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Abstract. Domain adaptation has been understood and adopted in vi-
sion. Recently with the advent of deep learning there are a number of
techniques that propose methods for deep learning based domain adapta-
tion. However, the methods proposed have been used for adapting object
classification techniques. In this paper, we solve for domain adaptation
of object detection that is more commonly used. We adapt deep adapta-
tion techniques for the Faster R-CNN framework. The techniques that we
adapt are the recent techniques based on Gradient Reversal and Maximum
Mean Discrepancy (MMD) reduction based techniques. Among them we
show that the MK-MMD based method when used appropriately provides
the best results. We analyze our model with standard real world settings
by using Pascal VOC as source and MS-COCO as target and show a gain
of 2.5 mAP at IoU of 0.5 over a source only trained model. We show that
this improvement is statistically significant.

1 Introduction

Deep convolutional architectures currently dominate in solving most visual do-
main problems, but they too suffer from dataset bias. Domain adaptation is
required to make these models work for other domains.

The problem of domain adaptation is that we have a source domain dataset
which is labelled and our model is trained on this dataset. We have another
domain called target , which has a different data distribution, hence the model
performance decreases due the dataset bias. If we have labelled target dataset,
then we can simply finetune our networks on this new target dataset. But it is
often the case that we might not have enough labelled data in the target domain
and also finetuning is costly. So we require an unsupervised approach to our
problem. We only assume that target dataset has the same categories as the
source dataset.

Unsupervised domain adaptation in visual domain has been studied mostly
in light of object recognition but very less work has been done in terms of object
detection. The problem of object detection is a harder problem , where we
have to localize the object in the image and classify it as well. We give a deep
adaptation pipeline for object detection in this paper. To fix the dataset bias we
look into methods that help deep networks regularize. We formulate our training
objective to provide us with domain invariance, i.e., the features are more generic
in nature, so we avoid dataset bias. In this paper we apply methods by [1, 2] to
Faster R-CNN[3] in order to regularize the training.



2 Related Work

Most of the work on unsupervised domain adaptation can be categorized into
shallow and deep domain adaptation methods. A recent report by Gabriela [4]
surveys extensively in methods of domain adaptation in visual domain.

Shallow methods rely on pre-extracted features and try to align or re-weight
these features for adaptation. It has been shown that without adaptation Deep
Convolutional Activation Features (DeCAF) [5] generalize very well and beat
these methods based on shallow features by a large margin. The shallow meth-
ods have been attempted to be applied on these DeCAF features but the gain
achieved is far lower than on shallow features as seen in [5]. So focus has been
shifted to more promising deep domain adaptation methods.

Our work is based on [6] which is based on Maximum Mean Discrepancy(MMD).
They use the Krizhevsky architecture as base CNN model and find out which
layers contribute to maximum discrepancy in the source and target datasets,
which is the final fully connected layer (fc7). Then they place a discrepancy
loss (MMD loss) with a notion of regularizing the weights such that outliers of
source distribution have minimum effect on the learned representation in turn
reducing the domain shift. [7] use multi-kernel Maximum Mean Discrepancy
(MK-MMD). They use a sum of MK-MMD defined at several layers to minimize
the domain shift in the learned representation.

In contrast to above method, [1] add a domain classifier which tries to predict
the domain of the image. Both source and target domain images are fed and they
try to maximize the domain loss and which in turn provides feature invariance.
[8] also use a adversarial training where they use inverted labels to train the
discriminator, as it provides stronger gradients. The major contrast to other
methods is [8] which considers separate embeddings for source and target space.

Clearly we see a focus of domain adaptation methods to be applied on object
recognition problem. There has been significantly low amount of work in adapt-
ing the detectors which are much more useful in real world scenario. We do see
[9] , who apply the Subspace alignment on RCNNs, but they do not leverage the
full power of deep Convolutional Neural Networks (CNNs).

3 Deep Adaptation

We try to define briefly the methods used by us to augment the CNNs for
adaptation purposes.

