
Some Experiments with the Performance of LAMP Architecture

UV Ramana
Veritas Software

TV Prabhakar
IIT Kanpur

tvp@iitk.ac.in

Abstract

Measurements are very useful to gauge the actual
performance of various architectures and their
components. In this paper we investigate the
performance of the LAMP(Linux, Apache, MySQL,
PHP) architecture and MySQL and PHP components.
We build a web-site using LAMP and measure the
application level performance. We use “measurements
as a means” to improve the performance of the
website. We then investigate the performance of the
application when ported to Windows with running IIS
and Apache with MySQL and PHP.

Keywords: LAMP, performance, software architecture

1. Introduction.

A large number of web-sites are built using PHP
and MySQL on the Linux platform with Apache as the
web server. This combination is known as the LAMP
architecture. Apache, PHP and MySQL are also
available on the Windows platform giving rise to
combinations like WAMP (Windows, Apache,
MySQL, PHP) and WIMP (where the IIS webserver is
used instead of Apache). In this paper we present the
results we obtained while investigating some
performance issues related to MySQL and PHP and an
application built with this architecture.

We first investigate the performance of PHP and
MYSQL modules independently. We then check the
performance of an application built using these
components. We then benchmark the application on
WIMP and WAMP platforms.

2. Related Work

Even though LAMP is a very popular architecture
there has been little work to characterize and

benchmark the architecture, especially at an application
level. But, there has been a substantial amount of work
done to analyze the performance of some other Web
applications. Emmanuel Cecchet et al [1] compared the
performance of LAMP architecture with the
performance of EJBs and the performance of Java
servlets. They performed the comparison based on two
benchmarks, RUBiS [2] and RUBBoS [3]. The paper
[4] talks about the benchmarks that they developed to
perform the comparison. The bottleneck
characterization of the work they have done is
presented in [5]. The work presented in [6] discusses
the performance and scalability of the EJB
applications, by performing experiments with different
types of EJBs (session, entity etc..) on two different
open source EJB application servers (JBOSS and
JOnAs).

C. D. Murta, J. M. Almeida and V. A. F. Almeida
[7] presented a performance analysis of WWW Server,
using WebStone benchmark, in the early days of the
inception of the World Wide Web. Arun Iyengar et al.
[8] presented a performance analysis of Web server
under high CPU loads. In their work Y. Hu, A. Nanda,
and Q. Yang [9] analyzed the performance of Apache
Web server on a uniprocessor machine and a 4-CPU
Symmetric Multi-Processor (SMP) machine. Vsevold
V. Panteleenko and Vincent W. Freeh [10] analyzed
the Web server performance by simulating Wide Area
Network (WAN) conditions.

There has been some work in the area of client
emulators. The paper by Gaurav Banga and Peter
Drushel [11] describes a method to generate bursty
traffic that temporarily exceeds the capacity of the Web
server. It also describes the problems that one faces
while measuring the Web server capacity. They have
implemented a client emulator that can create bursty
traffic, by using a two process architecture. There are
quite a few open source client emulators like HTTPerf,
EVE etc. Papers [12] and [13] describe the architecture
of these client emulators.

Some work is done to compare the performance of
a scripting language with that of a programming
language. Ousterhout in his article [14] describes some
of the results he got while comparing the performance
of TCL/TK with C++, Java and MFC. The sqlbench
suite provided by MySQL can be used to measure the
performance of MySQL. The URL [15] talks about
some of the results that are obtained by using the
sqlbench suite.

3. PHP vs. C

In this section we present the performance of PHP
scripting language in comparison to C. The comparison
is done using two different criteria. The first criterion is
to compare the total number of instructions that a PHP
program can execute per second versus the number of
instructions that a C program can execute per second.
The second one is to compare the time taken to achieve
certain functionality using PHP versus the time taken to
achieve the same functionality using C.

3.1 Test Bed

The experiments described here are conducted on
three different machines with different processor clock
speeds: P-III 600 MHz, P-III 1 GHz and P-IV 2.8 GHz.
All these machines had a Linux operating system, with
kernel version 2.6.3, PHP version 4.3.4 and gcc version
3.3.2. All these systems have a RAM of 256 mb
installed in them.

3.2 Findings

F1. C performs about four hundred times faster than
PHP in case of compute intensive functions.

Table 1. PHP vs C – number of instructions per

second

2.8 GHz Machine
Instructions per second

Computation

PHP C
Ratio

Simple
Instructions

281147
9

1383200824 491

Function call 517227 232404139 449
Recursive
Function

626159 230399042 367

From Table 1 we can observe that C is around 400
times faster than PHP in almost all the cases. We can
also see that simple instructions are faster than function
call instructions by a factor of around five in case of
PHP program and by a factor of around six in case of C
program.

