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Abstract

Our goal is to spot words in silent speech videos without
explicitly recognizing the spoken words, where the lip mo-
tion of the speaker is clearly visible and audio is absent. Ex-
isting work in this domain has mainly focused on recogniz-
ing a fixed set of words in word-segmented lip videos, which
limits the applicability of the learned model due to limited
vocabulary and high dependency on the model’s recogni-
tion performance.

Our contribution is two-fold: 1) we develop a pipeline
for recognition-free retrieval, and show its performance
against recognition-based retrieval on a large-scale dataset
and another set of out-of-vocabulary words. 2) We intro-
duce a query expansion technique using pseudo-relevant
feedback and propose a novel re-ranking method based on
maximizing the correlation between spatio-temporal land-
marks of the query and the top retrieval candidates. Our
word spotting method achieves 35% higher mean aver-
age precision over recognition-based method on large-scale
LRW dataset. Finally, we demonstrate the application of the
method by word spotting in a popular speech video (“The
great dictator” by Charlie Chaplin) where we show that the
word retrieval can be used to understand what was spoken
perhaps in the silent movies.

1. Introduction
Parsing information from videos has been explored in

various ways in computer vision. Recent advances in deep
learning have facilitated many such tasks. One such parsing
requirement is of reading lips from videos. This has ap-
plications in surveillance or aiding improvements in speech
recognition in noisy outdoor settings. Solving this prob-
lem has been attempted using methods based on recurrent
neural networks (RNN) [28] and spatio-temporal deep con-
volutional networks [29]. However, for practical appli-
cations, recognizing lip motion into words is still in its
nascent stages, with state of the art models [36] being lim-
ited to a constrained vocabulary. In this paper, we adopt a

Figure 1. Example of word spotting in black and white Charlie
Chaplin silent video: (left) target is the silent video and queries are
the exemplars spoken by different people;(right) retrieved video
clip segments where the words ‘together’, ‘million’, ‘power’ and
‘chance’ are present.

recognition-free ‘word-spotting’ approach that does not suf-
fer from the vocabulary limitations. Unlike text documents,
where the performance in character recognition [43], word
recognition [14] and spotting research [37] has seen a great
boost in the post deep learning era, this approach has been
rarely pursued for lipreading task.

Training a lipreader requires careful word level annota-
tion, which is expensive even for a small vocabulary set.
Although progress in speech recognition [42] has resulted
in better audio-to-text prediction and can be used for anno-
tation, such methods are often prone to changes in accent
and presence of noise in the audio channel. Lipreader’s per-
formance is also susceptible to similar sounding words [36].
In recognition-based retrieval, we use a lipreader to predict
the word spoken in a video clip. Evidently, if the word is
wrongly predicted due to variations in visual appearance,
it would never appear in the top results. In contrast, for
recognition-free retrieval, the ‘word spotting’ i.e. matching
of words is based on the feature representation of the target
word without explicitly predicting the word itself. It intrin-
sically compares the features of the target word with the
query word. Hence, even if the target word is misclassified
it appears in the top results.



We are motivated by the fact that for handwritten docu-
ments word spotting has shown better performance for re-
trieving target words in different handwriting styles than
word recognition [34]. Likewise, we show that recognition-
free retrieval can also be useful for spotting words when tar-
get words come from a different source than the data used
for training a lipreader, like archaic black and white docu-
ments films in Figure 1. We further investigate the appli-
cability of recognition-free pipeline for out-of-vocabulary
word spotting, for a different domain of data with respect to
what has been used for training the lipreading model. Fig-
ure 1 shows few sample results of our pipeline for spotting
different query words in the black and white video clip in
four spoken sentences.

We further show that the word spotting performance can
be improved by using a novel re-ranking method for top-k
retrieval candidates. We also adapt the standard pseudo-
relevance feedback query expansion method for lipreading
task. Our pipeline takes silent speech videos as input and
retrieves a queried word that is provided again as a video
clip from the target input dataset. The target video is first
densely segmented into ‘word proposal clips’, where these
clips may or may not contain any word. Any ‘word pro-
posal clip’ is considered a spotted word if the similarity
measure between the query and the target ‘word proposal
clip’ is greater than a particular threshold.

