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Abstract. We propose the use of super-resolution techniques to aid vi-
sualization while carrying out minimally invasive surgical procedures.
These procedures are performed using small endoscopic cameras, which
inherently have limited imaging resolution. The use of higher-end cam-
eras is technologically challenging and currently not yet cost effective.
A promising alternative is to consider improving the resolution by post-
processing the acquired images through the use of currently prevalent
super-resolution techniques. In this paper we analyse the different method-
ologies that have been proposed for super-resolution and provide a com-
prehensive evaluation of the most significant algorithms. The methods
are evaluated using challenging in-vivo real world medical datasets. We
suggest that the use of a learning-based super-resolution algorithm com-
bined with an edge-directed approach would be most suited for this ap-
plication.
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1 Introduction

The use of video cameras in medical procedures has introduced a wide range of
techniques for minimally invasive diagnosis and surgery (MIS) like laparoscopy
and thoracoscopy, or more generally endoscopy, to modern medicine. These pro-
cedures, also referred to as keyhole surgery, allow a surgeon to make only a small
incision through which a camera can be inserted. The surgeon can then perform
the operation or diagnosis based on a video feed which is displayed on a monitor
in the operating room. The cameras used for these procedures typically record in
a relatively low resolution, making the magnified video on the display look blurry
and making it hard for the surgeon to distinguish some details such as smaller
veins. Imaging techniques like super-resolution (SR) [11] can offer a significant
visual improvement in cases like these. Super-resolution is a term used to refer
to image interpolation techniques which try to recover as much missing detail
as possible, while often also reducing noise artifacts. In this paper we introduce
both classical and state-of-the-art SR techniques to the field of medical imaging
for minimally invasive surgery, and provide a comprehensive evaluation of these
methods. Related research has been done by Greenspan [8], who describes the
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application of classical reconstruction-based SR algorithms to different medical
imaging modalities: magnetic resonance imaging (MRI), functional MRI (fMRI)
and positron emission tomography (PET). Kouam and Ploquin [9] present a
super-resolution algorithm for ultra-sound images based on the analysis of the
point spread function. Robinson et al. [12] explore specialized reconstruction-
based methods on applications in the area of X-ray digital mammography and
optical coherence tomography (OCT). The use of SR for minimally invasive sur-
gical applications has been touched upon by Lerotic and Yang [10], who apply an
SR method called Projection Onto Convex Sets (POCS) in order to investigate
the use of fixational movements for robotic assisted MIS. The use of SR, while
promising, also has its inherent challenges that need to be specifically addressed.
In this paper we advocate the use of SR for endoscopy and consider the issues
involved therein.

2 Super-Resolution Methods

We start by briefly describing the different classes and the specific algorithms
that we use for our evaluation of super-resolution in the context of minimally
invasive surgical procedures. The selection of methods encompasses most of the
currently prevalent techniques for super-resolving images.

2.1 Edge-Directed Interpolation

One class of super-resolution algorithms, commonly referred to as interpolation
methods, relies on techniques for improved interpolation beyond the basic bicubic
interpolation. These methods are based on the idea that interpolation of images
by focusing on reducing the blurring of edges results in visually pleasing results.
We explore two methods that focus on improved interpolation of edges.

Gradient Profile Prior Sun et al. [15] propose an approach to explicitly ensure
the sharpness of gradients in super-resolution by using a Gradient Profile Prior
(GPP). The authors model the distribution of gradient profiles in an image as a
Generalized Gaussian Distribution (GGD), which depends on a shape parameter
λ and a sharpness parameter σ. By examining 1 million gradient profiles from
1000 natural images they show that a λ value of 1.6 gives a good estimate for
the shape of the GDD for natural images, independent of the image resolution.
The value of σ for the GGD that models the low-resolution gradient profiles is
estimated from the gradient profiles in the upsampled version of the input image.
The σ for the high-resolution GGD is estimated based on the σ for low-resolution,
or it can be estimated from the input image, as done in [16]. Each pixel of the
upsampled input image is associated with its nearest gradient maximum. Its
gradient intensity is then multiplied by the ratio of the high-resolution and low-
resolution GGDs, resulting in sharper edges across the image. This procedure
is fast and can be applied independently at each pixel and is therefore easily
parallelizable.
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Total Variation Regularization An approach proposed by Chatterjee et al.
[3] considers the use of total variation (TV) regularization combined with spec-
tral and spatial data fitting constraints. The use of regularization is required to
address the under-constrained nature of the SR problem. This regularization is
performed in a TV framework by including constraints for minimizing the sum
of the L1 norm of the gradient over the whole image. This constraint preserves
edges while keeping noise to a minimum. The use of spatial data-fitting con-
straints with TV alone does not suffice in preserving textures. In [3], the authors
use an additional spectral data constraint to solve this problem.

