of the

LSVM by initially limiting the latent variable parame-

ter space and iteratively growing it. Moreover, we de-

sign a new objective function in the LSVM formulation

to more effectively learn in the case of unbalanced data

sets, e.g. when having a significantly higher number

of negative images than positive ones. Those measures

were observed to improve the classification results.

Our work can be seen as complementary to several

alternative refinements to the bag-of-words principle.

As a matter of fact, it could be combined with such

work. For instance, improvements have also been ob-

tained by considering multiple kernels of different fea-

tures [36,14]. Another refinement has been based on

varying the pyramidal representation step by consid-

ering maximal pooling over sparse continuous features

[39,5].

At a meta-level, recent progress in object classifica-

tion has mainly been driven by the selection of more (so-

phisticated) features [26,43]. This has brought a couple

of percentage points in terms of performance [6]. Our

improvements can actually be combined with those, and

are shown here to bring similar improvements on their

own. Yet, our approach does this at a lower computa-

tional cost.

As to action classification, this has mainly followed

a bag of words approach as well. Early work towards

classification of actions using space-time interest points

(STIP) [18] was proposed by Schüldt et al. [30]. A de-

tailed evaluation of various features has been carried

out lately by Wang et al. [38].

In summary, the main contributions of this paper

are a) the introduction of latent variables for enhanced

classification, b) a principled technique for estimating

them in the case of object and action classification, c)

adapted optimization to improve learning in the case of

imbalanced data sets, and d) the avoidance of local op-

tima through an iteratively widened parameter space.

The remainder of the paper is structured as follows.

Section 2 describes the latent parameter operations and

how they are included in the overall classification frame-

work. Section 3 explains the inference and learning pro-

cedures. Section 4 shows how the LSVM framework is

adapted for imbalanced data sets. Section 5 introduces

an iterative learning approach for these latent variables.

Section 6 describes the results on standard object and

action classification benchmarks and analyzes the sta-

tistical significance of the improved results. Section 7

concludes the paper.

2 Latent Operations

We explore how far information resulting from cropped

or splitted regions can serve classification. In order to

see what is meant by those crop and split operations,

one can turn to Fig. 1 and Fig. 2 for the cases of single

images (object classification) and videos (action clas-

sification), resp. Representative classification examples

from the Graz-02 data set are shown in Fig. 3-6. We

now discuss the two basic operations represented by

our latent variables, cropping and splitting, in turn.

2.1 Crop

Our first latent operation builds on the motivation that

including class related content and discarding irrelevant

and confusing content should provide a better discrim-

inant function for classification. For the sake of sim-

plicity, we use a rectangular bounding box to separate

the two parts. The bounding box is represented by two
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(a) crop (b) split

(c) crop-uniform split (d) crop-split

Fig. 1 Illustrative figure for latent operations, crop, split,
crop-uniform split and crop-split on images. The crop-split
operations have the most degree of freedom with six coordi-
nates.

(a) crop (b) split

(c) crop-uniform split (d) crop-split

Fig. 2 Illustrative figure for latent operations, crop, split,
crop-uniform split and crop-split on videos. Differently from
spatial operations in images, the latent operations are per-
formed only in temporal domain.

points for both spatial and temporal cropping. We de-

note the latent parameter set with hcrop = {x1, y1, x2, y2}
and hcrop = {t1, t2} for images and video sequences

resp. Illustrations for cropping were shown in Fig. 1.(a)

and Fig. 2.(a).

For the Graz-02 3-class person-car-bike examples in

Fig. 3, we illustrate the derived cropping operations

with blue drawn bounding boxes. Differently from ob-

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Crop examples for different object categories from
the Graz-02 data set : (a) shows the eliminated non-
representative object parts, (b) shows cropped region in the
presence of same class multiple objects, (c)-(f) depict included
background context in the bounding boxes. While the ‘road’
contains the context information for ‘car’, it is ‘road’ and
‘building’ for the ‘person’.

ject detection methods, our classification method is not

required to localize objects accurately. Instead it can

exploit bounding boxes to discard object parts that are

not helpful in its particular classification task, while

keeping the helpful ones in. The latter can very well

include parts of the background (e.g. road for the car

in Fig. 3.(c)-(d), building for the person in Fig. 3.(e)-

(f)). On the other hand, parts with too much variation

in their appearance or with a high uncertainty of be-

ing picked up by the selected features, can be left out

of the box. Also a bounding box is allowed to include

more than one object of the same class (Fig. 3.(b)).

2.2 Split

It is known that using pyramidal subdivisions of images

or videos improves the classification of objects and ac-

tions [20,19]. Therefore, it stands to reason to also con-
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Representative split examples for the bike, car and
person classes from the Graz-02 data set. The wheels of bikes
in the shown images (a) and (b) are contained in the bottom
left or right subdivisions. Splitting aligns the whole scene be-
tween (c) and (d) examples. The upper quadrants contain
buildings and windows of cars, while the lower ones contain
road and wheels of cars. Since the split operation can only
split whole image into four divisions, it cannot exclude non-
representative parts of images. In case of multiple objects,
splitting point can move to the visually dominant one (per-
son) as in (e) or to between two similar size objects (people)
as in (f).

sider a pyramid-type subdivision, but with added flex-

ibility. Rather than splitting an image uniformly into

equal quadrants, we consider splitting operations that

divide into unequal quadrants. In the same vein, we al-

low a video fragment to be temporally split into two

sub-sequences, which are not halves. In contradistinc-

tion with cropping where all further analysis is confined

to the selected bounding box, we will use all splitted

portions as well as the entire image or video, i.e. a total

of 5 portions for images and 3 for videos.

Note that in this paper we only consider a single

layer of subdivision of the pyramid, the extension to

multi-layer pyramids is not covered yet. Hence, our splits

are fully characterized by one point. We denote the la-

tent variable set with hsplit = {x0, y0} (Fig. 1.(b)) and

hsplit = {t0} (Fig. 2.(b)) for images and videos, resp.

