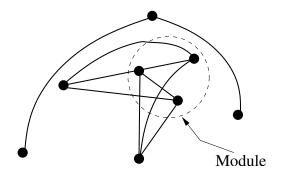
On Indecomposability Preserving Elimination Sequences

Chandan K. Dubey and Shashank K. Mehta

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Kanpur, India - 208016

Modules

Let G = (V, E) be an undirected graph. A subset M of V is called an interval (or clan, homogeneous set, module) of G if for any $a, b \in M$ and $c \in V \setminus M$, $(a, c) \in E$ if and only if $(b, c) \in E$.



Indecomposable Graphs

- Singletons and entire V are trivial modules.
- Graphs with no non-trivial modules are called indecomposable (or prime or primitive) graphs.
- A vertex in an indecomposable graph is called *critical* if on its removal the residual graph becomes decomposable. If all vertices of a graph are critical, then the graph itself is called critical. Schmerl and Trotter have completely characterized these graphs.

X-Critical Graphs

 $X\mathchar`-critical graphs are a direct generalization of critical indecomposable graphs$

- Let G = (V, E) be an indecomposable graph with $X \subseteq V$ s.t. G(X) is also indecomposable.
- $G(V \{v\})$ is decomposable for all $v \in V X$.
- Critical graphs are the same as \emptyset -critical graphs.

Motivation

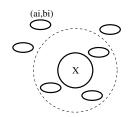
P. Ille has shown that if G = (V, E) is an indecomposable graph and $X \subset V$ such that induced subgraph G(X) is also indecomposable with $3 \leq |X| \leq |V| - 2$, then there exist a pair of vertices $x, y \in V - X$ such that $G(V - \{x, y\})$ is also indecomposable.

This points to the existence of an indecomposability preserving elimination sequence. The proof being existential, it costs $O(n^2(n+m))$ to find such a pair and computation of the elimination sequence takes $O(n^3(n+m))$.

Main Result: Elimination Sequence of X-critical Graphs

Theorem Let G = (V, E) be an X-critical graph. Then

- ► V X can be partitioned into pair of vertices, called *locked pairs* $\{a_1, b_1\}, \ldots, \{a_k, b_k\}.$
- ► Removing any subset of these pair of vertices preserves X-criticality, so the set of pairs is called *commutative elimination sequence* (CES).



Other Results

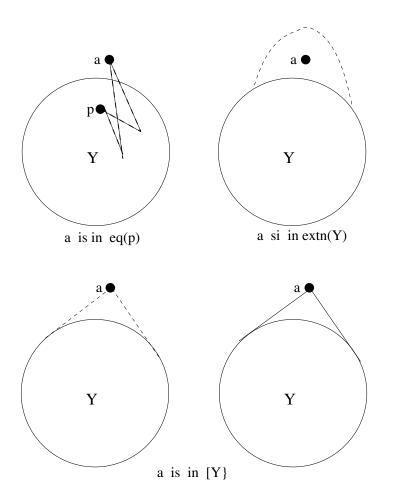
Remaining results are as follows:

- \blacktriangleright CES of an X-critical graph can be computed in $O(n^2)$.
- ► The commutative elimination sequence is unique.
- ➤ Given an indecomposable graph G = (V, E) and X ⊂ V, a pair x, y ∈ V − X can be computed in O(n(n + m)) such that G(V − {x, y}) is indecomposable (a constructive proof of Ille's theorem.)
- ➤ This result leads to an order |V| faster algorithm for elimination sequence for general indecomposable graphs (sequence of pairs with at most one singleton at the end.)

Computation of CES in *X*-**Critical Graphs**

Given a graph G = (V, E) and $Y \subset V$ such that G(Y) is indecomposable. Then V - Y can be partitioned into three types of classes. This partition is denoted by $\mathcal{C}(V - Y, Y)$.

- ▶ Extn(Y) contain $u \in V Y$ such that $G(Y \cup \{u\})$ is indecomposable.
- ▶ [Y] contain $u \in V Y$ such that Y is a module in $G(Y \cup \{u\})$.
- ▶ eq(x), where $x \in Y$, contains $u \in V Y$ such that $\{x, u\}$ is a module in $G(Y \cup \{u\})$.



Computation of CES in *X*-**Critical Graphs**

Starting with Y = X do the following i = 1 to |V - X|/2:

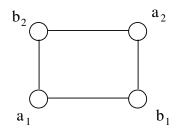
- ► Let a_i be any vertex in any class eq(x) for any $x \in Y$. Include it in Y and update C(V - Y, Y).
- ► Let b_i be any vertex in extn(Y). Include it in Y and update C(V Y, Y).
- ▶ If $b_i \in eq(y)$ and unordered pair (x, y) is same (a_j, b_j) for some j < i, then redefine (a_j, b_j) to be (a_i, b_j) and (a_i, b_i) to be (a_j, b_i) .

Complexity is $O(n^2)$.

Uniqueness

- \blacktriangleright Let S_1 and S_2 be to distinct commutative elimination sequence.
- ➤ Consider $G(X \cup P)$, where P is the set of pairs which are in both S_1 and S_2 . Call $Y = X \cup P$.
- ▶ If $\{a_1, b_1\}$ is a pair in S_1 which is not in S_2 then there must be pairs $\{a_1, b_2\}$ and $\{a_2, b_1\}$ in S_2 . Let $Z = Y \cup \{a_1, a_2, b_1, b_2\}$.

Note that $\{a_2, b_2\}$ is a locked pair since Y and $Y \cup \{a_2, b_2\}$ are both X-critical.



- For each $i, j \in \{1, 2\}$ consider the classes of $C(\{a_i, b_j\}, Z p_{ij}).$
- ▶ a_1 belongs to neither $[Z \{a_1, b_1\}]$ nor $[Z \{a_1, b_2\}]$.
- ▶ This leads to the conclusion that $a_1 \in eq_{Z-\{a_1,b_1\}}(p_1)$ and $a_1 \in eq_{Z-\{a_1,b_2\}}(p_2)$ for some p_1 and p_2 .

►
$$p_1 = p_2 = a_2$$
.

➤ We have shown that {a₁, a₂} is a module of G(Z - {b₁}) as well as of G(Z - {b₂}). Therefore {a₁, a₂} must also be a module of G(Z) which is known to be X-critical. Therefore we conclude that S₁ and S₂ cannot be distinct.

Elimination Sequence of General Indecomposable Graphs

- ➤ Given a graph G = (V, E) be indecomposable, $X \subset V$ and $a \in V - X$ such that $G(V - \{a\})$ is X-critical. Let $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ be any three locked pairs in the CES of $G(V - \{a\})$. Then there exists $i \in \{1, 2, 3\}$ such that $G(V - \{a_i, b_i\})$ is indecomposable.
- ➤ Gives a O(n(n+m)) algorithm for finding a pair of vertices in arbitrary indecomposable graphs preserving indecomposability.
- That, in turn, allows to compute an elimination sequence for arbitrary indecomposable graph in $O(n^2(n+m))$.

Thank You!