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Abstract— Currently two evaluation methods of super-
resolution (SR) techniques prevail: The objective Peak Signal to
Noise Ratio (PSNR) and a qualitative measure based on manual
visual inspection. Both of these methods are sub-optimal: The
latter does not scale well to large numbers of images, while
the former does not necessarily reflect the perceived visual
quality. We address these issues in this paper and propose
an evaluation method based on image classification. We show
that perceptual image quality measures like structural similarity
are not suitable for evaluation of SR methods. On the other
hand a systematic evaluation using large datasets of thousands
of real-world images provides a consistent comparison of SR
algorithms that corresponds to perceived visual quality. We
verify the success of our approach by presenting an evaluation
of three recent super-resolution algorithms on standard image
classification datasets.

I. INTRODUCTION

Super-resolution (SR) of images and video is an area of
active research that has been extensively studied [1], [2], [3],
[4], [5], [6]. Various approaches have been proposed: inter-
polation, reconstruction and learning-based methods. Among
these, the learning-based methods [2] are currently the ones
achieving highest qualities of super-resolution [3].

However, despite the wide variety of different super-
resolution methods, there has been significantly less inves-
tigation into methods for their evaluation and comparison.
One often used evaluation criterion is the manual inspection
and subjective evaluation of the visual quality of the super-
resolved images [7], [8]. This approach is labour intensive
and thus restricted to limited numbers of result images. Other
popular evaluation measures are the Peak Signal to Noise
Ratio (PSNR) and the Mean Squared Error (MSE). These are
objective measures that scale well to large numbers of images,
however, they do not necessarily correspond to perceived
visual quality.

Perceptual image quality assessment has received attention
and several measures have been proposed, such as Structural
Similarity (SSIM) [9], information theoretic [10] and wavelet-
based methods [11]. These are however reference based, i.e.
they need an undistorted, ideal version of the image as refer-
ence. Wang et al. [12] proposed an approach for no-reference
quality assessment which was tuned towards estimating the
blocky artifacts of JPEG compression. Recently there have
been two more notable approaches. Moorthy and Bovik [13]
explicitly model and attempt to classify the distortion. Another
approach uses statistics of the DCT representation of an image

to estimate its quality [14]. One common feature of these
explicit approaches is that they are more suited to estimate
image quality in the presence of severe image distortions. The
subtle differences that are present in the outputs of super-
resolution algorithms cannot be reliably estimated by these
approaches. We propose a more robust setting using an explicit
cognition-based approach towards evaluation of SR.

Furthermore, all these evaluation methods do not take into
account the differences between super-resolution and general
image enhancement, which often aims at denoising and de-
blurring. Super-resolution on the other hand aims more at
synthesizing high-resolution details which might not at all
be observable in the low-resolution image. However, there
is no inherent guarantee that a super-resolved image retains
the same semantic meaning. This is especially a problem for
the learning-based methods and the objective image quality
measures mentioned above are unlikely to detect such errors.
Hence we argue the necessity for evaluation methods on a
higher visual level. In this context we propose to utilize
image classification techniques [15], [16], which try to classify
whole objects or scenes. Lately, substantial progress for object
classification in real-world images has been shown [17]. In this
paper, we use a state-of-the-art image classification system
based on Locality-constrained Linear Coding (LLC) [18].

Our main contribution in this paper is a new systematic
and objective measure for the evaluation of super-resolution
methods. This measure does not require the ground-truth as
reference. Our evaluation suggests that the proposed method
is consistent in its ranking of super-resolution algorithms with
visual perception. We argue that using object classification
techniques based on local features closely resembles our visual
perception of image quality. The proposed method does not
only provide a relative ordering of super-resolution techniques,
but also an idea of their absolute performance. Furthermore,
the classification results provide us with a more objective mea-
sure than the manual visual inspection of example images. In
particular, it allows us to evaluate super-resolution techniques
on large collections of images, like the ones used for object
detection [17], [19], [20]. We will provide results in Section IV
that demonstrate the success of our approach.

II. LEARNING-BASED SUPER-RESOLUTION

A. Related Work

Learning-based super-resolution methods almost always
employ a database or dictionary created from corresponding



Fig. 1. Illustration of the processing pipeline for evaluation of super-resolution.

low resolution (LR) and high resolution (HR) image pairs. One
of the foremost papers written on this approach is the patch-
based work by Freeman et al. [2]. The authors propose the use
of image patch exemplars for learning the relationship between
low- and high-resolution images in a Markov Random Field
(MRF) framework. This idea has been extended by the authors
in [21] with an approximate one-pass solution to the Markov
network. A similar approach has been proposed by Baker and
Kanade [4], where low level features are recognized and the
corresponding high resolution features are hallucinated. Their
method is geared towards specific scene content, such as faces
and text. There have been further extensions to the Freeman
method, for instance by Wang et al. [22] where the authors
add mutual co-occurrence information to the model. Sun et
al. propose a gradient prior [23], learned from edge statistics
in natural images, to enforce a gradient field constraint.
Adding context to learning-based super-resolution has also
been studied recently by Sun et al. [24] and by HaCohen et
al. [25]. While the patch-based methods discussed previously
use the entire database of LR-HR image pairs, there have
been dictionary-based methods that learn a compact dictionary
from the database [5], [6]. The advantage of these dictionary
learning approaches is that they scale well with increased sizes
of the database.