Table 2. PHP vs C – Time to compute

2.8 GHz Machine
Time Taken

Computation

PHP C

Ratio

Fibonacci
Number

290.07 0.6806 426.15

File I/O 0.1195 0.0098 12.22
MySQL
Access

0.00125 0.00133 0.942

From Table 2 it can be observed that in case of the

Fibonacci program, which is computation intensive, C
language performance, is nearly 400 times better than
that of PHP. In case of File I/O the performance of C
still dominates that of PHP, but this time only by a
factor of 10. Finally, in case of MySQL data transfer
even though C performed slightly better in two cases,
we can say that performance of PHP and C are almost
equal.

F2. Performance of MySQL can also be substantially
improved by eliminating the connection overhead.

It is known that a database access has a connection

overhead. The Figure below shows the graph between
connection overhead and the processing time.

From the figure we can observe that the connection
overhead is far more than the actual processing time.
This implies that if we can avoid connection overhead,
the performance can be improved substantially.

Figure 1.Connection overhead vs. processing time

4. Application benchmark

We investigate the performance of an application
built with the LAMP. This section describes the
response time and throughput of the Gita Supersite
under different situations.

Gita Supersite (http://www.gitasupersite.iitk.ac.in)
is a Web application developed to display the verses
and commentary of Bhagavadgita(an ancient text
containing the essence of Indian Philosophy) in all
Indian languages. It can also display the verses in
Roman script. The data(Sanskrit verses) is stored in the
database in ISCII{Indian Script Code for Information
Interchange} format and is converted into the font code
of the desired Indian language to be displayed, when
the request arrives.

The architecture of the Gita Supersite conforms to
the trasitional LAMP architecture, except that it has an
extra font conversion module. The font conversion
module does the font conversion from the ISCII code
to the ISFOC (Intelligence based Script FOnt Code)
code of the respective language. It then returns the
ISFOC data back to the PHP module, which does some
formatting work on the data and returns it to the
Apache Web server for sending it to the client.

4.1 Application Performance Measurement

The experimental setup consists of a client
emulator which pumps in requests to the server running
on a different machine and taking the measurements.
Methods like sending requests from multiple machines,
running multiple processes to pump the requests,
running multiple threads and sending a request each,
from all of the threads etc. do not give the desired
results. In these methods, we have a fixed number of
clients that are sending requests. Each client has to stop
after sending a single request, receive the response and
then send the request again. This method cannot
overload the server, because as soon as the server
reaches its limiting capacity, it will delay the
processing of the client requests.

Gaurav Banga and Peter Drushel[11] described a
way to overcome this problem. With this approach, one
can send bursty traffic, but one cannot measure the
Web server performance accurately. To avoid this
problem a sophisticated client emulator has been
designed and implemented. Detailed description can be
seen in [16].

4.2 Test Bed

The machine on which the Web server and
database server are running, is a P-IV 2.8 GHz
processor, 512 MB RAM with Linux kernel version
2.6.3. The Web server used is Apache Web server
version 2.0.48 with PHP module version 4.3.4 loaded
into it. The database server is MySQL server version
4.0.18. The client emulator is running on another
machine with the same configuration as the server.

4.3 Findings

F3. The maximum throughput that can be achieved for
Gita Supersite using the LAMP architecture is around
twenty six connections per second on a P-IV machine
with 2.8GHz processor.

As seen is figure 2, the two lines indicate the
throughput when there is a limit on the number of
server processes and without a limit on the server
processes.

Figure 2. Throughput vs. connections per second

F4. We can improve the throughput of these
applications by using a machine with more processor
speed, as the CPU is the bottleneck in this case(Fig 3)

Figure 3. CPU Utilization

F5. The performance of the Gita Supersite can be
improved by improving the performance of the font
conversion module, as it is occupying the maximum
portion of the processing time.

Figure 4 gives an indication of where the time is
being spent while servicing a request. Most of the time
is going into font conversion. That means we could
improve the performance by performing the font
conversion off-line.

Figure 4. Break up the response time

We then modified the architecture by removing the
dynamic font conversion step altogether. All the pages
were converted into Devanagari off-line and store in
that format in the database. At runtime, the PHP script
retrieves the pages and servers it out. In this situation
the architecture resembles more closely to a typical
LAMP architecture.

F6. The maximum throughput that LAMP architecture
can support is around 230 on a P-IV machine with
2.8GHz processor.

