On Indecomposability Preserving Elimination Sequences

Chandan K. Dubey and Shashank K. Mehta

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur
Kanpur, India - 208016

Modules

Let $G=(V, E)$ be an undirected graph. A subset M of V is called an interval (or clan, homogeneous set, module) of G if for any $a, b \in M$ and $c \in V \backslash M,(a, c) \in E$ if and only if $(b, c) \in E$.

Indecomposable Graphs

- Singletons and entire V are trivial modules.
- Graphs with no non-trivial modules are called indecomposable (or prime or primitive) graphs.
- A vertex in an indecomposable graph is called critical if on its removal the residual graph becomes decomposable. If all vertices of a graph are critical, then the graph itself is called critical. Schmerl and Trotter have completely characterized these graphs.

X-Critical Graphs

X-critical graphs are a direct generalization of critical indecomposable graphs

- Let $G=(V, E)$ be an indecomposable graph with $X \subseteq$ V s.t. $G(X)$ is also indecomposable.
- $G(V-\{v\})$ is decomposable for all $v \in V-X$.
- Critical graphs are the same as \emptyset-critical graphs.

Motivation

P. Ille has shown that if $G=(V, E)$ is an indecomposable graph and $X \subset V$ such that induced subgraph $G(X)$ is also indecomposable with $3 \leq|X| \leq|V|-2$, then there exist a pair of vertices $x, y \in V-X$ such that $G(V-\{x, y\})$ is also indecomposable.

This points to the existence of an indecomposability preserving elimination sequence. The proof being existential, it costs $O\left(n^{2}(n+m)\right)$ to find such a pair and computation of the elimination sequence takes $O\left(n^{3}(n+m)\right)$.

Main Result: Elimination Sequence of X critical Graphs

Theorem Let $G=(V, E)$ be an X-critical graph. Then

- $V-X$ can be partitioned into pair of vertices, called locked pairs $\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{k}, b_{k}\right\}$.
- Removing any subset of these pair of vertices preserves X-criticality, so the set of pairs is called commutative elimination sequence (CES).

Other Results

Remaining results are as follows:

- CES of an X-critical graph can be computed in $O\left(n^{2}\right)$.
- The commutative elimination sequence is unique.
> Given an indecomposable graph $G=(V, E)$ and $X \subset V$, a pair $x, y \in V-X$ can be computed in $O(n(n+m))$ such that $G(V-\{x, y\})$ is indecomposable (a constructive proof of Ille's theorem.)
> This result leads to an order $|V|$ faster algorithm for elimination sequence for general indecomposable graphs (sequence of pairs with at most one singleton at the end.)

Computation of CES in X-Critical Graphs

Given a graph $G=(V, E)$ and $Y \subset V$ such that $G(Y)$ is indecomposable. Then $V-Y$ can be partitioned into three types of classes. This partition is denoted by $\mathcal{C}(V-Y, Y)$.
> $\operatorname{Extn}(Y)$ contain $u \in V-Y$ such that $G(Y \cup\{u\})$ is indecomposable.
> $[Y]$ contain $u \in V-Y$ such that Y is a module in $G(Y \cup\{u\})$.
> eq (x), where $x \in Y$, contains $u \in V-Y$ such that $\{x, u\}$ is a module in $G(Y \cup\{u\})$.

Computation of CES in X-Critical Graphs

Starting with $Y=X$ do the following $i=1$ to $|V-X| / 2$:

- Let a_{i} be any vertex in any class $e q(x)$ for any $x \in Y$. Include it in Y and update $\mathcal{C}(V-Y, Y)$.
- Let b_{i} be any vertex in $\operatorname{extn}(Y)$. Include it in Y and update $\mathcal{C}(V-Y, Y)$.
> If $b_{i} \in e q(y)$ and unordered pair (x, y) is same $\left(a_{j}, b_{j}\right)$ for some $j<i$, then redefine $\left(a_{j}, b_{j}\right)$ to be $\left(a_{i}, b_{j}\right)$ and $\left(a_{i}, b_{i}\right)$ to be $\left(a_{j}, b_{i}\right)$.

Complexity is $O\left(n^{2}\right)$.

Uniqueness

L Let S_{1} and S_{2} be to distinct commutative elimination sequence.

- Consider $G(X \cup P)$, where P is the set of pairs which are in both S_{1} and S_{2}. Call $Y=X \cup P$.
> If $\left\{a_{1}, b_{1}\right\}$ is a pair in S_{1} which is not in S_{2} then there must be pairs $\left\{a_{1}, b_{2}\right\}$ and $\left\{a_{2}, b_{1}\right\}$ in S_{2}. Let $Z=$ $Y \cup\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$.
- Note that $\left\{a_{2}, b_{2}\right\}$ is a locked pair since Y and $Y \cup$ $\left\{a_{2}, b_{2}\right\}$ are both X-critical.

$>$ For each $i, j \in\{1,2\}$ consider the classes of $\mathcal{C}\left(\left\{a_{i}, b_{j}\right\}, Z-p_{i j}\right)$.
> a_{1} belongs to neither $\left[Z-\left\{a_{1}, b_{1}\right\}\right]$ nor $\left[Z-\left\{a_{1}, b_{2}\right\}\right]$.
> This leads to the conclusion that $a_{1} \in e q_{Z-\left\{a_{1}, b_{1}\right\}}\left(p_{1}\right)$ and $a_{1} \in e q_{Z-\left\{a_{1}, b_{2}\right\}}\left(p_{2}\right)$ for some p_{1} and p_{2}.
> $p_{1}=p_{2}=a_{2}$.
- We have shown that $\left\{a_{1}, a_{2}\right\}$ is a module of $G\left(Z-\left\{b_{1}\right\}\right)$ as well as of $G\left(Z-\left\{b_{2}\right\}\right)$. Therefore $\left\{a_{1}, a_{2}\right\}$ must also be a module of $G(Z)$ which is known to be X-critical. Therefore we conclude that S_{1} and S_{2} cannot be distinct.

Elimination Sequence of General Indecom-

posable Graphs

- Given a graph $G=(V, E)$ be indecomposable, $X \subset V$ and $a \in V-X$ such that $G(V-\{a\})$ is X-critical. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ be any three locked pairs in the CES of $G(V-\{a\})$. Then there exists $i \in\{1,2,3\}$ such that $G\left(V-\left\{a_{i}, b_{i}\right\}\right)$ is indecomposable.
- Gives a $O(n(n+m))$ algorithm for finding a pair of vertices in arbitrary indecomposable graphs preserving indecomposability.
- That, in turn, allows to compute an elimination sequence for arbitrary indecomposable graph in $O\left(n^{2}(n+m)\right)$.

Thank You!