B. Evaluated super-resolution algorithms

We have implemented the learning-based methods by Free-
man et al. [2] and the Locally Linear Embedding (LLE)
method by Chang et al. [5]. We compare these methods
with the recent work on sparse representation for super-
resolution by Yang et al. [6]. In the Freeman method, band-
pass filtered patches are obtained from the LR-HR database.
In the original work, the authors use a B-tree representation
to efficiently search for image patches. We have implemented
even more efficient data-structures based on adaptive Locality
Sensitive Hashing (LSH) [22] to retrieve the patches. We have
also experimentally compared MRF-based belief propagation
techniques with a simplified approach of dense patch sampling
and normalization. We have observed that the latter approach
gives equivalent results to the MRF-based approach and we
therefore adopt this approach.

Patch-based methods depend on the size of the learning
database. The approach proposed by Chang et al. [5] does

not depend on this size. In their paper the authors use the
LLE dimensionality reduction approach to obtain a mapping
between LR and HR patches. For each patch of the LR
image a set of K nearest neighbors is found in the dictionary.
K reconstruction weights are then computed that minimize
the reconstruction error for each LR patch. These weights
can be used to create a high-resolution patch, effectively
approximating the scene patch as a linear combination of
database patches, which can be described as points in the
lower-dimensional database space.

This approach has been extended by Yang et al. [6] by using
a sparsity constraint to learn a dictionary. They start from the
assumption that an efficient sparse dictionary can be created
from patch-based features, randomly sampled from natural
images. The HR patches forming the super-resolved image
are then created as a sparse linear combination of dictionary
patches.

In the next sections, we show how object classification can
be used to compare different super-resolution methods. To
show this we compare the method proposed by Freeman et al.
[2], the LLE-based method of Chang et al. [5] and the sparse
approach of Yang et al. [6]. These methods are also compared
with the results of bicubic interpolation as a reference.

III. CLASSIFICATION FOR EVALUATION

In order to perform classification we use a state-of-the-art
object classifier based on Locality-constrained Linear Coding
(LLC) [18]. This classifier improves the bag of visual words
based spatial pyramid matching method [19] for object clas-
sification. The classifier enforces explicit sparsity based on
a locality constraint that allows discriminative and computa-
tionally efficient classification. The LLC classifier has been
shown to perform well on all challenging object classification
datasets. The pipeline for classification involves a) computing
of dense SIFT features [26] at a fixed scale for all images,
b) computing a visual vocabulary from the features of the
training images, c) obtaining a locality-constrained linear
coding for the SIFT features by projecting them onto the visual
vocabulary, d) obtaining a multi-scale spatial max pooling for
the features of an image and e) classifying them with support
vector machines. While in the original paper the authors use
a linear kernel, in our implementation, we use a histogram
intersection kernel [19] that shows better accuracy.



Method NR-JPG Classification NR-JPG Classification
15-scene 15-scene TU Graz TU Graz

Original 9.0463 82.28% 10.6007 88.39%
Bicubic 9.3740 82.68% 11.1791 86.84%

LLE 8.0843 82.78% 10.8031 86.99%
Sparse 7.9211 83.25% 11.0221 86.69%

Freeman 10.3684 83.58% 11.5159 87.62%

TABLE I
CLASSIFICATION ACCURACY AND NR-JPG SCORE FOR UPSAMPLING

WITH MAGNIFICATION FACTOR 3×.

The procedure for the proposed evaluation of super-
resolution using classification is illustrated in Fig. 1. The ap-
proach entails learning-based super-resolution of image classi-
fication datasets followed by classification. The database used
for learning-based super-resolution is the one used by Yang et
al. [6] which is a general collection of natural images. None of
these images are included in the image classification datasets.
This enables us to study a general model for super-resolution
rather than being tuned towards specific applications like face
recognition or text analysis. The evaluation is done on standard
image classification datasets by using the procedure described
above. The super-resolved images are split into training and
testing subsets. For each of these sets the same support vector
machine parameters are used. The evaluation measure used is
the average classification accuracy per class for the multi-class
classification of the test dataset. Higher classification accuracy
is obtained when the local features semantically capture the
class content reliably. This corresponds to the required goal
of evaluation of super-resolution based on visual perception.

IV. EXPERIMENTS

We test the different super-resolution methods on two popu-
lar image datasets. The first is the 15-scene category database
by Lazebnik et al. [19]. The dataset consists of fifteen widely
varying scene categories, including bedroom scenes, industrial
areas, city scenes and mountains, containing a total of 4485
images. The second database is the TU Graz image database
compiled by Opelt and Pinz [20], containing three classes:
bikes, cars and people. This dataset contains a total of 1096
images.

