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Abstract

We propose MAD-GAN, an intuitive generalization to
the Generative Adversarial Networks (GANs) and its condi-
tional variants to address the well known problem of mode
collapse. First, MAD-GAN is a multi-agent GAN architec-
ture incorporating multiple generators and one discrimina-
tor. Second, to enforce that different generators capture di-
verse high probability modes, the discriminator of MAD-
GAN is designed such that along with finding the real and
fake samples, it is also required to identify the generator
that generated the given fake sample. Intuitively, to succeed
in this task, the discriminator must learn to push different
generators towards different identifiable modes. We per-
form extensive experiments on synthetic and real datasets
and compare MAD-GAN with different variants of GAN. We
show high quality diverse sample generations for challeng-
ing tasks such as image-to-image translation and face gen-
eration. In addition, we also show that MAD-GAN is able to
disentangle different modalities when trained using highly
challenging diverse-class dataset (e.g. dataset with images
of forests, icebergs, and bedrooms). In the end, we show its
efficacy on the unsupervised feature representation task.

1. Introduction

Generative models have attracted considerable attention
recently. The underlying idea behind such models is to at-
tempt to capture the distribution of high-dimensional data
such as images and texts. Though these models are highly
useful in various applications, it is computationally expen-
sive to train them as they require intractable integration
in a very high-dimensional space. This drastically limits
their applicability. However, recently there has been con-
siderable progress in deep generative models – conglom-
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Figure 1: Diverse-class data generation using MAD-
GAN. Diverse-class dataset contains images from differ-
ent classes/modalities (in this case, forests, icebergs, and
bedrooms). Each row represents generations by a particu-
lar generator and each column represents generations for a
given random noise input z. As shown, once trained us-
ing this dataset, generators of MAD-GAN are able to disen-
tangle different modalities, hence, each generator is able to
generate images from a particular modality.

erate of deep neural networks and generative models – as
they do not explicitly require the intractable integration, and
can be efficiently trained using back-propagation algorithm.
Two such famous examples are Generative Adversarial Net-
works (GANs) [11] and Variational Autoencoders [14].

In this paper we focus on GANs as they are known to
produce sharp and plausible images. Briefly, GANs employ
a generator and a discriminator where both are involved in
a minimax game. The task of the discriminator is to learn
the difference between real samples (from true data distri-
bution pd) and fake samples (from generator distribution
pg). Whereas, the task of the generator is to maximize the
mistakes of the discriminator. At convergence, the genera-
tor learns to produce real looking images. A few success-
ful applications of GANs are video generation [26], image
inpainting [22], image manipulation [29], 3D object gen-
eration [27], interactive image generation using few brush
strokes [29], image super-resolution [17], diagrammatic ab-
stract reasoning [15] and conditional GANs [20, 24].

Despite the remarkable success of GAN, it suffers from
the major problem of mode collapse [2, 7, 8, 19, 25].
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Though, theoretically, convergence guarantees the genera-
tor learning the true data distribution. However, practically,
reaching the true equilibrium is difficult and not guaranteed,
which potentially leads to the aforementioned problem of
mode collapse. Broadly speaking, there are two schools of
thought to address the issue: (1) improving the learning of
GANs to reach better optima [2, 19, 25]; and (2) explicitly
enforcing GANs to capture diverse modes [7, 8, 18]. Here
we focus on the latter.