We show improvement in word spotting on a standard
large scale lip video dataset Lipreading in the wild (LRW)
[11], and another standard dataset GRID corpus [13] for
showing domain invariance. We also assess our pipeline’s
performance in a popular speech video by Charlie Chaplin:
“The great dictator”.

2. Related Work
Research in visual speech recognition has been pursued

for at least two decades [4, 7, 26] with earlier approaches
focusing mainly on handcrafted features and HMM-based
speech recognizers [5, 27, 33]. Some of these approaches
have been thoroughly reviewed in [24, 44]. Wand et al. [39]
showed word level lipreading using an LSTM [28] stacked
over two-layered neural network on GRID corpus dataset
[13]. Recently, Chung and Zisserman [11] have used mul-
tiple lipreading models that fuses the temporal sequence at
different layers of underlying VGG-M model [8] to classify
the input video clip into 500 words. Assael et al. [2] uses a
Connectionist Temporal Classification (CTC) [22] to show
one of the best results on GRID corpus [13].

Lipreading involves modeling temporal sequences of lip
video clips into phonemes or characters, hence better se-
quence learning models using deep networks proved to be
pivotal in lipreading research. Chung et al. [10] have pro-
posed Watch Listen Attend and Spell (WLAS) architecture
that leverages attention model [3] for doing character level

prediction of input lip videos. They provide the best re-
sults on Lipreading in the Wild (LRW) dataset and GRID
corpus [13]. They however use a much larger Lipread-
ing Sentences (LRS) dataset that is not widely available
[10] for pretraining, hence making it a data intensive model
that is not accessible. In a recent work, Stafylakis and Tz-
imiropoulos [36] trained a model entirely on LRW dataset
to give state-of-the-art result for word level prediction. This
model consisted of three parts: a spatio-temporal convolu-
tional front-end, followed by a Resnet-34 [25], and a bidi-
rectional LSTM [23] at the end. Since this model has been
trained to classify lip videos into one of 500 word classes,
it does not address out-of-vocabulary words. Our pipeline
employs recognition architectures based on [11] and [36] as
feature extractors to show how recognition-free leverages
these features spaces for improved retrieval performance.

Initial work in word spotting appeared in speech recogni-
tion community, majority relying on HMMs [21, 35]. Ker-
nel machines and large margin classifiers introduced by
Keshet et al. [30] in discriminative supervised setting re-
sulted in an improvement over the previous methods. Post
deep learning, RNNs with CTC objective functions gave
a major improvement over the HMMs [16] for modeling
temporal audio speech signals. Unlike audio speech, vi-
sual speech is spatio-temporal signal. Hence, our choice of
feature extractors contain VGG-M [8] and Resnet-34 [25]
modules for modeling facial features, and uses LSTM and
temporal convolution for modeling temporal information.

Word spotting is a well defined problem in document
analysis and retrieval [20]: hand writing recognition [17,
19, 34, 37], word image retrieval [32], scene-text [40] etc.
Although a large corpus of work exists for word spotting for
documents, images and audio speech, the visual speech do-
main has been largely ignored. The work that is closest to
our approach is by Wu et al. [41]. In their approach, the au-
thors use geometric and appearance based features to build
their word spotting pipeline and they rely on the knowledge
of optimal handcrafted feature. In our work, though we also
adopt a recognition-free retrieval approach, we do so using
recognition-based features and show that the recognition-
free approach improves on the recognition-based approach.
We further also improve the base recognition-free pipeline
by using query expansion and re-ranking extensions. We
benchmark our work on standard datasets.

3. Proposed Method
In this section, we will discuss the individual compo-

nents of our proposed word spotting pipeline and move
along to develop a holistic overview of the method.

3.1. Recognition-free Retrieval

Recognition-based retrieval relies on recognizing words
in lip videos by completely depending on the lipreading



Figure 2. Preprocessing: The pipeline which takes a variable length word clip and converts it into a fixed length sequence of frames.

model. During testing a video clip containing a word is
classified as one of the word in the vocabulary it is trained
on. Moreover, modeling a lipreader with open vocabulary
is an active area of research.