2.2 Reconstruction-Based SR

When multiple degraded observations are available, i.e. frames of a video se-
quence, reconstruction-based super-resolution methods can be used. These meth-
ods are based on the idea that each of the frames in a sequence, when interpo-
lated and registered to the first frame with sub-pixel accuracy, can bring extra
information about the scene. A backprojection constraint prevents the result
from straying too far from the input when blurred and downsampled back to
its original resolution. This constraint is usually accompanied by a smoothness
prior, which enforces the smoothness inherent to natural images. These priors
are needed because of the under-determined nature of this inverse problem. The
reconstruction-based super-resolution problem is usually solved as a maximum
likelihood estimation (MLE) or a maximum a posteriori (MAP) estimation [1].

For our application the most challenging step is the registration of the dif-
ferent frames. The related reconstruction-based works have been demonstrated
to work on data with relatively straightforward motion, where global transfor-
mations suffice to model the movement. When dealing with the type of video
sequences acquired from endoscopic surgery, these models fail to capture the
inter-frame movement of the scene. The highly non-rigid transformations of in-
ternal tissue and organs, independent on each other and the rest of the scene,
requires a more complex transformation model. In order to model these move-
ments we opt to work with an optical flow registration algorithm here. Our
implementation is based on the work by Fransens et al. [5]. They use a Bayesian
framework to solve the super-resolution problem in a MAP sense. The inversion
process, in which the super-resolved image is estimated, is interleaved with the
computation of a dense optical flow field. Possible occlusions are handled with
a visibility map, which is optimized in an expectation-maximization process.

2.3 Learning-Based SR

Learning-based SR methods try to learn the correlation between low-resolution
and high-resolution details, based on a set of example images. This image database
is constructed from low-resolution/high-resolution image pairs, created by blur-
ring and downsampling a high-resolution image to create the low-resolution coun-
terpart. One of the foremost papers using this approach is the work by Freeman
et al. [6]. We give an overview of this method and a related method by Chang
et al., based on Locally-Linear Embedding (LLE) [2] in this section.
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Exemplar-Based Learning Freeman et al. [6] propose the use of correspond-
ing LR-HR image patches from a database as exemplars for super-resolution.
Their method divides the images into small patches, which then function as
nodes in a Markov Random Field (MRF). For each patch of an input image a
match is found in the database, after which the corresponding high-resolution
patch is taken from the database and used as a candidate in the MRF. The arcs
between high- and low-resolution nodes represent a data compatibility function,
while the arcs between high-resolution nodes can be interpreted as a continu-
ity function. The data compatibility function is obtained by finding k-nearest
neighbors for each low-resolution input patch and calculating their distance. The
continuity function between neighboring high-resolution patches is obtained by
evaluating the overlap between the high-resolution candidates. The MRF is then
optimized by minimizing the weighted sum of these two cost functions using be-
lief propagation.

In our implementation of this method we use patch sizes of 7×7. To find the
k-nearest neighbors we use the Adaptive Locality-Sensitive Hashing method as
proposed by Wang et al. [17]. Instead of using the patch-based continuity crite-
rion in belief propagation, we use denser patch sampling where each pixel in the
input image is used as the center for a patch. We find the nearest neighbor for
each patch and the corresponding high-resolution patch is directly used in the
result image. We average the contribution from all overlapping patches for each
pixel in the high-resolution domain. This modification achieves results which are
comparable to those attained when using belief propagation and allows the algo-
rithm to be parallelized and executed much faster. While this method requires
a database of images, we choose to use only the LR input image as a database.
This ensures that we avoid hallucination effects due to spurious matches in a
huge database. This concept of single image learning has been confirmed recently
by Glassner et al. [7].

Neighborhood Embedding of Exemplars The computation time and per-
ceptual quality of results of patch-based methods depends on the size of the
learning database. The approach proposed by Chang et al. [2] does not depend
on this size. Their approach involves learning a compact dictionary of LR-HR
patches using a clustering algorithm from the database. For each patch of the
LR image a set of k-nearest neighbors is found in the dictionary. k reconstruc-
tion weights that minimize the reconstruction error of each LR patch are then
obtained using the LLE dimensionality reduction approach [13]. The authors
postulate that these weights can be used to also obtain the corresponding HR
patch by combining the related k HR patches from the dictionary. This is done
for each patch with a large overlap between patches for regularization. In our
implementation we learn the dictionary from the LR input image itself.