Borrowing from the multi-agent algorithm [1] and cou-
pled GAN [18], we propose to use multiple generators with
one discriminator. We call this framework the Multi-Agent
GAN architecture, as shown in Fig. 2. In detail, similar to
the standard GAN, the objective of each generator here is to
maximize the mistakes of the common discriminator. De-
pending on the task, it might be useful for different genera-
tors to share information. This is done using the initial layer
parameters of generators. Another reason behind sharing
these parameters is the fact that initial layers capture low-
frequency structures which are almost the same for a partic-
ular type of dataset (for example, faces), therefore, sharing
them reduces redundant computations. However, when the
dataset contains images from completely different modali-
ties, one can avoid sharing these parameters. Naively using
multiple generators may lead to the trivial solution where all
the generators learn to generate similar samples. To resolve
this issue and generate different visually plausible samples
capturing diverse high probability modes, we propose to
modify the objective function of the discriminator. In the
modified objective, along with finding the real and the fake
samples, the discriminator also has to correctly identify the
generator that generated the given fake sample. Intuitively,
in order to succeed in this task, the discriminator must learn
to push generations corresponding to different generators
towards different identifiable modes. Combining the Multi-
Agent GAN architecture with the diversity enforcing term
allows us to generate diverse plausible samples, thus the
name Multi-Agent Diverse GAN (MAD-GAN).

As an example, an intuitive setting where mode collapse
occurs is when a GAN is trained on a dataset containing
images from different modalities/classes. For example, a
diverse-class dataset containing images such as forests, ice-
berg, and bedrooms. This is of particular interest as it not
only requires the model to disentangle intra-class variations,
it also requires inter-class disentanglement. Fig. 1 demon-
strates the surprising effectiveness of MAD-GAN in this
challenging setting. Generators among themselves are able
to disentangle inter-class variations, and each generator is
also able to capture intra-class variations.

In addition, we analyze MAD-GAN through exten-
sive experiments and compare it with several variants of
GAN. First, for the proof of concept, we perform experi-
ments in controlled settings using synthetic dataset (mix-

ture of Gaussians), and complicated Stacked/Compositional
MNIST datasets with hand engineered modes. In these set-
tings, we empirically show that our approach outperforms
all other GAN variants we compare with, and is able to
generate high quality samples while capturing large num-
ber of modes. In a more realistic setting, we show high
quality diverse sample generations for the challenging tasks
of image-to-image translation [12] (conditional GAN) and
face generation [8, 23]. Using the SVHN dataset [21], we
also show the efficacy of our framework for learning the
feature representation in an unsupervised setting.

We also provide theoretical analysis of this approach and
show that the proposed modification in the objective of dis-
criminator allows generators to learn together as a mixture
model where each generator represents a mixture compo-
nent. We show that at convergence, the global optimum
value of −(k + 1) log(k + 1) + k log k is achieved, where
k is the number of generators.

Figure 2: Multi-Agent Diverse GAN (MAD-GAN). The
discriminator outputs k + 1 softmax scores signifying the
probability of its input sample being from either one of the
k generators or the real distribution.

2. Related Work

The recent work called InfoGAN [8] proposed an
information-theoretic extension to GANs in order to ad-
dress the problem of mode collapse. Briefly, InfoGAN dis-
entangles the latent representation by assuming a factored
representation of the latent variables. In order to enforce
that the generator learns factor specific generations, Info-
GAN maximizes the mutual information between the fac-
tored latents and the generator distribution. Che et al. [7]
proposed a mode regularized GAN (ModeGAN) which uses
an encoder-decoder paradigm. The basic idea behind Mod-
eGAN is that if a sample from the true data distribution pd
belongs to a particular mode, then the sample generated by
the generator (fake sample) when the true sample is passed
through the encoder-decoder is likely to belong to the same
mode. ModeGAN assumes that there exists enough true
samples from a mode for the generator to be able to capture
it. Another work by Metz et al. [19] proposed a surrogate
objective for the update of the generator with respect to the



unrolled optimization of the discriminator (UnrolledGAN)
to address the issue of convergence of the training process
of GANs. This improves the training process of the gen-
erator which in turn allow the generators to explore better
coverage to true data distribution.

Liu et al. [18] presented Coupled GAN, a method for
training two generators with shared parameters to learn the
joint distribution of the data. The shared parameters guide
both the generators towards similar subspaces but since they
are trained independently on two domains, they promote di-
verse generations. Durugkar et al. [9] proposed a model
with multiple discriminators whereby an ensemble of multi-
ple discriminators have been shown to stabilize the training
of the generator by guiding it to produce better samples.