Retrieving a word from a set of candidate silent videos
without directly recognizing each candidate words being
spoken is recognition-free retrieval or word spotting. This
opens up an opportunity to use a sub-performing lipreader
with incorrect word recognition. In a recognition-free setup,
the user formulates a query and a rank list is computed
based on its distance from all the clips in the target corpus
(retrieval set), such that most similar candidate is given the
highest rank. Since word spotting systems rely heavily on
computing similarity, the quality of the feature representa-
tion is more important than the classification of input clips.

Word spotting based on the modality of query are of two
types: query by string (QbS) where the input query is string
and the retrieval is video, and query by exemplar (QbE),
where query is video and retrieval is also video. In this
work, our query will be through exemplar.

3.2. Preprocessing

We use the recognition models as described in [10] and
[36] as feature extractors. These models takes inputs as
a fixed length input of spatial dimension 225 × 225 and
112×112 respectively with a sequence length of 29 frames.
The feature extractors are trained on LRW [11] dataset
which consists of fixed length video clips of 29 frames and
1.16 sec duration, with actual word at the center. Hence it
is required to preprocess the input videos (other than that
of LRW) before feeding them to the feature extractors. As
shown in Figure 2, the preprocessing step proceeds by just
sampling the input video at 25 frames per second, then
converting the sampled frames to grayscale. Since words
can be of different length we circular pad grayscaled se-
quence of frames on both the side such that the actual con-
tent is at the center of the sequence. Circular padding of
length 2 for a sequence: {1, 2, 3, 4, 5} on both sides gives
{4, 5, 1, 2, 3, 4, 5, 1, 2}.

3.3. Video Features

Our first feature extractor only uses the visual stream of
the WLAS architecture and hence called Watch, Attend and
Spell (WAS) model [10]. Chung et al. [10] train WLAS
model on LRS dataset [10] and fine tune it on LRW dataset
[11]. As LRS dataset [10] is not yet publicly available, we
trained our WAS model entirely on LRW dataset. WAS con-
tains two modules: a VGG-M convolution module and an
attention-based sequence to sequence LSTM module, fol-
lowed by 28 neurons with softmax non-linearity. Our out-
put sequence for a lip video clip is maximum 20 character
long, 28 dimensional(D) (A to Z, eos, padding) ground truth
(GT) word label. Using early stopping we achieve a word
accuracy of 53%.

We also employ another network ‘N3’ as described by
Stafylakis and Tzimiropoulos [36] for feature extraction.
This network is composed of three modules: A layer of
3D convolutions followed by three dense layers (fully con-
nected layers), and finally a temporal convolution layer. The
final layer has 500 neurons with softmax non-linearity. The
classification accuracy of this model is 69.7%. We will ad-
dress this model as CMT in this paper.

In both the feature extractors, the choice of features are
the softmax scores or the probabilities of a lip videos be-
longing to different words in the vocabulary, instead of
sparsely belonging to only one word. We also experimented
with the output of the last dense layer as feature represen-
tation for the input video, and found softmax scores to be
empirically better.

3.4. Overall Pipeline

In this section, we propose a pipeline for spotting words
in silent lip videos. In order to demonstrate generic nature
of our pipeline, we first train our two different feature ex-
tractors on LRW dataset. We project the query set, con-
sisting of preprocessed annotated video clips, and retrieval
set video clips which do not have any labels into the fea-
ture space. The label of the query is assigned to a particular
candidate clip in the retrieval set, only if the mean similar-
ity score of that candidate with all the same label queries



Figure 3. Overall pipeline: First a string is searched in an anno-
tated corpus to formulate an exemplar which is then preprocessed,
and projected into feature space. Target video is then segmented
into word clips, either using given time-stamp or dense segmen-
tation, preprocessed and projected in the same feature space. A
ranking is computed based on the cosine similarity between query
exemplar and the word proposal clips. Label is transferred based
on majority voting, as discussed later in Subsection 3.4

is greater than a threshold, otherwise it is assumed the can-
didate word proposal clip does not contain a full word. In
Figure 3 we show our overall pipeline.