We show splitting samples for the bike, car and per-

son classes with green crossing lines in Fig. 4. We ob-

serve that bikes are often located in the left and right

bottom cells, while cars and people are usually splitted

into four ‘quadrants’.

2.3 Crop - Uniform Split

Our crop-uniform split operation learns a cropped re-

gion, which is then subdivided further into equal parts,

in order to enrich the representation in pyramid-style.

The latent parameter set is that of cropping. The com-

bined operation is illustrated in Fig. 1.(c) and Fig. 2.(c).

We illustrate crop-uniform splitting examples with blue

cropping boxes and green uniform splits in Fig. 5. Fig. 5

heralds more effective model learning than through uni-

form splitting only. The richer representation of crop-

ping and uniform splitting will in section 6 be seen to

outperform pure cropping.

2.4 Crop-Split

The combined crop-split operation comes with the highest-

dimensional latent parameter set of all four cases stud-

ied here. It learns both a cropping box and a non-

uniform subdivision thereof. Its latent parameter set

is a combination of the Cropping and Splitting oper-

ations, hcrop+split = {x0, y0, x1, y1, x2, y2} for images

and hcrop+split = {t0, t1, t2}. The effect is illustrated in

Fig. 1.(d) and Fig. 2.(d) resp. We illustrate crop-split

examples with blue cropping boxes and green splits in

Fig. 6. This figure already suggests that the crop-split

model is able to roughly locate objects, although we

do not use any ground truth bounding box locations in

training.

3 Inference and Learning

3.1 Inference

In the sequel, we closely follow the notation proposed

by Yu and Joachims [40]. The inference problem corre-

sponds to finding a prediction rule that infers a class



Object and Action Classification with Latent Window Parameters 5

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Representative crop-uniform split examples from the
Graz-02 data set. (a) and (b) show coarse localization of ‘bike’
images with uniform splitting. (c) and (d) examples include
‘cars’ and ‘road’ in the upper and bottom subdivisions re-
spectively. Differently from the strict bounding box concept
in object detection tasks, the inferred image windows contain
additional context information. Crop-uniform split achieves
a coarse localization of ‘person’ in different (outdoor and in-
door) environments in (e) and (f) respectively.

label y and a set of latent parameters h for a previ-

ously unseen image. Formally speaking, the prediction

rule gw(x) maximizes a function fw(x, y, h) over y and

h given the parameter vector w and the image x, where

fw(x, y, h) is the discriminant function that measures

the matching quality between input, output and latent

parameters:

fw(x, y, h) = w · ψ(x, y, h) (1)

where ψ(x, y, h) is a joint feature vector. We use differ-

ent ψ vectors for multi-class and binary classification

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Representative crop-split examples from the Graz-02
data set. The crop-split is the most flexible operation and
it can localize objects and align object parts better than
the crop-uniform operation. The advantage of the crop-split
over the crop-uni-split can be observed by comparing (a) to
Fig. 5.(a). The crop-split achieves better elimination of the
background in the image (a). In case of multiple objects, it
picks the bigger person over the small ones in background in
(e). The image window in (f) contains two people that have
similar sizes and are close to each other.

tasks. The feature vector for multi-class setting is

ψmulti(x, y, h) = ( 0D . . . 0D ϕ(x, h) 0D . . . 0D )T (2)

where y ∈ {1, . . . , k} and ϕ(x, h) ∈ RD is a histogram

of quantized features, given a latent parameter set, e.g.

hcrop or hsplit. 0D denotes D-dimensional zero row vec-

tor. ϕ(x, h) is stacked into position y ×D.

The feature vector for binary-class setting is

ψbin(x, y, h) =

{
φ(x, h) = (ϕ(x, h) 0D )T , if y = 1

−φ(x) = ( 0D −ϕ(x) )T , if y = −1
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(3)

where y ∈ {−1, 1} (y = 1 meaning the class is present in

the image and y = −1 it is not) and ϕ(x) is the feature

representation for whole image. While ψmulti is K ×D
dimensional (K denotes the number of classes), ψbin is

2 × D. Differently from the multi-class case, we learn

to localize only in positive images and fix the image

window to whole image to represent negative images for

the binary case. However, this is not the only possible

representation, one can also localize in negative images

similarly to positive images or set all the elements of

feature vector of negative images to zero as in [44].

The prediction rule gw can be obtained by maxi-

mizing the discriminant function over label and latent

space:

gw(x) = arg max
ŷ∈Y,ĥ∈H

fw(x, ŷ, ĥ). (4)

3.2 Learning

Suppose we are given a set of training samples X =

{x1, . . . , xn} and their labels Y = {y1, . . . , yn} and we

want to learn a SVM model w to predict the class label

of an unseen example. We also use latent parameters

H = {h1, . . . , hn} to select the cropping and/or split-

ting operations that add spatial information to the clas-

sifier, as introduced in section 2. In cases where the set

of spatial parameters hi is also specified in the train-

ing set (as with training for detection), the standard

structural SVM [34] solves the following optimization

problem:

min
w

1

2
‖w‖2 + C

n∑
i=1

[
max
ŷi,ĥi

[
w · ψ(xi, ŷi, ĥi)

+ ∆(yi, ŷi, hi, ĥi)
]
− w · ψ(xi, yi, hi)

]
(5)

where C is the penalty parameter and ∆(yi, ŷi, hi, ĥi) is

the loss function. Note that when hi is given for training

set, one can use a single symbol (si) to represent both

(yi,hi).