W-GAN [3] is a recent technique which employs integral
probability metrics based on the earth mover distance rather
than the JS-divergences that the original GAN uses. BE-
GAN [5] builds upon W-GAN using an autoencoder based
equilibrium enforcing technique alongside the Wasserstein
distance. DCGAN [23] was a seminal technique which used
a fully convolutional generator and discriminator for the
first time along with the introduction of batch normalization
thus stabilizing the training procedure, and was able to gen-
erate compelling generations. GoGAN [13] introduced a
training procedure for the training of the discriminator using
a maximum margin formulation alongside the earth mover
distance based on the Wasserstein-1 metric. [4] introduced
a technique and theoretical formulation stating the impor-
tance of multiple generators and discriminators in order to
completely model the data distribution. In terms of employ-
ing multiple generators, our work is closest to [4, 18, 10].
However, while using multiple generators, our method ex-
plicitly enforces them to capture diverse modes.

3. Preliminaries

Here we present a brief review of GANs [11]. Given a
set of samples D = (xi)

n
i=1 from the true data distribution

pd, the GAN learning problem is to obtain the optimal pa-
rameters θg of a generatorG(z; θg) that can sample from an
approximate data distribution pg , where z ∼ pz is the prior
input noise (e.g. samples from a normal distribution). In
order to learn the optimal θg , the GAN objective (Eq. (1))
employs a discriminator D(x; θd) that learns to differenti-
ate between a real (from pd) and a fake (from pg) sample x.
The overall GAN objective is:

min
θg

max
θd

V (θd, θg) := Ex∼pd logD(x; θd)

+ Ez∼pz log
(
1−D(G(z; θg); θd)

)
(1)

The above objective is optimized in a block-wise manner
where θd and θg are optimized one at a time while fixing
the other. For a given sample x (either from pd or pg)

and the parameter θd, the function D(x; θd) ∈ [0, 1] pro-
duces a score that represents the probability of x belonging
to the true data distribution pd (or probability of it being
real). The objective of the discriminator is to learn parame-
ters θd that maximizes this score for the true samples (from
pd) while minimizing it for the fake ones x̃ = D(z; θg)
(from pg). In the case of generator, the objective is to min-
imize Ez∼pz log

(
1−D(G(z; θg); θd)

)
, equivalently maxi-

mize Ez∼pz logD(G(z; θg); θd). Thus, the generator learns
to maximize the scores for the fake samples (from pg),
which is exactly the opposite to what discriminator is try-
ing to achieve. In this manner, the generator and the dis-
criminator are involved in a minimax game where the task
of the generator is to maximize the mistakes of the discrim-
inator. Theoretically, at equilibrium, the generator learns to
generate real samples, which means pg = pd.

4. Multi-Agent Diverse GAN
In the GAN objective, one can argue that the task of

a generator is much harder than that of the discriminator
as it has to produce real looking images to maximize the
mistakes of the discriminator. This, along with the min-
imax nature of the objective raise several challenges for
GANs [2, 7, 8, 19, 25]: (1) mode collapse; (2) difficult op-
timization; and (3) trivial solution. In this work we propose
a new framework to address the first challenge of mode col-
lapse by increasing the capacity of the generator while using
well known tricks to partially avoid other challenges [2].

Briefly, we propose a Multi-Agent GAN architecture that
employs multiple generators and one discriminator in order
to generate different samples from high probability regions
of the true data distribution. In addition, theoretically, we
show that our formulation allows generators to act as a mix-
ture model with each generator capturing one component.

4.1. Multi-Agent GAN Architecture

Here we describe our proposed architecture (Fig. 2). It
involves k generators and one discriminator. In the case
of homogeneous data (all the images belong to same class,
e.g. faces or birds), we allow all the generators to share in-
formation by tying most of the initial layer parameters. This
is essential to avoid redundant computations as initial lay-
ers of a generator capture low-frequency structures which
are almost the same for a particular type of dataset. This
also allows different generators to converge faster. How-
ever, in the case of diverse-class data (e.g. dataset with a
mixture of different classes such as forests, icebergs etc.), it
is necessary to avoid sharing these parameters to allow each
generator to capture content specific structures. Thus, the
extent to which one should share these parameters depends
on the task at hand.