More precisely, if qci is the feature representation of ith

query belonging to label c and rj is feature representation
of the jth word proposal clip, the similarity score between
the two is given by ncij in Equation 1.

ncij =
(qci )

T .rj
‖qci ‖ . ‖rj‖

(1)

The average similarity between all the queries qc belong-
ing to label c and the candidate rj is given by scj in the below
Equation 2.

scj =

∑
|qc|

ncij

|qc|
(2)

Finally, the label assignment for the candidate rj is c if
the mean similarity score between all the queries belonging
to label c, i.e. scj , is greater than ρ. Otherwise, we consider
the word proposal clip is either noise or does not contain the
whole word, as represented by φ.

labelrj =

{
c if scj > ρ

φ otherwise
(3)

Hence, these word proposal clips are spotted as word c
using the queries qci in the target video. We can further
use enhancements over this pipeline to improve the retrieval
performance, which we will discuss in the next section.

4. Enhancements
In this section, we discuss a query expansion technique

to search videos with semantic relevance to the given query,
followed by re-ranking method to improve ordering of top-k
results.

4.1. Query Expansion and Re-ranking

Query expansion, in image retrieval [1], has been widely
used to improve retrieval performance by increasing the
recall and obtain additional documents which might get
missed with the original query. Similar to documents, we
first feed a seed query to our retrieval system which gives
us a ranked list of all the candidates from the retrieval set.
From this set, top-k candidates are selected to construct a
new query based on the weighted sum of the query and top-
k candidates feature vectors as the pseudo-relevance feed-
back to improve the retrieval results.

Figure 4. Re-ranking using geometric cues of lip video: (a) shows
method of extracting spatio-temporal feature using lip landmarks
of each frame of the video clip; (b) shows re-ranking of top-
5 retrieved candidates based on the correlation between spatio-
temporal features of top-5 candidates and that of the query.

Re-ranking is used to improve the ranking of top retrieval
results for a given query. Some of the prominent re-ranking
method [15, 38] relies on geometrical consistency between
query and its top retrieval candidates. Fergus et al. [15]
uses RANSAC [18] to re-rank top results from Google Im-
age search engine. Unlike images, lip videos are tempo-
ral in nature with each word consisting of a specific set of
phonemes. To adapt such a method for lip videos, we ex-
tract spatio-temporal features. Out of total 68 facial land-
marks [31], we first compute the distance between all the
20 landmarks associated with lip and the lip-central land-
mark (landmark no. 63), as shown by ‘red’ color landmark
in Figure 4(a). Both landmark no. 63 and 67, being in the
center, are clearly visible for different head poses and hence
can be chosen for computing distances. However, on an av-
erage, the motion of the upper lip is lesser than the lower lip
for most of the word utterances, makes landmark 63 more
stable and a better choice.

This geometric feature extraction results in a 20D spatial
feature for each frame, or 20×29D spatio-temporal feature
for the video clip. We then re-rank our candidate using their
temporal lip landmark correlation with the query lip video,



as shown in Figure 4(b). Using recognition-free retrieval
top-k candidates are selected for a given query. Spatio-
temporal features for both top-k candidates and query are
extracted. The correlation of landmark of the lip region of
these top-k candidates with the query is computed, the re-
ranking is done in the order of decreasing correlation.

5. Experiments
5.1. Datasets

Lipreading in Wild (LRW) [11] has 500 words classes
with 1000 clips for training, 50 for testing, and 50 for vali-
dation for each of the words, which has been curated from
BBC news videos. Each word clip is of length 1.16 second
duration containing 29 frames. We use the LRW to train
both feature extractors. The proposed retrieval pipeline only
uses the test set for querying and validation set for retrieval,
since training set has been used to train feature extractors.

Figure 5. Random frames from LRW dataset (top row), GRID cor-
pus (middle row) and Charlie Chaplin “The great dictator” speech
video (bottom row).

GRID corpus [13] contains 1000 phrases, spoken by
each of 33 speakers. Each phrase has a fixed syntax contain-
ing 6 words: command(4)+ color(4)+preposition(4)+
letter(25) + digit(10) + adverb(4); an example of which
is ‘put red at G 9 now’. We use speakers 10-19, similar to
[39], in our experiment. For showing domain invariance,
we randomly sample 1000 phrases from these speakers to
create our query set. Similarly, we sample another 1000
phrases from the same speakers to create our retrieval set.
All the speech videos are word segmented and preprocessed
before feeding to feature extractors.

For qualitative results we show lipreading on Charlie
Chaplin’s famous “The great dictator” speech video. We
only use the video, without audio cues for our experi-
ment.The video is segmented into sentence level video clips
using the timestamps provided by Youtube subtitles, which
also gives the ground truth annotations. The retrieval corpus
is made by densely segmenting these sentence videos into
word proposal clips. Randomly selected frames from these
three datasets are shown in Figure 5.