For the case of classification, the latent variables will

typically not come with the training samples however,

and need to be treated as latent parameters. To solve

the optimization problem in (5) without the labeled

windows, we follow the latent SVM formulation of [40]:

min
w

1

2
‖w‖2 + C

n∑
i=1

[
max
ŷi,ĥi

[
w · ψ(xi, ŷi, ĥi)

+ ∆(yi, ŷi, ĥi)
]
−max

ĥi

[
w · ψ(xi, yi, ĥi)

] ]
(6)

Note that we remove hi from ∆ since it is not given.

In the multi-class classification task, we use the 0-1 loss

which is ∆(yi, ŷi, ĥi) = 1 if ŷi 6= yi, and else 0. We will

explain the loss function that is designed for binary

classification in section 4.

The latent SVM formulation can be rewritten as the

difference of two convex functions:

min
w

[
1

2
‖w‖2 + C

n∑
i=1

max
ŷi,ĥi

w · ψ(xi, ŷi, ĥi) +∆(yi, ŷi, ĥi)︸ ︷︷ ︸
p(w)

]

−
[
C

n∑
i=1

max
ĥi

[
w · ψ(xi, yi, ĥi)

]
︸ ︷︷ ︸

q(w)

]
(7)

The difference of those two functions, p(w)−q(w) can be

solved by using the Concave-Convex Procedure (CCCP)

[42], where p and q are convex. The generic CCCP al-

gorithm is guaranteed to decrease the objective func-

tion (7) at each iteration t and to converge to a local

minimum and or a saddle point. In section 5 we sug-

gest an iterative method for avoiding an undesired local

minimum and saddle point in the first iterations. The

CCCP algorithm to minimize the difference of two con-

vex functions works as follows:

3.3 Algorithm

Initialize t = 0 and w0.

Iterate:

1. Compute hyperplane vt such that−q(w) ≤ −q(wt)+

(w − wt) · vt for all w.

2. Solve wt+1 = arg minw p(w) + w · vt
We iterate until the stopping condition [p(wt)−q(wt)]−
[p(wt−1) − q(wt−1)] < ε. Note that t is typically small

(10-100). The first step involves the latent parameter

inference problem

h∗i = arg max
ĥi∈H

wt · ψ(xi, yi, ĥi). (8)

Computing the new wt+1 in the second line involves

solving the standard Structural SVM problem [34] with

the inferred latent variables h∗i :

min
w

1
2 ‖w‖

2
+ C

n∑
i=1

max
ŷi,ĥi

[
w · ψ(xi, ŷi, ĥi) +∆(yi, ŷi, ĥi)

]
− C

n∑
i=1

[w · ψ(xi, yi, h
∗
i )] (9)

Solving the formula (9) requires to compute the con-

straint

{y∗i , h∗i } = arg max
ŷi,ĥi

[
w ·ψ(xi, ŷi, ĥi)+∆(yi, ŷi, ĥi)

]
(10)
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for each sample. This term is called most violated con-

straint in [34] or loss augmented inference in [33]. It

corresponds to the most confusing response from an-

other than the actual class or another latent parameter

than the inferred one.

4 Optimizing AUC

Multi-class classification performances are typically mea-

sured in terms of accuracy, e.g. correctly classified im-

ages over total number of images. While this evaluation

criterion is informative in the multi-class setting, it can

be misleading in binary classification, as the number of

positive and negative images are unbalanced. This im-

balance increases a lot more in the case of latent window

parameters as we deal with more negative samples (all

other bounding boxes in an image are considered neg-

ative). The area under the ROC curve (AUC), average

precision (AP) and Precision at fixed recall give a more

intuitive and sensitive evaluation in this case.

We evaluate our proposed classifiers in section 6 on

various benchmarks including the PASCAL VOC 2007

data set [10] which uses the AP to judge the classifi-

cation performances. While it is possible to train our

classifiers on the basis of accuracy loss and then report

testing performance using the AP, Joachims [15] shows

that such difference may result in a suboptimal perfor-

mance. To the best of our knowledge, there is no prior

work which optimizes a structural SVM with latent pa-

rameters based on the exact AP measure. However, it

is shown that it is possible to optimize a classifier based

on the approximated AP with the Structural SVM [41]

or to factorize the optimization problem based on dual
decomposition [28], optimizing both the classifier and

the latent parameters with a Structural SVM proved

difficult. Therefore, we will train our classifiers using

the AUC criterion, which optimizes for a ranking be-

tween positive and negative samples similar to the AP

and helps to improve performance even when testing

on AP. The proposed learning algorithm does not re-

quire any extra parameter to weight negative samples,

does not worsen computational complexity compared to

training on the basis of accuracy loss, and does improve

the classification performance. We report our results on

the PASCAL VOC 2007 data set and compare the AUC

optimized classifiers to the accuracy based baselines in

section 6.

The area under the ROC curve can be computed

from the number of positive and negative pairs which

are ranked in the wrong order, i.e.:

AUC = 1− |Swapped Pairs|
n+ · n−

(11)

where n+ and n− are the number of positive and nega-

tive samples respectively and Swapped Pairs =
{

(i, j) :

yi > yj ∧ r(xi) < r(xj)
}

with a ranking function

(r(x)). We design the ranking function (r(x)) based on

the binary representation in (3) as the maximum re-

sponse for ψbin(x, 1, h)− ψbin(x,−1, h):

r(x) = max
ĥ

w · (φ(x, ĥ) + φ(x)) (12)

Using the ranking function (12), we can rewrite the

swapped pairs that are used to compute the AUC as

Swapped Pairs =
{

(i, j) : yi = 1, yj = −1 and

max
ĥij

w · [φ(xi, ĥij) + φ(xi)] <

max
ĥij

w · [φ(xj , ĥij) + φ(xj)]
}
. (13)

where ĥij denotes the best latent parameter for image

xi on the left hand side and for image xj on the right

hand side respectively.