Figure 5 indicates the performance of the site as
the number of connections goes up. Saturation is
reached and the throughput drops around 230.

Figure 5. Throughput vs. connections (without font

conversion)

F7. The reason for this saturation is the bottleneck in
the CPU.

Figure 6 reflects the CPU utilization as the number
of connections goes up. CPU reaches saturation level
beyond 200 connections resulting in a drop in the
throughput.

Figure 6. CPU Utilization vs. number of connections

5. LAMP, WAMP and WIMP

We now present the results that we have obtained
while running the Gita supersite on the Windows
platform with Apache web-server, MYSQL an
PHP(WAMP) and the Windows platform with IIS web
server, MySQL and PHP(WAMP)

F8. The response time of the WAMP(Windows,
Apache, MySQL and PHP) and LAMP architectures
are almost equal.

Figure 7. Response times of LAMP, WAMP, WIMP

Figure 7 shows the performance of the three
configurations with a single connection. While LAMP
and WAMP are almost similar, WIMP is trailing
substantially.

6. Conclusions and Further Work

The objective of this work is to come with some
numbers that will aid the architect while sizing an
application. We could quantify the performance
improvements that would one would accrue if one were
to write parts of the code in C as against PHP, the
impact of indices in MySQL, and the scaling that
would occur with the processor speed. We also did
some application level benchmarking and compared the
performance of the application on Windows and Linux
architectures. Linux with Apache very clearly
outperforms Windows with IIS when the business logic
is in PHP and the persistence is with MySQL.
Windows with Apache, PHP and MySQL falls in
between. More detailed results are available in[16].

Some of the future work that can be done is to perform
this analysis on more number of applications and to
increase the validity of the results obtained in this
work. The effect of tuning some Linux kernel
parameters, on the performance of the LAMP
applications, also needs to be studied. The impact of
applying architectural tactics [17] on the performance
of an application will make an interesting study.

References

[1] Cecchet etal, Performance Comparison of
Middleware Architectures for Generating Dynamic
Web Content, 4th ACM /IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, June
16-20, 2003

[2] RUBiS: Rice University Bidding System URL:
http://rubis.objectweb.org

[3]UBBoS: Rice University Bulletin Board System
URL: http://rubbos.objectweb.org

[4] Amza etal, Specification and Implementation of
Dynamic Web Site Benchmarks, IEEE 5th Annual
WWC-5, Austin, TX, USA, November 2002.

[5] Amza etal, Bottleneck Characterization of Dynamic
Web Site Benchmarks, Technical Report TR02-398,
Rice University, January 2002.

[6] Cecchet etal, Performance and scalability of EJB
applications, 17th , Oopsla 2002, Seattle, WA, USA, 4-
8 November 2002.

[7] C. D. Murta, J. M. Almeida and V. A. F. Almeida,
Performance Analysis of a WWW Server,
XXII SEMISH, Recife, Brazil, August, 1996

[8] Iyengar etal, An Analysis of Web Server
Performance, In Proceedings of the IEEE 1997,
GLOBECOM '97, Phoenix, AZ, November 1997.

[9]Y. Hu, Nanda, and Yang., Measurement, analysis
and performance improvement of the ApacheWeb
server, Proc. of the 18th IEEE IPCCC, (Phoenix/
Scoottsdale, Arizona), pp. 261-267, Feb. 1999.

[10] Panteleenko and Freeh, Web Server Performance
in a WAN Environment, Proc. of ICCCN, Dallas, TX,
October, 2003.

[11] Banga and Drushel, Measuring the Capacity of a
Webserver, USENIX Symposium on Internet
Technologies and Systems, Monterey, California,
December 1997

[12] Mosberger etal, httperf--A Tool for Measuring
Web Server Performance}, Hewlett-Packard Research
Labs, http://www.hpl.hp.com/personal/
David_Mosberger/httperf.html.

[13] H. Jamjoom and K. Shin, Eve: A Scalable
Network Client Emulator, University of Michigan Tech
Report, CSE-TR-478-03

[14] Ousterhout, Scripting: Higher Level Programming
for 21st Century, IEEE Computer Magazine, March
1998.

 [15] MySQL Benchmarks, http:// dev.
mysql. com/ tech-resources/benchmarks

[16] UV Ramana, Some experiments with the
performance of LAMP architecture, Masters thesis, IIT
Kanpur, 2004.

[17] Len Bass, Paul Clements and Rick Kazman,
Software Architecture in Practice, Second Edition, SEI
Series in Software Engineering, 2003