Figure 6. Word spotting in Charlie Chaplin video: (left) a query
exemplar with known annotation is preprocessed into fixed length
input and fed to the feature extractor. (right) the Charlie Chaplin
video is first densely segmented into word proposal clips and fed
to the feature extractor. All the word proposal clips and query
exemplar is projected into feature space and ranking is computed
based on cosine similarity.

5.2. Implementation

For WAS, we use the pretrained VGG-M model from
Chung and Zisserman [12], and only train attention
sequence-to-sequence LSTM module, while freezing the
weights of VGG-M module. We use the LRW training set
for training our model, with validation set used for parame-
ter tuning. The network has been trained with batch size 64,
cross-entropy loss and SGD optimizer. Initial learning rate
was set to 0.1 with a decay of 0.01% every two iterations.
No data augmentation was used.

For training CMT, we follow the similar procedure as
mentioned in Stafylakis and Tzimiropoulos [36] to train our
model end-to-end. Again the batch size of 64 was taken
with cross-entropy loss and SGD optimizer was used. Ini-
tial learning rate was set to 3e−3 with exponential decay
in learning rate when the validation loss does not decrease
for 2 epochs. We also perform data augmentation with ran-
dom cropping of 4 pixels around the lip region of interest
(ROI), and horizontally flipping all frames of randomly cho-
sen input clips. For both the networks, WAS and CMT, early
stopping was employed if validation accuracy failed to im-
prove over 3 consecutive epochs. We implement both the



networks in Keras deep learning library [9].
Word spotting on LRW dataset has been shown consid-

ering LRW test set as query set and LRW validation set as
retrieval set. Here, we want to assign label to the query
video clips, considering we know the GT label for retrieval
set. Both the query and retrieval set are first preprocessed,
as discussed in Section 3.2. Since all the video clips are 29
frames long, circular padding is not required during prepro-
cessing. After feature extraction, the query is searched in
the retrieval set, the candidate with highest cosine similar-
ity is ranked highest. To transfer word label from retrieval
set the query, we take the majority vote of top-5 candidates
in the retrieval set.

Figure 7. Formulation of new query: The weighted sum of the fea-
ture representation of seed query and its top-5 retrieved candidates
becomes the new query.

During query expansion, we first search a seed query in
the retrieval set to get top-5 candidates. The ‘New query’ is
the weighted sum of the top-5 candidates with weights 0.1
each and seed query with weight 0.5, as shown in Figure 7.
This query is then used to retrieve a new set of candidates
which becomes our final retrieval for the seed query.

For each query video coming from LRW test set, we
retrieve top-10 candidates from LRW validation set using
recognition-free retrieval. For Re-ranking, we then extract
spatio-temporal feature for both query video and its top-
10 retrieval candidates using DLib [31] and OpenCV [6]
libraries. Correlation between spatio-temporal features of
query and candidates were computed and were used to re-
rank the top-10 candidates. This method proves to be effec-
tive in refining the search results for our retrieval pipeline.

For showing word spotting in Charlie Chaplin video, as
shown in Figure 6, the sentence videos are densely seg-
mented into fixed length (29 frames) word proposal clips
by taking stride of 3 frames. We spot the words in retrieval
corpus consisting of these clips. Since the segmentation is
dense there will be very few word proposal clips which will
entirely cover actual words spoken in the video. As dis-
cussed in Section 3.4, we calculate the average similarity
score between all the query exemplars coming from LRW
validation set belonging to a particular word label and a
word proposal clip from Charlie Chaplin video. If the av-
erage similarity is more than a threshold (ρ), we assign the
word label to the word proposal clip. We empirically se-
lected the value of ρ = 0.3 for this experiment.

5.3. Baselines

We compare our pipeline with recognition-based re-
trieval. WAS [10], in the original paper, was first pretrained
on LRS dataset, and later fine-tuned on LRW dataset, gives
a word accuracy of 76.2%. Our WAS model trained solely
on LRW dataset gives the word accuracy of 53%. The
recognition-based baseline of our WAS is given in Table 1,
column 1. Another lipreader CMT, gives the word accuracy
of 69.7%. The recognition-based baseline is given in Table
1 column 3.