In order to incorporate the ranking to the latent

structural SVM problem, we design the feature vector

ψ by substituting individual samples x with positive-

negative pairs x̃:

ψ(x̃ij , ỹij , h̃ij) =

{
φ(xi, h̃ij)− φ(xj), if ỹij = 1

φ(xj , h̃ij)− φ(xi), if ỹij = −1

(14)

where x̃ij = (xi, xj) and ỹij =

{
1, if yi = 1, yj = −1

−1, if yi = −1, yj = 1
.

Given the label pair ỹij , h̃ij denotes a latent parameter

for image xi when (ỹij = 1) or for image xj when (ỹij =

−1) respectively. Please note that we discard positive-

positive and negative-negative pairs in our training,

since the AUC is only related to the ranking between

positive and negative samples.

The error between the ground truth label set Ỹ =

{1, · · · , 1} and the prediction ˆ̃Y = {ˆ̃yij} is proportional

to (1 − AUC) of the original X and Y where X =

{x1, · · · , xn} and Y = {y1, · · · , yn}.

∆AUC(Ỹ , ˆ̃Y ) =

n+∑
i=1

n−∑
j=1

1

2
(1− ˆ̃yij) (15)

Since the loss function in (15) decomposes linearly over

the pairwise relationship (yi, yj), the most violated con-

straint (ỹ∗ij , h̃
∗
ij) can be computed for each pair individ-

ually:

n+∑
i=1

n−∑
j=1

arg max
ˆ̃yij ,ĥij

w · ψ(x̃ij , ˆ̃yij
ˆ̃
hij) +

1

2
(1− ˆ̃yij). (16)
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The most violated constraint computation for a given

image pair x̃ij = (xi, xj) and corresponding label yij =

1 requires to check the inequality:

max
ĥij

w ·
[
φ(xi, ĥij) + φ(xi)

]
<

max
ĥij

w ·
[
φ(xj , ĥij) + φ(xj)

]
+ 1 (17)

On the other hand, using the accuracy (0-1) loss and

the feature representation in (3) leads to the following

constraint computation which only considers responses

from individual samples:

max
ĥi

w · φ(xi, ĥi) < −w · φ(xi) + 1, if yi = 1

−w · φ(xi) < max
ĥi

w · φ(xi, ĥi) + 1, if yi = −1. (18)

In practice, computing (17) for each pair does not add

any significant computation load since maxĥi
(w·φ(xi, ĥi))

and (w ·φ(xi)) can be precomputed for each sample (xi)

individually.

We can now write the latent SVM formulation in

(7) for the AUC optimization. To do so, we define the

convex functions p(w) and q(w) for brevity, and their

difference can be used to compute the complete formu-

lation. p(w) is written as sum of a regularization term

and (16):

p(w) =
1

2
‖w‖2 + C

[ n+∑
i=1

n−∑
j=1

max
ˆ̃yij ,ĥij

w · ψ(x̃ij , ˆ̃yij ,
ˆ̃
hij)

+
1

2
(1− ˆ̃yij)

]
.

(19)

In contrast to p(w), the second convex function q(w)

can be computed linearly in terms of individual samples

(x) by using the feature representation (14):

q(w) = C

[
n−

∑
i,

yi=1

max
ĥi

w·φ(xi, ĥi)−n+
∑
j,

yj=−1

w·φ(xj)

]
.

(20)

So far, we have detailed the learning procedure that

makes use of positive-negative image pairs (xi, xj) and

penalizes ranking violations between those pairs. In par-

allel to the learning procedure, the prediction rule ranks

images by using (12). The inference for an unseen image

is rewritten as

gAUC(x) =

{
y∗ = 1, if maxĥ w · (φ(x, ĥ) + φ(x)) > 0

y∗ = −1, else.

(21)

5 Iterative Learning of Latent Parameters

Learning the parameters of an LSVM model often re-

quires solving a non-convex optimization problem. Like

every such problem, LSVM is also prone to getting

stuck in local minima. Recent work [1] proposes an

iterative approach to find better local minima within

shorter convergence times for non-convex optimization

problems. It suggests to first train the learning algo-

rithm with easy examples and to then gradually feed

in more complex examples. This procedure is called

curriculum learning. The main challenge of curriculum

learning is to find a good measure to quantify the diffi-

culty of samples.

In this paper, we take the size of the parameter

space as an indication of the complexity of the learning

problem. Initially, we run the learning algorithm with a

limited latent subspace and then gradually increase the

latent parameter space. Fig. 7 illustrates such iterative

learning for the splitting operation. The nodes located

in the corners of the grid indicate the possible splitting

points, i.e. the latent parameter set for the splitting op-

eration. The green nodes indicate, from left to right, the

growing number of splitting points that the algorithm

can choose from during subsequent iterations.

6 Experiments

We evaluate our system on four publicly available com-

puter vision benchmarks, the Graz-02 [25], the PAS-

CAL VOC 2007 [10] and the Caltech 101 [11] data sets

for object classification, and the activities of daily living

life data set [22] for action classification.

For the object classification experiments, we extract

dense SIFT features [21] by using the vl phow function

from the VLFeat toolbox [35]. For the action classifi-

cation experiments, we use the HoF descriptors [19] to

describe detected Harris3D interest points [18]. We ap-

ply K-means to the randomly sampled 200,000 descrip-

tors from the training images/videos to form the visual

codebook. The computed visual words are then used

to encode the descriptors with the LLC method [39].

For the LLC encoding, we set the number of nearest

neighbors and the regularization parameter to 5 and

10−4 respectively. The codebook sizes are 1024, 8192,

2048 and 1000 for the Graz-02, VOC-07, Caltech-101

and the Activities data sets respectively (often follow-

ing the sizes used by others, in order to allow for a fair

comparison in the subsequent experiments).

