
Dynamic Selection of Web Services with Recommendation System

Umardand Shripad Manikrao
Indian Institute of Technology, Kanpur

shripad@cse.iitk.ac.in

T.V.Prabhakar
Indian Institute of Technology, Kanpur

tvp@cse.iitk.ac.in

Abstract

The realization of the Semantic Web is underway with
the development of an arena of services providing similar
properties, capabilities, interfaces, and effects. To pick one
of such similar services that matches the user’s require-
ments is a difficult task and necessitates the use of an in-
telligent decision making framework. This paper addresses
precisely this component. We present the design of a Dy-
namic Web service selection framework that makes use of a
semantic matcher to support matching and composition of
software services. The framework also uses a recommenda-
tion system which helps a user to select the best service that
matches his requirements. This recommendation system re-
sults in evolution of the framework to dynamically adapt to
users requirements.

1. Introduction

Classical web services suffer from the limitations of the
Web Service Description Language (WSDL). WSDL is not
strong enough to address the semantics of the interface.
A semantic web service [1] however supplies Web service
providers with a core set of markup language constructs for
describing the properties and capabilities of their Web ser-
vices in an unambiguous, computer-interpretable form. To
add to the advantages of the semantic web services, the pro-
posed dynamic web service selection framework not only
addresses the limitations of a classical web service by ex-
tending WSDL and UDDI capability with semantic descrip-
tions of the service [2] but also provides an additional rec-
ommendation system to select a service from a set of similar
services.

1.1. Dynamic Web Service Selection Approach

The proposed scheme works as follows:
a) A web service user provides his requirements using a

semantic document. The requirements may vary from de-
scription of service and quality of service (QoS) parameters

like max execution time, average execution time, max re-
sponse time, average response time etc.

b) The service providers of web services would need to
register their services using service descriptions [3]. These
service descriptions will contain the semantic service pro-
file and QoS parameters like max execution time, average
execution time, max response time, average response time
etc. The service provider would also be required to specify
the location of a WSDL document describing a web service.

c) The semantic matcher will match the user request with
registered service descriptions and provide a list of available
services matching with requirements. This list will be given
to the recommendation system. The recommendation sys-
tem based on its learning through users’ feedback, orders
the list and presents to the user. Each component of the list,
finally provided to the user, may be a single service or a
composition of registered services.

The user can select a service from this list. After the ex-
ecution is over, the user may provide a rating to this service
using given metric. This rating indicates user’s satisfaction
level. It is stored in a repository and used as an input to the
recommendation.

2. Related Work

This section describes work that is going on related to
web service selection and compares it with our approach.

Digital Business Ecosystem is a concept for open source
distributed environment that can support spontaneous evo-
lution and composition of software services, components
and applications. It learns user’s needs over time and op-
timizes itself. They have used an MDA (Model Driven
Architecture) approach. The user requests a service us-
ing business models using BML[4][5] (Business Modeling
Language). This request has the functional requirement and
the non functional requirements and agreements, contracts.
This request is compiled into a service specification that in-
cludes interface, behavior and semantic of the service. The
user request in form of a service description is given to a
matching block, which gives matching services to an au-
tomatic composer for composition. It has some memory

where it stores different models and service descriptions. It
does mutation, replication of these models. This along with
selection provides evolution. Here the evolution means,
when there is a chain of web services; it can dynamically
replace one set of web services with another set of web ser-
vices. This replacement is done considering the quality of
services.

Our Approach to dynamic web service selection uses
a DAML document to specify the functional and the non
functional requirements, agreements, contracts. It has some
memory where it stores these DAML descriptions of web
services. To describe an interface of a service (technical
description of service i.e input and output parameters to
service, location of service), WSDL document is used. It
matches the DAML description of user requirements with
the DAML description of a web service to find a matching
service. Our framework also supports evolution of a web
service chain. The user feedback of a web service plays
role in a web service composition. So the service with bet-
ter quality will be considered in a composition and hence
resulting in an evolution.

Evren Sirin and his team have developed a prototype sys-
tem [6] that can compose the web services deployed on
the internet and provide filtering capabilities where large
number of similar services might be available. They use
a semantic matching algorithm for filtering. Composition
process is user driven. At each step in a composition, it
asks the user to select one of web services that can be used
at this step.