Maximum Mean Discrepancy : Let xs ∈ Xs be source data points de-
fined by distribution p and xt ∈ Xt be target data points defined by distribution
q. MMD metric and its empirical estimate can be defined as

MMD[F , Xs, Xt] = sup
f∈F

(
1

|Xs|
∑

xs∈Xs

fp(xs)−
1

|Xt|
∑

xt∈Xt

fq(xt)

)
(1)

Gradient Reversal : The model can be decomposed into 3 components.
The first component feature extractor (Gf ) maps the input x into a feature



space f ∈ RD . This component can be denoted by Gf (x; θf ) where θf are
component parameters to be learned. The next component classifier predicts
the label y, it is denoted by Gy(f ; θy) where θy are component parameters to be
learned. The domain classifier predicts the domain label d denoted by Gd(f ; θd),
parameterized by θd. The model is shown in Figure 1.

We want to minimize classification loss on source and make the feature do-
main invariant at the same time. This is done by minimizing loss of label predic-
tion along with maximizing the loss of domain classifier. The objective function
is as follows :

E(θf , θy, θd) =
∑

i=1..N,di=0

Ly(Gy(Gf (xi; θf ); θy), yi)−

λ
∑

i=1..N

Ld(Gd(Gf (xi; θf ); θd), di)

=
∑

i=1..N,di=0

Li
y(θf , θy)−

∑
i=1..N,di=0

Li
y(θf , θd)

(2)

Here Ly(., .) and Ly(., .) are classification and domain loss respectively.

4 Experiments

We use two popular datasets used in object detection for purpose of domain
adaptation. We mainly use PASCAL Visual Object Classes (VOC) [10] 2007
dataset as source dataset which has 20 object categories. We use microsoft’s
Common Objects in Context (COCO) [11] dataset as the target dataset. The
COCO dataset has 80 categories, with 20 categories common with VOC. We
only use the subset of COCO which has common categories of VOC. We call
this dataset as minicoco for further reference.

The datasets are similar, where COCO dataset being the harder and larger
of the two datasets. The VOC07 has about 9,963 images in the training set and
minicoco has 66,843 images in the training set. The minicoco validation set has
32,467 images.

4.1 Adaptation Networks

CNN architecture : One of the implementation of siamese networks generally
work by merging the source and target as a single batch and perform the shared
computations, making it computationally efficient. Unlike other object recogni-
tion networks ,Faster R-CNNs have a batch size of 1 and are unconstrained on
image size, which allows scale invariance in Faster R-CNNs. As with domain
adaptation the image size of source and target may likely differ. To preserve
the property of Faster R-CNNs we go for an architectural choice of two parallel
networks with shared weights.

Gradient Reversal : We augment the above generic siamese CNN archi-
tecture with a domain classifier.The domain classifier is a three layered fully
connected network with last layer predicting the output domain. Input to the



Fig. 1: Left MMD Augmented Faster R-CNN ,Right Gradient Reversal Aug-
mented Faster R-CNN

domain classifier is the fixed size feature representations from fc7 layer of each
proposal. For domain loss we use a standard sigmoid cross-entropy loss. Like
[1] we also suppress the initial noisy predictions of domain classifier using a
adaptation term λp using following formula :

λp =
1

1 + exp(−γ ∗ p)
− 1 (3)

Where γ is set to 10 for all experiments an p is progress term. The loss
weight is set to 0.1 for all experiments. We also observe that the domain loss
after a point overweighs the classification objective. To find an optimal point
we use a small validation set of the target dataset.

Maximum Mean Discrepancy : To generic siamese architecture we add
the mmd loss layer at the fully connected layers. We initialize the network with
weights of source only trained model. The MMD layer works in O((m+n)2) time
but also takes O((m+ n)2) space for parallel compution of the kernel function.
This limits the number of proposals to be used to train the fast-rcnn part of the
network. We go for 300 proposals for each source and target image, which fit the
memory. We also look for the choice of mmd loss layer placement. If applied
to the RPN output layer, which acts as a feature layer for RPN, we get the
best results, In contrast to [6, 7] which state best improvement at fc6 and fc7.
For the multi-kernel version all experiments use a combination of five Gaussian
kernels. The loss weight is set to 0.1.