We compare the performance of the proposed la-

tent operations, ‘crop’, ‘split’, ‘crop-uni-split’, ‘crop-

split’ to the standard bag-of-features (BoF) and one

level spatial pyramid (SP) [20]. The BoF represents an
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(a) iter 0 (b) iter 1 (c) iter 2

Fig. 7 Illustration of the splitting operation in iterative learning. The green and gray nodes show the points where splitting
is considered. At iter 0 the image can only be splitted with horizontal and vertical lines through the image center, while at
the next iteration iter 1, the image can be splitted with one of the 9 green nodes. At the last iteration iter 2, all splitting
nodes are eligible.

image/video with a histogram of quantized local fea-

tures and thus discards the spatial/temporal layout of

the image/video structure. The SP is a more extensive

representation which incorporates spatial information

into the features by using a pyramidal representation.

In our experiments, we use a one level SP (1 × 1 for

the top layer and 2× 2 for the base) for images, and a

similar SP for videos, where the base is only temporally

divided. The performance criterion is the mean multi-

class classification accuracy for the Graz-02, Caltech-

101 and the Activities data sets and mean AP (mAP)

for the VOC-07. Similarly, the feature representation

of the ‘split’, ‘crop-uni-split’ and ‘crop-split’ operations

are equal with the SP.

Our latent learning implementation builds on the

publicly available code of Yu and Joachims [40]. The

regularizing parameter C of the LSVM is tuned for

each latent operation (crop, split, etc.) on each data set

(Graz, VOC-07, etc.) by using cross-validation (the in-

terval [102, 107] is sampled logarithmically). The other

free parameter ε, the stopping criterion for the CCCP

algorithm, is set to 10−1 and 10−3 for the multi-class

and binary classification experiments, respectively.

The running time of the LSVM experiments is domi-

nated by computing the ‘most violated constraint’ which

was introduced in section 4. We need to compute the re-

sponse of each classifier by scanning the latent parame-

ter space (e.g. all possible boxes for the cropping opera-

tion), to find the violated constraints. It would therefore

have been possible to improve the running time by using

the branch and bound algorithm [17]. For the cropping,

splitting, crop-uniform-splitting, and crop-splitting op-

erations the training of each class-specific classifier in

the VOC 2007 experiments took 1 hour, 5 minutes, 30

minutes and 3 hours on a 16 CPU machine, resp. Train-

ing for the other data sets went faster, and in the same

relative orders of magnitude for the different operations.

6.1 Graz-02 Dataset

The Graz-02 data set contains 1096 natural real-world

images with three object classes: bikes, cars and people.

This database includes a considerable amount of intra-

class variation, varying illumination, occlusion, and clut-

ter. We form 10 training and testing sets by randomly

sampling 150 images from each object class for training

and use the rest for testing. We report the mean and

standard deviation of the classification accuracy for the

10 corresponding experiments, each time also averaging

over the 3 classes.

Table 1 shows the multi-class classification results.

The crop operation improves the classification perfor-

mance over the BoF and the SP representation by around

1.45 and 0.35 %, respectively. The non-uniform split op-

eration also achieves better classification performance

than the uniform split (SP). The crop-split operation

has more degrees of freedom than the crop-uni-split

model and outperforms the crop-uni-split: where the

latter improves the baseline SP method by 2.4 %, the

former improves it by 2.6 %. The crop-split operation

thereby also gives the best result of all four operations.

Adding splits systematically improved results over pure

crops. This may not come as a surprise, as our imple-

mentation of splitting leads to substantially larger fea-

ture spaces (as SP does compared to BoF).

For cropping and splitting, we only consider points

that lie on a regular grid. We now analyze the influence

of the size of this grid on the classification accuracy.

Fig. 8 plots the mean classification accuracy of the four

proposed operations for the Graz-02 data set, and this

for different grid sizes, i.e. 4×4, 8×8, 12×12, and 16×16.
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Dataset Baseline Our Work
BoF SP crop split crop-uni-split crop-split

Graz-02 86.95 ± 1.35 88.05 ± 1.39 88.40 ± 1.05 88.58 ± 1.31 90.38 ± 1.85 90.62 ± 1.75

VOC-07 49.86 54.74 51.82 55.32 56.26 57.05
Caltech 101 61.25 ± 0.88 72.68 ± 1.21 62.16 ± 0.96 73.33 ± 0.98 75.31 ± 0.68 74.93 ± 0.86

Activities 79.33 88.00 72.00 88.00 90.67 88.67

Table 1 The classification results on the Graz-02, PASCAL VOC 2007, Caltech-101 and the activities of daily living data set.
The performance of the crop, split, crop-uniform split and crop-split operations are compared to the baselines: BoF and SP.
All the classifiers are learnt with the iterative LSVM. We use the AUC based optimization to train the baseline and proposed
classifiers for the VOC-07 data set.
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Fig. 8 The mean classification accuracy on the Graz-02 data
set with varying grid size. The grid size of 12 gives the best
score for the crop, split, crop-uni-split and crop-split opera-
tions.

The results show that the performance of the classifiers

increases with finer grids up to size 12, after which it

slightly drops at 16. Hence, the optimal grid size on

the Graz-02 data set is 12. Note that an increased grid

size implies a significant, about quadratic, increase in

computation time. We therefore report results for all

other data sets with a grid size of 8.

6.2 PASCAL VOC 2007

The PASCAL VOC 2007 data set [10] (VOC-07) con-

tains 9,963 images which are split into training, vali-

dation and testing sets. The images are labeled with

twenty classes, also allowing multiple classes to be present

in the same image. We learn a one-vs-rest classifier

for each class and report the mean Average Precision

(mAP) which is the mean of AP values from each of

the classifiers.