2.4 Combining Edge-Directed And Learning-Based SR

A recent method by Tai et al. [16] proposes a combination of the GPP method
with the exemplar-based learning method. The authors observe that while the
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GPP method enhances the edges, the textures are not suitably enhanced by
this method. Therefore, they propose a technique in which the texture is also
enhanced by using a single exemplar image. The combination is done using a
simple way that ensures that the details are maximally enhanced. This is done
by noting that the gradient profile prior does not enhance the texture suitably
but does enhance the edges more than the exemplar technique alone. Therefore
a combination of the maximal gradient from the exemplar and gradient profile
prior technique ensures that both sharp edges and visually pleasing textures
are obtained. A back-projection constraint ensures that the result is true to
the original input image. The authors have provided a partial implementation of
their method which we have fully implemented and evaluated for the application
described in this paper.

3 Evaluation

We evaluate the techniques discussed in the previous section on several laparo-
scopic/endoscopic datasets, and on a cardiovascular scene. We present visual
results for a limited set of examples in the paper. Further visual results are
available at our website3. We also provide quantitative results for the various
datasets in subsection 3.4.

3.1 In-vivo Porcine Liver

The results for the various super-resolution techniques applied on an image of an
in-vivo laparoscopic procedure on a porcine liver are shown in Fig. 1. The results
are shown for a 2× upsampling of the original image. The original image has
textured regions as well as smooth regions with veins as can be seen in Fig. 1(a).
We have processed this image with several techniques which use only this image
as input. Only the multiframe optical flow-based SR method, discussed in sub-
section 2.2, uses several (10) frames from the original video. The dataset is drawn
from the “VIP Laparoscopic / Endoscopic Video Dataset”4 [14]. For each result
we show a closer zoom of a part of the image for clearer comparison between
the various super-resolution algorithms. As can be seen from the results, the TV
method adds some slight sharpness to the edges. The GPP method shows more
sharpening, but also enhances noise/artefacts, resulting in a sharper but slightly
noisier result. The learning-based methods (Freeman and LLE) hallucinate more
well-defined edges but, because their image database consists only of the LR in-
put image, also hallucinate small scale texture from the noise. This is slightly
more noticable in the Freeman result because the LLE-based algorithm uses a
linear combination of patches rather than the actual database patches them-
selves. Freeman’s algorithm on the other hand shows slightly sharper edges,
because its resulting patches are not smoothed by the averaging that occurs

3 http://homes.esat.kuleuven.be/~vdesmet/endoscopy/
4 http://www.doc.ic.ac.uk/~pmountne/vision/

http://homes.esat.kuleuven.be/~vdesmet/endoscopy/
http://www.doc.ic.ac.uk/~pmountne/vision/
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when using a linear combination of patches. The combination algorithm joins
the advantages of the GPP and Freeman algorithms, and adds the most detail.
The reconstruction-based result gives a slight sharpening, albeit not as much as
the learning-based methods. An interesting feature of this result is that it addi-
tionally performs a denoising, because its result is created from multiple images.
It needs to be noted however that the movement between video frames in this
example consisted mainly of the textured region in the upper half of the image
and the region in the lower half moving independently of each other. Thus the
registration of the frames with optical flow works relatively well here. Larger and
more complex movements can lead to failed registration and thus very unreliable
results, as will be shown in subsection 3.3.

(a) Original input. (b) Pixel Replication. (c) Optical flow based result.

(d) Bicubic result. (e) Total Variation result. (f) GPP result.

(g) Freeman result. (h) LLE result. (i) Freeman + GPP result.

Fig. 1. Results for in-vivo porcine liver.

3.2 In-vivo Porcine Cardiac Surface

A second example from the same video dataset collection is shown in Fig. 2. This
example is taken from an in-vivo laparoscopic procedure exploring a porcine
cardiac surface. Again a 2× upsampling factor was used. Similar conclusions can
be drawn here, the combined edge- and exemplar-based technique results in the
sharpest image with a clear contrast at the edges. Note here that in the bicubic
and the edge-directed results the lower veins in the zoomed in part of the image
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could be mistaken for a single vein, while the learning-based results make the
distinction clearer. Again the reconstruction-based algorithm also gives a sharp
result with high fidelity to the scene (using 10 inputframes). The movement in
this example consisted of the beating of the cardiac surface, which is modelled
well by the optical flow algorithm.

(a) Original input. (b) Pixel Replication. (c) Optical flow based result.

(d) Bicubic result. (e) Total Variation result. (f) GPP result.

(g) Freeman result. (h) LLE result. (i) Freeman + GPP result.

Fig. 2. Results for in-vivo porcine cardiac surface.