For GRID corpus we do not fine-tune our LRW trained
base feature extractors on GRID corpus. The recognition-
based baseline for the domain-invariance out-of-vocabulary
retrieval is shown in Table 3, column 1 and 3.

Figure 8. (a) number of words below a certain mAP for WAS and
CMT based pipeline: y-axis is the number of words, and x-axis is
the mAP; (b) variation of mean average precision (mAP) with the
length of the word for CMT and WAS based pipeline: y-axis is
average mAP and x-axis is word length in LRW vocabulary

5.4. Evaluation metric

For search based applications, the most important perfor-
mance factor is: how many good results are in the top search
results. Hence, Precision@K, which measures the precision
at fixed lower levels of retrieval results, makes sense as an
important performance metric. It considers the number of
desirable results out of the top-k retrieval results without
taking into account the overall rank ordering of the search
results.

Recall@K is another important evaluation metric that
we show, which is the number of desired results retrieved
among top-k search results, with respect to the total number
of available positive results.

While Precision@K and Recall@K give specific insights
into the performance of the retrieval system, both measure
performance for a fixed number of retrievals (K) and are in-
sensitive to the overall rank ordering of the search results.
We therefore also report the Mean Average Precision (mAP)
for our retrieval system. mAP provides a measure of the
quality of retrieval across different recall levels. mAP has
been shown to have especially good discrimination and sta-
bility, and is one of the most standard evaluation measures
for word spotting.



Figure 9. Qualitative results on LRW dataset: Each image depicts the central frame of the query video clip (left) and a sequence of lip ROIs
of 6 consecutive frames around central frame, shown in raster order (right); (middle) blue boxes are the ground truths; (bottom) green boxes
are correct predictions while the red ones are incorrect predictions. Label is propagated to a query based on the majority label present in
the top-5 retrieval candidates.

6. Results

6.1. Comparison with Baseline Methods

Recognition-free retrieval or word spotting on LRW
dataset when the base lipreader is WAS gives an absolute
improvement of 35.9% over the recognition-based baseline
of mAP 0.23; Table 1, column 2. Similarly, for recognition-
free retrieval using CMT lipreader there is an improvement
of 49.67% over the recognition-based baseline of mAP
0.38; Table 1, column 4. For recognition-free retrieval us-
ing WAS (in red) and CMT (in blue) feature extractor, Fig-
ure 8(a) shows the number of words below a certain mAP
value. The variation of average mAP with the length of the
words in the LRW vocabulary is shown in Figure 8(b). It
can be seen that the average mAP value increases with the
increase in word length. The qualitative results for word-
spotting on LRW dataset using CMT features can be seen
in Figure 9.

WAS CMT
RB (BL) RF (ours) RB (BL) RF (ours)

mAP 0.2317 0.3149 0.3807 0.5698
P@10 0.2928 0.4566 0.3253 0.6519
R@10 0.0586 0.0913 0.0651 0.1304
% imp.in mAP – 35.90 – 49.67

Table 1. Retrieval performance for LRW dataset: Left two
columns show recognition-based (RB) baseline and recognition-
free (RF) performances for WAS features; right two columns show
the similar results for CMT features. Across columns (first row)
mAP is mean average precision, (second row) P@10 is precision at
10, (third row) R@10 is recall at 10, and (last row) % imp.in mAP
is percentage mAP improvement of recognition-free retrieval over
baseline.

Query expansion on LRW dataset using two lipreaders:
WAS and CMT give a mAP of 0.3146 and 0.5722 respec-
tively; Table 2, column 2 and 5. Although the mAP re-
sults are comparative to the recognition-free method, we
see an overall increase in recall@10. Also, re-ranking using
spatio-temporal cues improves the retrieval performance for
WAS and CMT, giving a mAP of 0.3179 and 0.5709 respec-
tively; Table 2, column 3 and 6.

WAS CMT
RF QExp ReR RF QExp ReR

mAP 0.3149 0.3146 0.3179 0.5698 0.5722 0.5709
P@10 0.4566 0.4591 0.4566 0.6519 0.6572 0.6519
R@10 0.0913 0.0918 0.0913 0.1304 0.1314 0.1304

Table 2. Different recognition-free performance for LRW dataset:
Left three columns are recognition-free (RF), query expansion
(QExp) and re-ranking (ReR) performances for WAS features;
right three columns show similar results for CMT features. Across
columns (first row) mAP is mean average precision, (second row)
P@10 is precision at 10, and (last row) R@10 is recall at 10.