More specifically, given z ∼ pz for the i-th generator,
similar to the standard GAN, the first step involves gen-



Figure 3: Visualization of different generators getting
pushed towards different modes. Here,M1 andM2 could be
a cluster of modes where each cluster itself contains many
modes. The arrows abstractly represent generator specific
gradients for the purpose of building intuition.

erating a sample (for example, an image) x̃i. Since each
generator receives the same latent input sampled from the
same distribution, naively using this simple approach may
lead to the trivial solution where all the generators learn to
generate similar samples. In what follows, we propose an
intuitive solution to avoid this issue and allow the generators
to capture diverse modes.

4.2. Enforcing Diverse Modes

Inspired by the discriminator formulation for the semi-
supervised learning [25], we use a generator identification
based objective function that, along with minimizing the
score D(x̃; θd), requires the discriminator to identify the
generator that generated the given fake sample x̃. In order
to do so, as opposed to the standard GAN objective function
where the discriminator outputs a scalar value, we modify
it to output k + 1 soft-max scores. In more detail, given
the set of k generators, the discriminator produces a soft-
max probability distribution over k + 1 classes. The score
at (k + 1)-th index (Dk+1(.)) represents the probability
that the sample belongs to the true data distribution and the
score at j ∈ {1, . . . , k}-th index represents the probability
of it being generated by the j-th generator. Under this set-
ting, while learning θd, we optimize the cross-entropy be-
tween the soft-max output of the discriminator and the Dirac
delta distribution δ ∈ {0, 1}k+1, where for j ∈ {1, . . . , k},
δ(j) = 1 if the sample belongs to the j-th generator, other-
wise δ(k + 1) = 1. Thus, the objective of the discrimina-
tor, which is optimizing θd while keeping θg constant (refer
Eq. (1)), is modified to:

max
θd

Ex∼pH(δ,D(x; θd))

where, Supp(p) = ∪ki=1Supp(pgi)∪Supp(pd) and H(., .)
is the negative of the cross entropy function. Intuitively,
in order to correctly identify the generator that produced
a given fake sample, the discriminator must learn to push
different generators towards different identifiable modes.
However, the objective of each generator remains the same
as in the standard GAN. Thus, for the i-th generator, the

objective is to minimize the following:

Ex∼pd logDk+1(x; θd)+Ez∼pz log(1−Dk+1(Gi(z; θ
i
g); θd))

To update the parameters, the gradient for each generator
is simply computed as∇θig log(1−Dk+1(Gi(z; θ

i
g); θd))).

Notice that all the generators in this case can be up-
dated in parallel. For the discriminator, given x ∼ p
(can be real or fake) and corresponding δ, the gradient
is ∇θd logDj(x; θd), where Dj(x; θd) is the j-th index
of D(x; θd) for which δ(j) = 1. Therefore, using this
approach requires very minor modifications to the stan-
dard GAN optimization algorithm and can be easily used
with different variants of GAN. An intuitive visualization is
shown in Fig. 3.

Theorem 1 shows that the above objective function actu-
ally allows generators to form a mixture model where each
generator represents a mixture component and the global
optimum of−(k+1) log(k+1)+k log k is achieved when
pd = 1

k

∑k
i=1 pgi . Notice that, at k = 1, which is the

case with one generator, we obtain exactly the same Jensen-
Shannon divergence based objective function as shown
in [11] with the optimal value of − log 4.

Theorem 1. Given the optimal discriminator, the objective
for training the generators boils down to minimizing

KL
(
pd(x)||pavg(x)

)
+ kKL

(1
k

k∑
i=1

pgi(x)||pavg(x)
)

− (k + 1) log(k + 1) + k log k (2)

where, pavg(x) =
pd(x)+

∑k
i=1 pgi (x)

k+1 . The above objective

function obtains its global minimum if pd = 1
k

∑k
i=1 pgi

with the objective value of −(k + 1) log(k + 1) + k log k.