Our approach to web service selection is fully auto-
mated. At each step in a composition, we have a set of
services that we can use for the composition; we select a
service or a service composition with most popularity (high-
est rating). The popularity of a service composition will be
same as of least popular web service in a composition. Our
approach is better because it is fully automated and works
based on user experience of a web service.

The instance composition approach is to generate a com-
posite service plan out of existing services. A composition
path is proposed by Z.M.Mao [7]. This path is a sequence
of operators that computes data and connectors that provide
data transport between operators. The search for possible
operators to construct a sequence is based on the shortest
path algorithm on the graph of operator space. However,
they have considered only two kinds of services - opera-
tor and connector with one input and one output parameter.
SWORD uses a rule based expert system to determine if a
plan of composite service can be built using existing ser-
vices.

Ruoyan Zhang [8] has proposed a web service composi-
tion approach which is based on an interface matching. It
uses modified shortest path algorithm to find a composition
with less execution time. Our approach selects a compo-

sition with less execution time as it’s rating will be higher
than other compositions.

3. Architecture

Upload

Semantic
Description
Repository

ExecutionUDDI

Matcher
Semantic

Recommendation
System

Figure 1. Architecture of the Dynamic Web
Service Selection Framework

Figure 1 shows different components involved in a Dy-
namic web service selection Framework. The upload com-
ponent uploads semantic description and WSDL parameters
of a web service. The information from WSDL document
is extracted and stored in UDDI repository. The seman-
tic matcher matches semantic descriptions of services with
user requirements and proposes a list of services matching
with his requirements. The user can execute any of match-
ing services using execution environment. The recommen-
dation component asks the user to rate the executed service,
so it will be used for recommendation purpose.

4. Semantic Matcher

Service providers publish DAML-S [9] descriptions of
services to a Semantic Description Repository. A service
user gives his requirements using DAML-S description.
The semantic matcher finds the match between user require-
ment and all published service descriptions using a Seman-
tic Matching Algorithm. It along with Recommendation
System gives matching services in an order.

Figure 2 shows the detailed architecture of a Seman-
tic Matcher [10][11][6]. The Ontology Inference Engine
creates a knowledge base from the specified ontology in a
DAML-S description and a request description. Web Ser-
vice Description parser parses the Web Service Descriptions
to find out different parameters to be matched. The crite-
ria table specifies service attributes to be compared and the

Ontology Interface Engine

Ontology

Descriptiions

Web Service
Description

Web
Service

Parser

Semantic
Matching
Module

Criteria
Parser

Criteria
Table

List of Matching Services

Figure 2. Architecture of Semantic Matcher

least preferred similarity measures for those attributes. The
similarity measure can be exact, plug-in, subsumption, con-
tainer, disjoint, part of.

If the two conceptual annotations are syntactically iden-
tical, the mapping is called an Exact map. If the second
conceptual annotation specializes the first, the mapping is
called Plug-in. If the first conceptual annotation special-
izes the second, the mapping is called Subsumption map.
If the first conceptual annotation contains the second, the
mapping is called a Container map and if first conceptual
annotation is part of the second, the mapping is called Part
of map. Otherwise the mapping is called disjoint map.

4.1. Matching Algorithm

This subsection describes the matching algorithm [10]
using following definitions.

Service: A service S is defined as a set of attributes that
defines the service. Let S.A defines a set of attributes of the
service S and S.Ai defines each member of this set. Let S.N
denotes the number of attributes of service S.

Similarity Measure: The Similarity Measure (µ) of two
service attributes is the mapping that measures seman-
tic distance between the conceptual annotations associated
with the service attributes.

µ: A × A −→ {Exact, Plugin, Subsumption, Container,
part of, disjoint}

Where A is set of all attributes.
Similarity Measure Preference: Preference amongst sim-

ilarity measures is strictly governed by the following strict
order.

Exact � Plug in � Subsumption � Container and

Container � part of � Disjoint

Here a � b means a is preferred over b.