5 Results

Contrary to Pascal VOC challenge where IoU overlap of .5 is fixed, we use metric
specified in MSCOCO challenge where AP is measured at 10 IoU thresholds of
[.05:.95]. Averaging over IoUs rewards detectors with better localization. We
can see that MMD when done at rpn features gives the best results.

Data Augmentation Strategy: We follow the data augmentation sug-
gested in [12]. We show the affect of data augmentation strategy on source only



trained models as well as other domain adaptation methods. The data augmen-
tation provides a level of color invariance , which can be very useful in providing
domain invariant features. Table 1 we can see a average boost of 0.9 mAP at
IoU of 0.5 and a boost of 0.5 at COCO metric of IoU at [.5:.95].

Methods
Without Data Augmentation With Data Augmentation
IoU:.5 IoU:[.5:.95] IoU:.5 IoU:[.5:.95]

Source Only 34.95 16.10 35.37 16.44
GRL 35.38 16.52 36.30 17.10
MMDfc6 35.51 17.01 36.36 17.45
MMDfc7 35.44 16.99 36.17 17.36
MKMMDfc6 35.28 16.92 36.20 17.38
MKMMDfc7 35.24 16.74 36.08 17.15
MMDRPN 36.46 17.15 37.35 17.55
Target Only 46.01 22.40 46.91 22.90

Table 1: Summary of mAP of all methods

Impact on Region Proposal Network : To test the impact on RPNs we
use recall to IoU curve as suggested by [13]. In Figure 2, we show the results of
using 2000 region proposals per RPN. We can see that at lower IoU the recall
of adaptation methods are higher which decreases at higher IoU.

Fig. 2: Recall to IoU on COCO validation set

Statistical Significance of Results : We want to establish the statisti-
cal significance of our pipeline for domain adaptation on Faster R-CNNs. We
determine that whether any domain adaptation done is significant enough over
source only trained models. Our analysis is based on the methods proposed in
by [14] , specifically using the Friedman test with Nemenyi post hoc analysis.

References

[1] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised domain adaptation by backprop-
agation. In ICML, 2015.

[2] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer
across domains and tasks. In International Conference in Computer Vision (ICCV),
2015.



Fig. 3: Analysis of statistically significant difference in the domain adaption
methods and Source only trained method , with a significance level of 0.05. The
mean rank is plotted on x-axis. The CD calculated as 0.43 and we can see all
the methods are way outside the CD , so are statistically significant over source
only trained model. We can see MMD is statistically significantly over GRL

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in Neural Information
Processing Systems (NIPS), 2015.

[4] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey.
CoRR, abs/1702.05374, 2017.

[5] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual
Recognition. CoRR, abs/1310.1531, 2013.

[6] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain
confusion: Maximizing for domain invariance. CoRR, abs/1412.3474, 2014.

[7] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable
features with deep adaptation networks. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15, pages
97–105. JMLR.org, 2015.

[8] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Adversarial discriminative
domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2017.

[9] Anant Raj, Vinay P. Namboodiri, and Tinne Tuytelaars. Subspace alignment based
domain adaptation for rcnn detector. In Mark W. Jones Xianghua Xie and Gary K. L.
Tam, editors, Proceedings of the British Machine Vision Conference (BMVC), pages
166.1–166.11. BMVA Press, September 2015.

[10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338, 2010.

[11] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Mi-
crosoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[12] Andrew G. Howard. Some improvements on deep convolutional neural network based
image classification. CoRR, abs/1312.5402, 2013.

[13] Jan Hendrik Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. What makes
for effective detection proposals? CoRR, abs/1502.05082, 2015.
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