Proof. The joint objective of all the generators is to mini-
mize the following:

Ex∼pd logDk+1(x) +

k∑
i=1

Ex∼pgi log(1−Dk+1(x))

Using Corollary 1, we substitute the optimal discriminator
in the above equation and obtain:

Ex∼pd log

[
pd(x)

pd(x) +
∑k
i=1 pgi(x)

]
+

k∑
i=1

Ex∼pgi log

[ ∑k
i=1 pgi(x)

pd(x) +
∑k
i=1 pgi(x)

]

= Ex∼pd log

[
pd(x)

pavg(x)

]
+ kEx∼pg log

[
pg(x)

pavg(x)

]
− (k + 1) log(k + 1) + k log k (3)



where, pg =
∑k

i=1 pgi
k and pavg(x) =

pd(x)+
∑k

i=1 pgi (x)

k+1 .
Note that, Eq. (3) is exactly the same as Eq. (2). When

pd =
∑k

i=1 pgi
k , both the KL terms become zero and the

global minimum is achieved.

Corollary 1. For fixed generators, the optimal distribution
learned by the discriminator D has the following form:

Dk+1(x) =
pd(x)

pd(x) +
∑k
i=1 pgi(x)

,

Di(x) =
pgi(x)

pd(x) +
∑k
i=1 pgi(x)

,∀i ∈ {1, · · · , k}.

where, Di(x) represents the i-th index of D(x; θd), pd the
true data distribution, and pgi the distribution learned by
the i-th generator.

Proof. For fixed generators, the objective function of the
discriminator is to maximize

Ex∼pd logDk+1(x) +

k∑
i=1

Exi∼pgi logDi(xi)

where,
∑k+1
i=1 Di(x) = 1 and Di(x) ∈ [0, 1],∀i. The above

equation can be written as:∫
x

pd(x) logDk+1(x)dx+

k∑
i=1

∫
x

pgi(x) logDi(x)dx

=

∫
x∈p

k+1∑
i=1

pi(x) logDi(x)dx (4)

where, pk+1(x) := pd(x), pi(x) := pgi(x),∀i ∈
{1, · · · , k}, and Supp(p) =

⋃k
i=1 Supp(pgi)

⋃
Supp(pd),

Therefore, for a given x, the optimum of objective function
defined in Eq. (4) with constraints defined above can be ob-
tained using Proposition 1.

Proposition 1. Given y = (y1, · · · , yn), yi ≥ 0, and ai ∈
R, the optimal solution for the objective function defined
below is achieved at y∗i = ai∑n

i=1 ai
,∀i

max
y

n∑
i=1

ai log yi, s.t.

n∑
i

yi = 1

Proof. The Lagrangian of the above problem is:

L(y, λ) =

n∑
i=1

ai log yi + λ(

n∑
i=1

yi − 1)

Differentiating w.r.t yi and λ, and equating to zero,

ai
yi

+ λ = 0 ,

n∑
i=1

yi − 1 = 0

Solving the above two equations, we obtain y∗i = ai∑n
i=1 ai

.

GAN Variants Chi-square(×105) KL-Div

DCGAN [23] 0.90 0.322
WGAN [3] 1.32 0.614
BEGAN [5] 1.06 0.944
GoGAN [13] 2.52 0.652

Unrolled GAN [19] 3.98 1.321
Mode-Reg DCGAN [7] 1.02 0.927

InfoGAN [8] 0.83 0.21
MA-GAN 1.39 0.526

MAD-GAN (Our) 0.24 0.145

Table 1: Synthetic experiment on 1D GMM (Fig. 4).