Sufficient Service Match: Let SR be a service that is re-
quested and SA be a service that is advertised. Let SR.A
be the set of attributes to be utilized for matching. It
may include both a service capability (subset of service at-
tributes directly related to its working) as well as quality
attributes(the service attributes other than service capabil-
ity). Let µi be the desired similarity measure for each ser-
vice attribute SR.Ai. A sufficient match exists between SR

and SA if the values of attributes satisfy desired similarity
measure.

Formally,

∀i∃j (SR.Ai = SA.Aj) ∧ µ(SR.Ai,SA.Aj)� µi =⇒
SuffMatch(SR,SA) 1≤i≤SR.N(1)

Let the Criteria table be denoted by C. C is a relation con-
sisting of two attributes C.A (service attributes to be com-
pared) and C.µ (least preferred similarity measure for that
attribute). Let C.Ai and C.µi denotes the attribute value and
desired similarity measure in the ith tuple of the relation and
C.N denote total number of tuples in C.

A sufficient match exist between SR and SA if for every
attribute in C.A, there exist an identical attribute of SR and
SA and values of attribute satisfy the desired similarity mea-
sure as specified in C.µ.

∀i∃j,k (C.Ai =SR.Aj =SA.Ak) ∧ µ(SR.Aj ,SA.Ak)�
C.µi =⇒ SuffMatch(SR,SA) 1≤i≤C.N (2)

The Matching algorithm is implementation of Equation
(2).

5. Recommendation System

The Dynamic Web Service Selection Framework has a
recommendation system, which recommends the best ser-
vice satisfying the user’s requirements. When a user uses a
web service, it asks user to rate a web service; so that users
can help each other to find a better web service. This is
especially important when there are more than one web ser-
vices which have same functionality but their quality of ser-
vice is different. We provide the user, a metric to help him
decide the rating of a web service. It will be a comparison
matrix of runtime behavior of a web service and the user’s
expected QoS parameters like max execution time, average
execution time, max response time, average response time
etc. Web service with better quality of service will get more
rating than other service which offers same functionality but
poor service quality.

The recommendation system uses the item based collab-
orative filtering approach [12]. As users rate web services,
it is possible to predict how a given user will rate a par-
ticular web service. Once it knows prediction of ratings to
each web service satisfying user requirements, it can recom-
mend web services in order of their ratings. This approach
looks at the set of web services the target user has rated and
computes how similar they are to the web service for which
user rating is to be predicted. Once the similar web services
are found, the prediction is computed by taking a weighted
average of the target user’s ratings on these similar web ser-
vices.

The item based collaborative filtering approach has two
aspects namely similarity computation and prediction gen-
eration.

5.1. Similarity Computation

The similarity [12][13] between two web services is
computed by subtracting the average rating of the two web
services. Considering only users who have rated both web
service A and web service B, say that there are 10 such
users, we sum the ratings that A and B got, say 65 and 85.
Clearly B is ranked higher than A by 2 on average. The sim-
ilarity between web services is computed whenever users
rate a web service. The result of similarity computation is
stored in a similarity matrix.

5.2. Prediction Generation

The prediction function [12][13] predicts how a particu-
lar user will rate a web service. It computes prediction on
a web service i for a user u by computing the sum of rat-
ings given by the user on the web services similar to i. Each
rating is weighted by the corresponding similarity Si,j be-
tween web services i and j.

Pu,i =

∑
all similar items, j

(si,j ∗ Ru,j)
∑

all similar items, j
(|si,j |)

Basically it tries to capture how the active user rates the
similar web services. The weighted sum is scaled by the
sum of the similarity terms to make sure the prediction is
within the predefined range.

If the user has used a similar service, it predicts his likely
satisfaction index for this service/service chain. If no sim-
ilar service has been used before, it considers the average
rating of all the users for similar services.

5.3. Evolution

The web service recommended by the system can be a
single service or composition of web services. As user rat-
ings of web services changes, the recommendation system
evolves.

A B

C1

C2

D
2 2

2

2

2

Figure 3. Initial Configuration of Recommen-
dation System

As shown in Figure 3, there is a single user and five
web services A, B, C1, C2, D in the recommendation sys-
tem. Each of theses services has rating 2. The user request
matches with service chains A, B, C1, D and A, B, C2, D.