In Table I, we present the results for both datasets. We
compare our results to the no-reference JPEG (NR-JPG)
quality measure [12]. All images are upsampled by a factor
of 3 using each of the three super-resolution algorithms. We
additionally provide results for the original low-resolution
image and bicubic interpolation. We use these results as an
input for the classifier. In the case of the 15-scene category
dataset, we train on 100 images for each scene category and
test on the rest, resulting in 1500 training images and 2985
test images. We use the same approach for the TU Graz
dataset. The average classification accuracy for these images
is shown in Table I. The classification evaluation results are
always consistent with perceived visual quality and in the
ranking of super-resolution algorithms, while the NR-JPG

Fig. 2. Some cropped examples from the 15-scene dataset (top) and the
TU Graz dataset (bottom). The columns show different methods ordered by
perceived visual quality (left-right): bicubic, LLE, sparse, Freeman.

method is not. An interesting observation is that the NR-JPG
method perceives bicubic interpolation as being better than
the super-resolution algorithms. However, visually the super-
resolution algorithms clearly perform better. All tested super-
resolution algorithms give increased accuracy in classification
with respect to the original images and bicubic interpolation
for the 15-scene category dataset. For the TU Graz dataset,
the classification does not improve over the original, but does
improve over bicubic interpolation. This can be explained by
considering that we use a fixed scale for the local features
for the two datasets. However, the scale of the underlying
scene features for TU Graz is already large, so the 3× zoom
makes the extracted features less useful for the classifier.
The modification of the scale of features is interesting but
not considered in the scope of the present work. Among the
various algorithms, the method by Freeman et al. gives the best
improvement in classification accuracy. This observation can
be verified through visual inspection of the resulting images.
We have included some examples in Fig. 2. These are cropped
parts of images from both datasets. Additional results of each
super-resolution algorithm for all dataset classes can be found
on our website1.

An alternative way in which classification can be used is by
downsampling the original image and upsampling it with the
various super-resolution algorithms. This allows a comparison
between the standard evaluation methods of PSNR, SSIM and
our proposed method of using the classification accuracy. As
the sparse representation method requires a computationally
very expensive retraining of the dictionary, this comparison has
been done only for the method of Freeman, the LLE method
and the bicubic algorithm. The evaluation allows us to compare
the visual accuracy with both the reference and no-reference
methods and the classification accuracy. The results are shown
in Table II. The comparison demonstrates the drawbacks of
common image quality measures for evaluation of super-
resolution. These measures are inconsistent in the ranking of
super-resolution algorithms. For instance, PSNR considers the
Freeman method to be better than bicubic interpolation for the
15-scene dataset, however, it considers vice-versa for the TU

1http://homes.esat.kuleuven.be/∼vdesmet/sr eval/



Method PSNR SSIM NR-JPG Classification PSNR SSIM NR-JPG Classification
15-scene 15-scene 15-scene 15-scene TU Graz TU Graz TU Graz TU Graz

Original - - 9.0463 82.28% - - 10.6007 88.39%
Downsampled - - 9.5529 76.52% - - 10.6459 86.99%

Bicubic 26.36 0.8701 9.7522 81.04% 29.75 0.9491 10.8327 86.99%
LLE 25.92 0.8535 9.4349 81.57% 28.33 0.9404 10.4041 87.62%

Freeman 27.17 0.8560 9.9730 82.24% 28.36 0.9394 10.4656 87.62%

TABLE II
A COMPARISON OF IMAGE QUALITY MEASURES WITH THE PROPOSED METHOD WHEN THE IMAGES ARE FIRST DOWNSAMPLED BEFORE BEING

SUPER-RESOLVED TO THEIR ORIGINAL SIZE. THE MAGNIFICATION FACTOR IS 2×.

Graz dataset. Similarly, SSIM considers the Freeman method
to be better than LLE for the 15-scene dataset, but the opposite
for the TU-Graz dataset. The ranking of the super-resolution
algorithms are also not consistent with visual perception. This
was reported by Reibman et al. [7] as well, where they
opted for subjective measures. The proposed classification
method provides a consistent, perceptual objective measure
for comparison of super-resolution algorithms. An additional
observation is that the classification measure of the Freeman
algorithm differs only by 0.04% from the original images. This
provides an objective measure of perceptual proximity of the
super-resolved results to the original high-resolution images.

V. CONCLUSION

In this paper we propose a new way to systematically
evaluate super-resolution algorithms. We achieve this by first
super-resolving standard image classification datasets and then
classifying them with a state-of-the-art classification algo-
rithm. The use of distinctive local features during classification
ensures closer correspondence with perceptual visual quality.
This provides us with a consistent objective measure better
suited for evaluating super-resolution than widely used image
quality measures like PSNR and SSIM and no-reference tech-
niques like NR-JPG. The proposed evaluation scheme works
on a much larger scale than manual visual inspection. The
resulting image quality evaluation is therefore an apt measure
of the performance of a super-resolution algorithm.
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