5. Experiments
We present an extensive quantitative and qualitative

analysis of MAD-GAN on various synthetic and real-
world datasets. First, we use a simple 1D mixture of
Gaussians and also Stacked/Compositional MNIST dataset
(1000 modes) to compare MAD-GAN with several known
variants of GANs, such as DCGAN [23], WGAN [3], BE-
GAN [5], GoGAN [13], Unrolled GAN [19], Mode-Reg
GAN [7] and InfoGAN [8]. Furthermore, we created an-
other baseline, called MA-GAN (Multi-Agent GAN), which
is a trivial extension of GAN with multiple generators and
one discriminator. As opposed to MAD-GAN, MA-GAN
has a simple Multi-Agent architecture without modifica-
tions to the objective of the discriminator. This compari-
son allows us to understand the effect of explicitly enforc-
ing diversity in the objective of the MAD-GAN. We use
KL-divergence [16] and number of modes recovered [7]
as the criterion for comparisons and show superior results
compared to all the other methods. Additionally, we show
diverse generations for the challenging tasks of image-to-
image translation [12], diverse-class data generation, and
face generation. It is non-trivial to devise a metric to evalu-
ate diversity on these high quality generation tasks, so we
perform qualitative assessment. Note that, the image-to-
image translation objective is known to learn the delta dis-
tribution, thus, it is agnostic to the input noise vector. How-
ever, we show that MAD-GAN is able to produce highly
plausible diverse generations for this task. In the end, we
show the efficacy of MAD-GAN in unsupervised feature
representation learning task. We provide detailed overview
of the architectures, datasets, and the parameters used in our
experiments in the supplementary.

In the case of InfoGAN [8], we varied the dimension of
the categorical variable, depicting the number of modes, to
obtain the best cross-validated results.

5.1. Non-Parametric Density Estimation

In order to understand the behavior of MAD-GAN and
different state-of-the-art GAN models, we first perform a



(a) DCGAN (b) WGAN (c) BEGAN (d) GoGAN

(e) Unrolled GAN (f) Mode-Reg DCGAN (g) InfoGAN (h) MAD-GAN (Our)

Figure 4: A toy example to understand the behaviour of different GAN variants in order to compare with MAD-GAN (each
method was trained for 198000 iterations). The orange bars show the density estimate of the training data and the blue ones
for the generated data points. After careful cross-validation, we chose the bin size of 0.1.

very simple synthetic experiment, much easier than gen-
erating high-dimensional complex images. We consider a
distribution of 1D GMM [6] having five mixture compo-
nents with modes at 10, 20, 60, 80 and 110, and standard
deviations of 3, 3, 2, 2 and 1, respectively. While the first
two modes overlap significantly, the fifth mode stands iso-
lated as shown in Fig. 4. We train different GAN models
using 200, 000 samples from this distribution and generate
65, 536 data points from each model. In order to compare
the learned distribution with the ground truth distributions,
we first estimate them using bins over the data points and
create the histograms. These histograms are carefully cre-
ated using different bin sizes and the best bin (found to be
0.1) is chosen. Then, we use Chi-square distance and the
KL-divergence to compute distance between the two his-
tograms. From Fig. 4 and Tab. 1 it is evident that MAD-
GAN is able to capture all the clustered modes which in-
cludes significantly overlapped modes as well. MAD-GAN
obtains the minimum value in terms of both Chi-square
distance and the KL-divergence. In this experiment, both
MAD-GAN and MA-GAN used four generators. In the case
of InfoGAN, we used 5 dimensional categorical variable,
which provides the best result.

5.2. Stacked and Compositional MNIST

We now perform experiments on a more challenging
setup, similar to [7, 19], in order to examine and com-
pare MAD-GAN with other GAN variants. [19] created a
Stacked-MNIST dataset with 25, 600 samples where each
sample has three channels stacked together with a random
MNIST digit in each of them. Thus, it creates 1000 distinct

GAN Variants KL Div # Modes Covered

DCGAN [23] 2.15 712
WGAN [3] 1.02 868
BEGAN [5] 1.89 819
GoGAN [13] 2.89 672

Unrolled GAN [19] 1.29 842
Mode-Reg DCGAN [7] 1.79 827

InfoGAN [8] 2.75 840
MA-GAN 3.4 700

MAD-GAN (Our) 0.91 890

Table 2: Stacked-MNIST experiments and comparisons.
Note that three generators are used for MAD-GAN.