A B

C1

C2

D

2

5

5
5

5

Figure 4. Evolution of Recommendation Sys-
tem

The user selects a service chain A, B, C2, D for execution
and rates this service composition as 5. The rating given

to a service chain is assigned to individual components in
the service chains. When a service chain is considered for
recommendation, the rating of a service chain is same as
lowest rating of components in a chain. So rating of service
chain A, B, C1, D is 2 and the rating of service chain A, B,
C2, D is 5. As shown in Figure 4, when the user gives the
same request, the recommendation system recommends ser-
vice chain A, B, C2, D as first recommendation and service
chain A, B, C1, D as it’s second recommendation.

6. Conclusion and Future work

This paper proposes a dynamic web service selection
framework which combines a recommendation system with
semantic matching of service requirements. The matching
service can be a single service or composition of registered
services. The recommendation system is based on user
feedback and collaborative filtering techniques. It helps the
user in selecting a web service from a set of similar services.

Our system does not provide facility for generation of
DAML descriptions of a web services. It would be help-
ful to have this facility. The Model Driven Architecture
(MDA) approach is useful to ease code generation for web
service providers and to specify user requirements. The re-
quirements can be specified using technology independent
models of business concepts and then those can be mapped
to technology dependent service specifications. Similarly
web service providers will specify business models of their
services and then those can be mapped to platform specific
code.

References

[1] Sheila A. McIlraith, Tran Cao Son, and Honglei
Zeng. “Semantic Web Services”, IEEE Intelligent Sys-
tems. Special Issue on the Semantic Web. 16(2):46–53,
March/April, 2001.

[2] Rama Akkiraju, Richard Goodwin, Prashant Doshi,
Sascha Roeder. “A Method for Semantically Enhanc-
ing the Service Discovery Capabilities of UDDI”. In
the Proceedings of IJCAI Information Integration on
the Web Workshop, Acapulco, Mexico, August 2003.

[3] Anupriya Ankolekar, Mark Burstein, Jerry Hobbs J.,
et al. DAML-S. “Web Service Description for the Se-
mantic Web”, In the Proceedings of First International
Semantic Web Conference. (ISWC02), 2002

[4] Paolo Dini, Neil Rathbone, Tuija Helokunnas, Angelo
Corrallo, Pierfranco Ferronato. “Towards semantically
rich business language for the automatic composition
of web service”, eBRF 2003 Conference, September,
2003.

[5] Thomas Heistracher, Thomas kurz, Angelo Corallo,
Paolo Dini, “Pervasive Architecture for a Digital Busi-
ness Ecosystem”, First International Workshop on Co-
ordination and Adaption Techniques for Software En-
tities(WCAT04), June, 2004.

[6] Evren Sirin, Bijan Parsia, and James Hendler. “Fil-
tering and Selecting Semantic Web Services with In-
teractive Composition Techniques”, IEEE Intelligent
Systems, 19(4):42-49, 2004.

[7] Z.M.Mao, E. R Brewer, and R.H.Kartz. “Fault toler-
ant, Scalable, wide area Internet service composition”,
U.C. Berkeley Technical Report UCB//CSD-01-1129,
January, 2001.

[8] Ruoyan Zhang, I Budak Arpinar, and Boanerges
Aleman-Meza. “Automatic composition of semantic
Web Services”, ICWS 2003: 38-41, June, 2003.

[9] DAML Technical Committee. DARPA Agent Markup
Language- DAML. http://www.daml.org

[10] Prashant Doshi, Richard Goodwin, Rama
Akkiraju. “Parameterized Semantic Match-
ing for Workflow Composition”, IBM Research
Report,RC23133(W0403-026), March, 2004.

[11] M. Paolucci et al. “Semantic Matching of Web Ser-
vices Capabilities”, The Semantic Web-ISWC 2003:
1st Int’l Semantic Web Conf., LNCS 2342, Springer-
Verlag, 2002, p.333.

[12] Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. “Item-based Collaborative Filtering Rec-
ommendation Algorithms”. In the Proceedings of the
10 International World Wide Web Conference. Hong
Kong, 2001.

[13] Daniel Lemire, Sean McGrath. “Implementing a
Rating-Based Item-to-Item Recommender System in
PHP/SQL”, Technical Report D-01, January, 2005.