Table 1 depicts the classification results for the pro-

posed operations. It should be noted that we use the

AUC-loss based optimized classifiers for both the base-

line and proposed latent operations to present a fair

comparison. The ‘crop’ operation yields an improve-

ment of around 2% over the baseline BoF method to

which it is similar in terms of feature space dimen-

sion. The ‘split’ operation improves the result over the

SP method by 0.6%. The latent operations of ‘crop-

uni-split’ and ‘crop-split’ provide further improvements

over the SP and BoF baselines. Compared to SP, the

‘crop-uni-split’ operation yields an improvement of 1.5%

and ‘crop-split’ one of 2.3%.

Table 2 shows the results for each object class in-

dividually for the crop-split operation. As can be ob-

served from the results, we are able to improve the

classification accuracy for 17 out 20 classes. In partic-

ular, the crop-split achieves substantial improvement

in ‘bus’ (5.1%), ‘sofa’ (5.0%), ‘bicycle’ (4.5%), ‘mo-

torbike’ (4.3%) and ‘tv monitor’ (4%) categories. The

method is not able to improve the accuracy for classes

that are hard to localize because of their relatively size

and cluttered background around them, such as ‘bottle’

and ‘potted plant’.

6.3 Caltech-101 Dataset

The Caltech-101 data set [11] contains images of 101

object classes and an additional background class, i.e.

102 classes in total. The number of images per class

varies from 31 to 800. We use 30 images for training

from each class and use the rest of the images - as usual

with a maximum number of 50 - for testing. We run ten

experiments on ten random divisions between training

and testing images and report the mean accuracy and

standard deviation for these runs.

Table 1 depicts the classification results for the Cal-

tech 101 data set. The crop and split operations im-

prove over the BoF and SP baselines respectively as

in the previous data sets. For this data set, where ob-

jects are always centered, the crop-uni-split operation
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method mAP plane bicycle bird boat bottle bus car cat chair cow
SP 54.74 69.95 59.62 45.42 64.39 24.81 60.43 75.31 57.45 53.48 42.87

crop-split 57.05 72.76 64.15 46.10 66.49 24.22 65.57 78.64 60.55 55.02 44.23

method table dog horse mbike person plant sheep sofa train tv
SP 46.90 41.23 71.38 62.70 82.44 22.46 43.54 49.58 70.92 49.99

crop-split 48.70 41.01 73.33 67.05 83.93 21.38 46.28 54.56 72.91 54.06

Table 2 The classification results in terms of AP for each class of PASCAL VOC 2007. Both the SP and crop-split classifiers
are trained with the iterative learning and AUC loss. The crop-split operation out-performs the SP in 17 out of 20 classes and
the average improvement is 2.3% mAP.

achieves the highest performance among the proposed

methods and improves the SP method by around 2.6%.

6.4 The Activities of Daily Living Dataset

The Activities data set [22] contains ten different types

of complex actions like answering a phone, writing a

phone number on a white-board and eating food with

silverware. These activities are performed three times

by five people with different heights, genders, and eth-

nicities. Videos are taken at high resolution (1280×720

pixels). A leave-one-out strategy is used for all subjects

and the results are averaged as in [22].

Table 1 shows the results for action classification on

this data set. For this method, we obtain an improve-

ment of 2.6% over SP method using the ‘crop-uni-split’

method. This is similar to the performance for clas-

sification of objects and indicates that the method is

applicable to the classification of actions as well. The

decrease in results for the ‘crop’ operation over the BoF

method is mainly due to the fact that the HOF descrip-

tors are not densely computed and some temporal cells
of the grid have very few descriptors.

6.5 Iterative Learning

We show results for the iterative learning of latent op-

erations on the Graz-02, VOC-07 and Caltech-101 data

sets. The grid size used for the Graz-02 data set is

12 × 12 and 8 × 8 for the VOC-07 and Caltech-101

data sets. For the split operation we initially constrain

the latent search space to the center of the images and

expand it along the x and y directions by a fixed step

size, a quarter of the number of rows and columns in the

grid, e.g. 12/4 = 3 on the 12×12 grid, at each iteration.

For the crop, crop-uni-split, and crop-split operations,

we initially fix the image window, e.g. {x1, y1, x2, y2},
as the full image. At each iteration, we relax the min-

imum width and height of the image window with a

fixed step size, i.e. 0.5 × grid size. Once the CCCP al-

gorithm converges within the given latent space in an

iteration, we expand the latent search space again at

the start of the next. The algorithm terminates when

the entire search space is covered.

Fig. 9 visualizes key iterations of the training for the

cropping operation of a ‘person’ image for the LSVM

and iterative LSVM. In the iterative scheme, we ini-

tially fix the latent cropping box to be the full im-

age size at the iter 0 (Fig. 9.(a)). We then relax the

constraint by allowing a smaller minimum size of the

cropping box, i.e. half of the minimum size from the

previous iteration. The ordinary LSVM method does

not have any such constraint on the latent parameter

search. At the end of iter 0, the LSVM converges to a

wrong region and the error propagates to the next iter-

ations. The LSVM mis-classifies this training image as

‘bike’. The iterative LSVM gradually learns to localize

the person better and correctly classifies the image.

Table 3 depicts the quantitative result of the itera-

tive operations on the Graz-02 data set. The table in-

dicates that the iterative method for LSVM generally

improves the classification accuracy over the original

formulation of the LSVM. The crop-split benefits most

from the iterative method, since it has more degrees of
freedom and thus a stronger tendency to converge to a

local minimum. The performance of iterative learning

for the split operation worsens slightly.

Table 4 shows quantitative comparison of iterative

learning for the crop-split operation on the Graz-02,

VOC-07 and Caltech-101 data sets. The iterative learn-

ing improves the classification performance for the Graz-

02 and VOC-07 around 1%. However, we observe a

slight drop in the classification accuracy on the Caltech-

101. In the Caltech-101 data set objects are well cen-

tered, objects do not vary significantly in their sizes

and the images are quite clean of clutter. Therefore,

this data set does not benefit from the proposed learn-

ing method.