GAN Variants KL Div # Modes Covered

DCGAN [23] 0.18 980
WGAN [3] 0.25 1000
BEGAN [5] 0.19 999
GoGAN [13] 0.87 972

Unrolled GAN [19] 0.091 1000
Mode-Reg DCGAN [7] 0.12 992

InfoGAN [8] 0.47 990
MA-GAN 1.62 997

MAD-GAN (Our) 0.074 1000

Table 3: Compositional-MNIST experiments and compar-
isons. Note that three generators are used for MAD-GAN.



Figure 6: Diverse generations for edges-to-handbags generation task. In each sub-figure, the first column represents the input,
columns 2-4 represents generations by MAD-GAN (using three generators), and columns 5-7 are generations by InfoGAN
(using three categorical codes). It is evident that different generators of MAD-GAN are able to produce diverse results
capturing different colors, textures, design patterns, among others. However, InfoGAN generations are visually almost the
same, indicating mode collapse.

modes in the data distribution. [19] used a stripped down
version of the generator and discriminator pair to reduce
the modeling capacity. We do the same for fair comparisons
and used the same architecture as mentioned in their paper.
Similarly, [7] created Compositional-MNIST whereby they
took 3 random MNIST digits and place them at the 3 quad-
rants of a 64×64 dimensional image. This also resulted in a
data distribution with 1000 hand-designed modes. The dis-
tribution of the resulting generated samples was estimated
using a pretrained MNIST classifier to classify each of the
digits either in the channels or the quadrants to decide the
mode it belongs to.

Tables 2 and 3 provide comparison of our method with
variants of GAN in terms of KL divergence and the num-
ber of modes recovered for the Stacked and Compositional
MNIST datasets, respectively. In Stacked-MNIST, as ev-
ident from the Tab. 2, MAD-GAN outperforms all other
variants of GAN in both the criteria. Interestingly, in the
case of Compositional-MNIST, as shown in Tab. 3, MAD-
GAN, WGAN and Unrolled GAN were able to recover all
the 1000 modes. However, in terms of KL divergence, the
distribution generated by MAD-GAN is the closest to the
true data distribution.

5.3. Diverse Samples for Image-to-Image Transla-
tion and Comparison to InfoGAN

Here we present experimental results on the challenging
task of image-to-image translation [12] which uses condi-
tional variant of GANs [20]. Conditional GAN for this task
is known to learn the delta distribution, thus, generates the
same image irrespective of the variations in the input noise
vector. Generating diverse samples in this setting in itself
is an open problem. We show that MAD-GAN is able to

Figure 8: Diverse generations for night-to-day image gen-
eration task. First column in each sub-figure represents the
input. The remaining three columns show the diverse gen-
erations of three different generators of MAD-GAN (Our).

generate diverse samples in these experiments as well. We
use three generators for MAD-GAN experiments and show
three diverse generations. Note that, we do not claim to cap-
ture all the possible modes present in the data distribution
because firstly we cannot estimate the number of modes a
priori, and secondly, even if we could, we do not know how
diverse the generations would be after using certain num-
ber of generators. We follow the same approach as [12] and
employ patch based conditional GAN.