Charlie Chaplin “The great dictator” speech video, con-
tains 39 words from LRW vocabulary. It has a total of 54
spoken sentences, out of which 33 sentences actually con-
tains LRW vocabulary words. Hence, the query set contains
50 exemplars, from LRW validation set, belonging to each
of these 39 common vocabulary words. Using our CMT
based recognition-free pipeline we were able to correctly
spot instances of 13 instances of the common vocabulary
words in 11 sentences. Whereas on using recognition-based
pipeline, only 6 instances of common vocabulary words in
6 sentences are correctly predicted. The qualitative results
can be seen in Figure 10, where we spot the sentences which



Figure 10. Qualitative results on Charlie Chaplin “The great dictator video”: Each image is one of the frames in the sentence clips extracted
from the speech video. The top text box in blue color contains the subtitles with bold text showing the common LRW vocabulary word
present in the subtitle. The bottom text box shows the correctly spotted word.

contain the query words.

6.2. Domain Invariance

Domain Invariance provides us the robustness of the
pipeline for target data distribution different from the one
it is trained on. GRID corpus contains 51 words with only 1
common word available in LRW dataset vocabulary. Hence
this experiment also shows out-of-vocabulary retrieval per-
formance of the proposed pipeline.

On GRID corpus, the recognition-based baseline is 0.033
(mAP) for WAS features and 0.06 (mAP) for CMT features,
while the recognition-free performance is 0.068 (mAP)for
WAS and 0.177 (mAP) for CMT; Table 3, column 2. This
signifies the utility of recognition-free retrieval for out-of-
vocabulary words when the underlying lipreader is con-
strained by vocabulary size.

WAS CMT
RB (BL) RF(ours) RB (BL) RF(ours)

mAP 0.033 0.068 0.060 0.177
P@10 0.034 0.219 0.224 0.322
R@10 0.002 0.016 0.019 0.020
% imp.in mAP – 106 – 195

Table 3. Domain invariance results on Grid corpus dataset (for both
WAS and CMT): Left column has recognition-based (RB) baseline
performance and right has our recognition-free (RF) performance
where (first row) mAP is mean average precision, (second row)
P@10 is precision at 10, (third row) R@10 is recall at 10, and
(last row) % imp.in mAP is the percentage mAP improvement of
our proposed method over baseline.

6.3. Discussions

Many conclusions can be drawn from the result pre-
sented in Subsection 6.1. Recognition-free retrieval per-

formed better than recognition-based counterpart for spot-
ting words in LRW dataset. From Figure 8(b), we see that
quality of retrieval improves when the length of word in-
creases, as longer the word is more the number of phonemes
it contains, and less is the chance of it being similar to other
words. Errors in similar sounding words are more likely, as
can also be seen in Figure 9.

Performance of recognition-based retrieval on GRID
corpus is inferior to that on LRW dataset, the reason be-
ing neither of the two feature extractors in our experiments
were fine-tuned on GRID corpus. Still, the recognition-free
retrieval showed an improvement over recognition-based.
Quality of lip video is also important, as some words in
Charlie Chaplin videos were not spotted, due to lower con-
trast and quality of the lip ROI, as shown in Figure 10.

7. Conclusion

We proposed a recognition-free retrieval pipeline and
showed its precedence over recognition-based retrieval for
the task of word-spotting. The base features from WAS and
CMT lipreading models have been used to spot words in
LRW dataset with an improvement of about 36% and 50%
over the recognition-based counterpart. Pseudo-relevance
feedback and re-ranking techniques, using spatio-temporal
geometrical cues available in the lip videos, has been in-
corporated in the pipeline to further improve the retrieval
results. We also showed domain invariance of our pipeline
through out-of-vocabulary word spotting on GRID corpus
dataset with an improvement of 106% and 195% over the
baseline using WAS and CMT features respectively. Lastly,
we presented the practical applicability of our proposed
pipeline by spotting words in 11 out of 33 sentences in the
“Charlie Chaplin, The great dictator” speech video.



References
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