Fig. 10 plots the classification performance of the

LSVM and iter LSVM for the crop-split operation on

the VOC-07 data set over iterations. The CCCP algo-

rithm, as described in section 3.3, at beginning of each

iteration, infers the latent variables. Having the latent
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crop split crop-uni-split crop-split
LSVM 89.91 ± 1.69 88.91 ± 1.37 90.37 ± 1.21 90.32 ± 1.69

Iter. LSVM 90.02 ± 1.37 88.86 ± 1.05 90.68 ± 1.24 91.18 ± 1.38

Table 3 Comparison of the LSVM and Iterative LSVM in terms of the multi-class classification accuracy for the proposed
latent operations on the Graz-02 data set.

(a) iter 0 (b) iter 1 (c) iter 5

(d) iter 0 (e) iter 1 (f) iter 5

Fig. 9 Cropping operation on a ‘person’ labeled image for various iterations during training. The first and second rows show
the result of the ordinary and iterative learning respectively. The first learning algorithm misses the ‘person’ in the first
iteration and later converges to some part of background. The same local minimum is avoided in the second learning algorithm
by restricting the possible image windows set to the full image in the first iteration and gradually relaxing the restriction.

Graz-02 VOC-07 Caltech101
LSVM 90.32 ± 1.69 56.00 75.04 ± 0.76

iter. LSVM 91.18 ± 1.38 57.05 74.93 ± 0.86

Table 4 Comparison of the LSVM and iterative LSVM
on different data sets for the crop-split operation. Iterative
LSVM performs better in both the Graz-02 and VOC-07 data
sets. The Caltech-101 data set does not benefit from the iter-
ative method, since the images in this data set do not contain
significant background clutter. Therefore, image windows are
not less likely to converge to non-representative image parts
in this data set.

parameters fixed, it optimizes the minimization prob-

lem 9 during that iteration. We limit the minimum im-

age window size for the iter LSVM to whole and half

image size during the first and second iterations respec-

tively. We observe that the iter LSVM already has 48%

mAP at the end of the first iteration and converges fast

to 57.05% mAP. However, the LSVM takes 7 iterations

to converge to 56% mAP.

6.6 AUC Optimization

In section 4, we described the use of an AUC based ob-

jective function to learn the classification with latent

variables. This is useful in the case of binary classifica-

tion, e.g. the VOC 2007 object classification task. For

Loss SP (mAP) crop-split (mAP)
ACC 53.46 54.37
N-ACC 54.18 56.98
AUC 54.57 57.05

Table 5 Comparison between the accuracy loss (ACC), nor-
malized accuracy loss (N-ACC) and area under the roc curve
loss (AUC) on the VOC-07 data set in mAP.



Object and Action Classification with Latent Window Parameters 13

1 2 3 4 5 6 7

35

40

45

50

55

iteration

m
A

P
(%

)

LSVM iterative LSVM

Fig. 10 Classification results (mAP) with the AUC opti-
mized crop-split on the VOC-07 over iterations for LSVM
and iter LSVM algorithms. The minimum image windows
size is limited to whole image size and half of it during the
first and second iterations of the iterative learning respec-
tively. The iterative learning starts with higher classification
mAP on testing and takes fewer iterations to converge. The
LSVM and iter LSVM converge to 56% and 57.05% mAP
respectively.

this task, we compare the proposed AUC loss against

two baselines (ACC and N-ACC) in table 5. ACC de-

notes the 0-1 or accuracy loss. N-ACC is normalized

accuracy loss for the number of positives and negatives,

e.g. it penalizes false negatives more in presence of more

negative images. We evaluate their performances for the

standard SP and latent crop-split operation. While the

ACC loss performs worst in all three data sets, normal-

izing the loss (N-ACC) for positives and negatives with

the number of positives and negatives respectively im-

proves the mAP in both SP and crop-split. The AUC

loss gives the best results and empirically shows that

the AUC loss provide a better approximation of the

AP on the VOC-07 data set than the ACC and N-ACC

baselines.

6.7 Statistical Significance of Results

In this section, we further analyze whether the differ-

ence in performance between the proposed latent opera-

tions and the baselines is statistically significant. There

is little work in the literature that studies statistical

evaluation of multiple classifiers on multiple data sets.

We analyze our results by following two different eval-

uation tests which is recommended by the authors of

[7].

In the first analysis, we group the methods in terms

of their feature dimension to have fair comparison. We

explore whether the ‘crop’ operation produce statisti-

cally significant difference over the ‘control’ or base-

line classifier BoF. We also compare the ‘split’, ’crop-

uni-split’ and ‘crop-split’ operations to the SP. More

specifically, we followed the two step approach of the

Friedman test [13] with the Bonferroni-Dunn post-hoc

analysis [8]. This approach ranks the classifiers in terms

of their classification results (highest classification ac-

curacy is ranked 1, 2nd one is ranked 2) and therefore

it does not require any assumptions about the distri-

bution of the accuracy or AP to be fulfilled. In our

experiments, we consider each class as a separate test

and rank each class among different methods. We test

the hypothesis that it could be possible to improve on

the control classifiers (BoF, SP) by using the latent

operations. The null hypothesis which states that all

the algorithms are equivalent is tested by the Fried-

man test. After the null hypothesis is rejected, we use

the Bonferroni-Dunn test which gives a “critical differ-

ence” (CD) to measure the difference in the mean rank

of the control and proposed classifiers.

Fig.11.(a)-(b) and Fig.12.(a)-(b) depict the results

of the first analysis for the VOC-07 and Caltech-101

data sets respectively. This diagram is proposed by [7].