We compare MAD-GAN with InfoGAN [8] in these ex-
periments as it is closest to our approach and can be used in
image-to-image translation task. Theoretically, latent codes
in InfoGAN should enable diverse generations. However,
InfoGAN can only be used when the bias introduced by the
categorical variables have significant impact on the genera-
tor network. For image-to-image translation and high res-
olution generations, the categorical variable does not have



Figure 9: Face generations using MAD-GAN. Each gener-
ator employed is DCGAN. Each row represents a genera-
tor. Each column represents generations for a given random
noise input z. Note that, the first generator is generating
faces pointing to the left. The second generator is gener-
ating female faces with long hair, while the third generator
generates images with light background.

sufficient impact on the generations. As will be seen shortly,
we validate this hypothesis by comparing our method with
InfoGAN for this task. For the InfoGAN generator, to cap-
ture three kinds of distinct modes, the categorical code is
chosen to take three values. Since we are dealing with im-
ages, in this case, the categorical code is a 2D matrix in
which we set one third of the entries to 1 and remaining
to 0 for each category. The generator is fed input image
along with categorical code appended channel wise to the
image. Architecture of the Q network is same as that of the
pix2pix discriminator [12], except that the output is a vector
of size 3 for the prediction of the categorical codes. The dis-
criminator and the Q network parameters are unshared. We
observed that sharing them and even adding noise besides
categorical code did not make any difference. Note that, we
tried different variations of the categorical codes but did not
observe any significant variation in the generations.

Fig. 6 shows generations by MAD-GAN and InfoGAN
for the edges-to-handbags task, where given the edges of
handbags, the objective is to generate real looking hand-
bags. Clearly, each MAD-GAN generator is able to produce
meaningful images but different from remaining generators
in terms of color, texture, and patterns. However, InfoGAN
generations are almost the same for all the three categori-
cal codes. In addition, in Fig. 8, we show diverse genera-
tions for the night-to-day task, where given night images of
places, the objective is to generate their corresponding day
images. As can be seen, the generated day images in Fig. 8
differ in terms of lighting conditions, sky patterns, weather
conditions, and many other minute yet useful cues.

5.4. Diverse-Class Data Generation

To further explore the mode capturing capacity of MAD-
GAN, we experimented with a much more challenging task
of diverse-class data generation. In detail, we trained MAD-
GAN (three generators) on a combined dataset consist-
ing of various highly diverse images such as islets, ice-
bergs, broadleaf-forest, bamboo-forest, and bedroom, ob-
tained from the Places dataset [28]. Images were randomly

selected from each of them, creating a training dataset of
24, 000 images. The generators have the same architecture
as that of DCGAN. In this case, as the images in the dataset
belong to different classes, we did not share the generator
parameters. As shown in Fig. 1, to our surprise, we found
that even in this highly challenging setting, the generations
from different generators belong to different classes. This
clearly indicates that the generators in MAD-GAN are able
to disentangle inter-class variations. In addition, each gen-
erator for different noise input is able to generate diverse
samples, indicating intra-class diversity.

5.5. Diverse Face Generation

Here we show diverse face generations (CelebA dataset)
using MAD-GAN where we use DCGAN [23] as each of
our three generators. Again, we use the same setting as
provided in DCGAN. The high quality face generations are
shown in the Fig. 9.

5.6. Unsupervised Representation Learning

Similar to DCGAN [23], we train our framework using
SVHN dataset [21]. The trained discriminator is used to ex-
tract features. Using these features, we train an SVM for
the classification task. For the MAD-GAN, with three gen-
erators, we obtained misclassification error of 17.5% which
is almost 5% better than the results reported by DCGAN
(22.48%). This clearly indicates that our framework is able
to learn a better feature space in an unsupervised setting.

6. Conclusion

We presented a very simple and effective framework,
Multi-Agent Diverse GAN (MAD-GAN), for generating di-
verse and meaningful samples. We showed the efficacy of
our approach and compared it with various variants of GAN
that it captures diverse modes while producing high quality
samples. We presented a theoretical analysis of MAD-GAN
with conditions for global optimality. Looking forward, an
interesting future direction would be to estimate a priori the
number of generators needed for a particular dataset. It is
not clear how to do that given that we do not have access
to the true data distribution. In addition, we would also like
to theoretically understand the limiting cases that depend
on the relationship between the number of generators and
the complexity of the data distribution. Another interesting
direction would be to exploit different generators such that
their combinations can be used to capture diverse modes.
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