3.3 In-vivo Human Cardiovascular Procedure

The previous examples showed results for laparoscopic procedures. In order to
show that the super-resolution techniques do not limit themselves to laparoscopic
and endoscopic data, we show results for a cardiovascular scene. The original
image can be seen in Fig. 3(a) and the results for the various techniques are shown
in Fig. 3(b-g). An immediately observable fact is that the reconstruction-based
method performs poorly on this kind of dataset, even though it has more data
available (12 frames) than the other techniques. The reason is that this dataset
has very complex deformable motion with non-uniform and variable texture
information in the scenes. There is also more movement than in the previous
examples. Therefore, the accurate sub-pixel registration that is required for the
multiframe methods to work is not available. The other methods perform well.
The edge-based methods preserve the strong edges as can be seen in the zoomed
in view Fig 3(e-f). However, results from the learning-based methods shown
in Fig. 3(g-h) show more improvement due to the introduction of more high-
frequency information. The combined edge- and learning-based method performs
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similarly well and has slightly stronger edges than the learning-based method
alone.

(a) Original input. (b) Pixel Replication. (c) Optical flow based result.

(d) Bicubic result. (e) Total Variation result. (f) GPP result.

(g) Freeman result. (h) LLE result. (i) Freeman + GPP result.

Fig. 3. Results for in-vivo human cardiovascular procedure.

3.4 Quantitative Results

We obtain quantitative results using Peak Signal to Noise Ratio (PSNR) by
downsampling the input images by a factor of two and then upsampling them
using the various techniques presented in section 2. The results are provided in
table 1. The quantitative results however do not correspond well to the perceived
visual quality of the results. For instance, the bicubic interpolation method,
which generates substantial blurring, provides the highest PSNR result. This
disconnect between PSNR and perceived visual quality is well known and has
been explored by Eskicioglu and Fisher [4]. While PSNR when used for mea-
suring substantial noise does provide quantitative results that correspond to
visual quality, this metric does not suit the comparison of improvements that
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are obtained using super-resolution algorithms. We are currently investigating
appropriate metrics that can be used for evaluating super-resolution algorithms.

Method Porcine Liver Porcine Cardiac Surface Human Cardiovascular

Bicubic 36.2205 38.7317 27.6883
TV 31.4599 31.3720 23.2105
LLE 33.0907 33.7748 25.3247

Freeman 33.3718 35.7921 27.2585
GPP 34.4335 35.0422 25.9193

GPP + Freeman 32.3606 33.1568 25.3031
Optical Flow 33.0403 31.7700 22.6763

Table 1. PSNR values for all methods.

4 Discussion

In the previous section, we provided qualitative and quantitative results for
various super-resolution algorithms. We are interested in ensuring their use for
critical minimally invasive surgical applications. This necessitates consideration
of several other factors.

The hallucination-based algorithms show the ability to introduce high-frequency
detail. However, one concern in using these algorithms is that they could po-
tentially hallucinate non-existent image features that are artefacts rather than
actual image features. The other class of methods that shows good results is edge-
based methods. These do not introduce artefacts and they enhance the edges.
However, they do not enhance the texture suitably. Therefore, the combination
of edge and exemplar-based learning algorithms seems to be the most promising
for surgical applications. The edge-based method can be used to attenuate the
introduction of artefacts from the learning-based method. Currently, we used the
method for combination as proposed by Tai et al. [16]. It would be interesting
to explore the combination of these techniques to further improve the results
and to make it more robust for medical applications. The reconstruction-based
method relies heavily on accurate sub-pixel registration of images and is there-
fore unreliable and best avoided for medical applications, unless the inter-frame
scene movement is not too complex.

Another concern for medical applications is the need for real time processing
of the algorithms. The edge-based algorithm is highly efficient and can poten-
tially be implemented in real time by exploiting the high degree of parallelizabil-
ity. The learning-based algorithms, despite also having potential for paralleliza-
tion, are more complicated. However, the neighborhood embedding method [2]
is more scalable as it depends on learning a dictionary of fixed size. For medical
applications, a dictionary can be learned offline that is most suited for a specific
kind of operation. These methods, when implemented efficiently, can potentially
run in real time by using either a learned dictionary or a small database and by
exploiting the potential for parallelization. The reconstruction-based method is
again at a disadvantage here, as it requires a high computational effort for both
the calculation of the dense optical flow field and the actual super-resolution.
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To conclude, we propose the use of super-resolution for minimally invasive
surgical applications. As has been shown here, this appears feasible and promis-
ing. We argue that the use of a combined edge- and learning-based technique
would be most suited for the application.
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