The top line in the diagrams is the axis which indi-

cates the mean ranks of methods in an ascending order

from the lowest (best) to the highest (worst) rank. We

mark the interval of CD to the left and right of the

mean rank of the control algorithm (BoF and SP) in

Fig.11.(a)-(b) and Fig.12.(a)-(b). The algorithms with

the mean rank outside this range are significantly dif-

ferent from the control. Fig.11.(a)-(b) depict that the

crop performs significantly better than the BoF; crop-

uni-split and crop-split are significantly better than the

SP on the VOC-07. Fig.12.(a)-(b) show that the crop is

not significantly better than the BoF, the crop-uni-split

and crop-split are still significantly better than the SP

on the Caltech-101. While the VOC-07 data set images

include cluttered background and small objects embed-

ded in challenging backgrounds, the Caltech-101 images

are cleaner. Therefore, only ‘crop’ operation cannot per-

form significantly better than BoF in the latter data set.

The ‘split’ operation has enough degree of freedom to

improve over the SP in neither of the data sets.

In the second analysis, we compare the performance

of the latent operations to each other. We follow the

same testing strategy with the authors of [9] to ana-

lyze the significance of the results. We have used the

Friedman test with a different post hoc test, known as

Nemenyi test [23]. While Bonferroni-Dunn test is more

suitable to compare the proposed algorithms with a

control classifier, Nemenyi test is more powerful to com-

pare all classifiers to each other. This test also computes



14 Hakan Bilen et al.

Mean Rank

1 2

BoFcrop

(a)

Mean Rank

1 2 3 4

crop-split

crop-uni-split

SP

split

(b)

Mean Rank

1 2 3 4

crop-split

crop-uni-split split

crop

(c)

Fig. 11 Significance analysis of the classification results on the VOC-07 data set. (a). shows a comparison of the BoF against
the crop operation with the Bonferroni-Dunn test. The crop operation is outside the marked red interval is significantly different
(p < 0.05) from the control classifier BoF. (b). shows comparison of the SPM against the split, crop-uni-split and crop-split
operations with the Bonferroni-Dunn test. While the crop-uni-split and crop-split operations are outside of the red marked
range, therefore they are significantly better (p < 0.05) than SP. (c). shows comparison of all the proposed latent operations
against each other with the Nemenyi test. Groups of classifiers that are not significantly different (at p < 0.05) are connected.

Mean Rank

1 2

BoFcrop

(a)

Mean Rank

1 2 3 4

crop-split

crop-uni-split SP

split

(b)

Mean Rank

1 2 3 4

crop-split

crop-uni-split

split

crop

(c)

Fig. 12 Significance analysis of the classification results on the Caltech-101 data set. (a). shows a comparison of the BoF to
the crop operation with the Bonferroni-Dunn test. The crop operation is inside the red marked interval is not significantly
different (p < 0.05) from the control classifier BoF. (b). shows comparison of the SPM to the split, crop-uni-split and crop-split
operations with the Bonferroni-Dunn test. While the crop-uni-split and crop-split operations are outside of the red marked
range, therefore they are significantly better (p < 0.05) than SP. (c). shows comparison of all the proposed latent operations
to each other with the Nemenyi test. Groups of classifiers that are not significantly different (at p < 0.05) are connected.

a CD to check whether the difference in mean rank of

two classifiers is bigger than this value. We show results

of the second analysis for the VOC-07 and Caltech-

101 data sets in Fig.11.(c) and Fig.12.(c) respectively.

Fig.11.(c) shows that the ‘crop’ and ‘split’ are not sig-

nificantly different from each other in terms of their

classification performance, however, their combination

‘crop-split’ is significantly better than both ‘crop’ and

‘split’. This shows that these two operations are dif-

ferent approaches to learn and complementary to each

other. In both Fig.11.(c) and Fig.12.(c) the ‘crop-uni-

split’ and ‘crop-split’ are not significantly different from

each other. This is because splitting can only marginally

improve the histograms by redistributing features and

this results in an improvement, but not a statistically

significant improvement of the result.

7 Conclusion and future work

We have developed a method for classifying objects and

actions with latent window parameters. We have specif-

ically shown that learning latent variables for flexible

spatial operations like ‘crop’ and ‘split’ are useful for

inferring the class label. We have adopted the latent

SVM method to jointly learn the latent variables and

the class label. The evaluation of our principled ap-

proach yielded consistently good results on several stan-

dard object and action classification data sets. We have

further improved the latent SVM by iteratively growing

the latent parameter space to avoid local optima. We

also realized a better learning algorithm for unbalanced

data by using an AUC based objective function. In the

future, we are interested in extending the approach for

weakly supervised object detection and improved large

scale classification.
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30. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human
actions: A local svm approach. In: Int. Conf. on Pattern
Recognition (ICPR), pp. 32–36 (2004)

31. Shapovalova, N., Vahdat, A., Cannons, K., Lan, T., Mori,
G.: Similarity constrained latent support vector machine:
An application to weakly supervised action classification.
In: Proc. of European Conf. Computer Vision (ECCV)
(2012)

32. Sharma, G., Jurie, F., Schmid, C.: Discriminative spatial
saliency for image classification. In: Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 3506–3513. IEEE (2012)

33. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.:
Learning structured prediction models: A large margin
approach. In: Proceedings of the 22nd international con-
ference on Machine learning, pp. 896–903. ACM (2005)

34. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.:
Support vector machine learning for interdependent and
structured output spaces. In: Proc. Int. Conf. on Machine
Learning (ICML), p. 104 (2004)

35. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable
library of computer vision algorithms. http://www.

vlfeat.org/ (2008)

36. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Mul-
tiple kernels for object detection. In: Proc. of Int. Conf.
on Computer Vision (ICCV), pp. 606–613 (2009)

37. Vedaldi, A., Zisserman, A.: Structured output regression
for detection with partial occulsion. In: Proc. of Advances
in Neural Information Processing Systems (NIPS) (2009)

38. Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid,
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