Cyber-Security: Learning from Relational Data

Piyush Rai

Dept. of CSE, IIT Kanpur

Nov 27, 2015

Piyush Rai (CSE, IIT Kanpur)

Cyber-Security: Learning from Relational Data

3

Probabilistic Machine Learning

• Machine Learning via probabilistic modeling of data

• Data assumed generated from a probability model

$$\mathbf{x}_1, \dots, \mathbf{x}_N \sim p(\mathbf{x}|\theta)$$

• **Unified perspective**; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.

Probabilistic Machine Learning

• Machine Learning via probabilistic modeling of data

• Data assumed generated from a probability model

$$\mathbf{x}_1, \dots, \mathbf{x}_N \sim p(\mathbf{x}|\theta)$$

- **Unified perspective**; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.
- Handling missing data, outliers, skewness, temporal evolution, etc.
- Easily incorporate prior beliefs, quantify uncertainty (Bayesian learning)

Probabilistic Machine Learning

• Machine Learning via probabilistic modeling of data

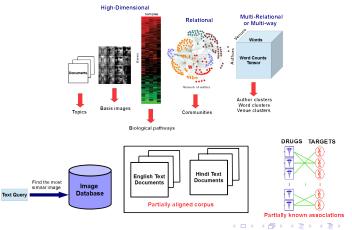
• Data assumed generated from a probability model

$$\mathbf{x}_1, \dots, \mathbf{x}_N \sim p(\mathbf{x}|\theta)$$

- **Unified perspective**; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.
- Handling missing data, outliers, skewness, temporal evolution, etc.
- Easily incorporate prior beliefs, quantify uncertainty (Bayesian learning)
- Enables principled combinations of simpler paradigms to solve complex tasks

My Research

- Learning from complex, messy, heterogeneous data
- Focus: Feature representation learning, Cross-modal/Transfer Learning, reducing labeling costs, scalability (online/distributed learning), model-size adaptability as data grows (nonparametric models)



Relational Data in the "Networked" World

• A natural represention of various types of data in the cyber-space, e.g.,

- Physical networks
- Links between webpages
- · Links between users on social networks
- Links across networks
- Almost all of this data is also time-evolving in nature

Picture source: growingsocialmedia.com

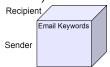
Piyush Rai (CSE, IIT Kanpur)

(日) (同) (三) (三)

Relational Data as Graphs

• Unipartite graphs and bipartite graphs

• Multi-dimensional graphs ("tensors")



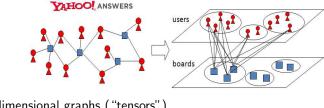
• Dynamic/time-evolving graphs

A B > A B >

Picture source: www.aboutdm.com

Relational Data as Graphs

• Unipartite graphs and bipartite graphs



• Multi-dimensional graphs ("tensors") Recipient Sender

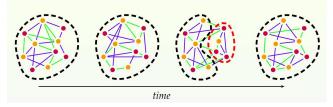
• Dynamic/time-evolving graphs

A D > A B > A B >

Picture source: www.aboutdm.com

Cyber-Security Problems on Relational Data

- Anomaly detection
 - Anomalous nodes
 - Anomalous edges
 - Anomalous sub-communities
- Detecting/predicting change-points in evolving graphs



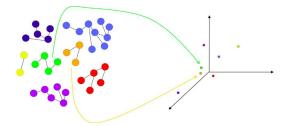
• Learning good representations of the data is key

(日) (同) (三) (三)

Picture courtesy: http://www.cis.jhu.edu/ parky/

Embeddings to Represent Relational Data

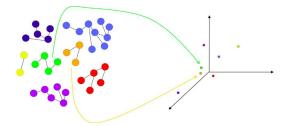
• Embedding relational data (graphs) to a vector space



- Allows performing various machine learning tasks such as clustering, classification, anomaly detection, etc., using the learned embeddings
- A challenging problem in general

Embeddings to Represent Relational Data

• Embedding relational data (graphs) to a vector space

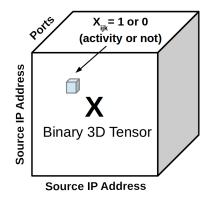


- Allows performing various machine learning tasks such as clustering, classification, anomaly detection, etc., using the learned embeddings
- A challenging problem in general

[ICDM 2013, ICML 2014, ECML 2015, UAI 2015, NIPS 2015 + forthcoming]

Tensors or "Multi-Relational" Data

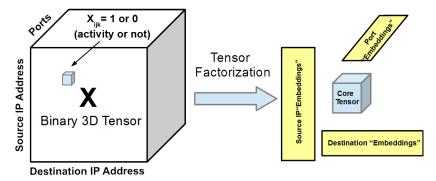
Tensors are useful for encoding multi-way relations



э

Tensor Factorization

Tensor factorization allows embeddings the entities of each "way" of the tensor

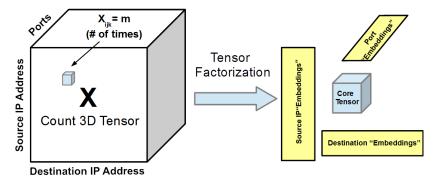


э

・ロト ・個ト ・ヨト ・ヨト

Tensor Factorization

Tensor factorization allows embeddings the entities of each "way" of the tensor



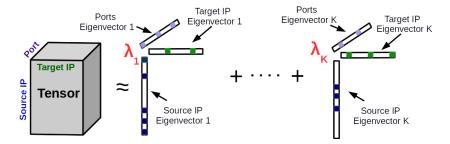
Embeddings can be used as a feature representation

э

イロト 不得 トイヨト イヨト

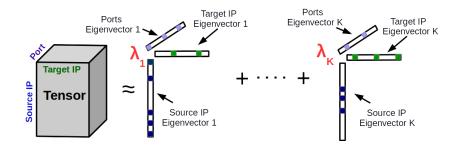
Tensor Factorization

An SVD like approach: express a tensor as a weighted sum of K rank-one tensors



(日) (同) (三) (三)

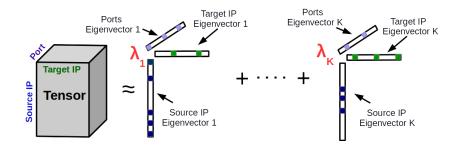
Tensor Factorization: Challenges



- Significant amounts of of missing data
- Interpretability (desirable, e.g., sparse and non-negative eigenvectors)
- Modeling the time-dimension (useful for forecasting)
- Integrating sources of side-information
- Scalability for massive tensors

(日) (同) (三) (三)

Tensor Factorization: Challenges

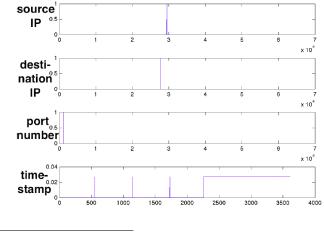


- Significant amounts of of missing data
- Interpretability (desirable, e.g., sparse and non-negative eigenvectors)
- Modeling the time-dimension (useful for forecasting)
- Integrating sources of side-information
- Scalability for massive tensors

[ICML 2014, AAAI 2015, ECML 2015, UAI 2015 + forthcoming]

Tensor Factorization for Anomaly Detection

Data: a four-way tensor Source IP \times Dest. IP \times Port \times Time Eigenvectors of this tensor can identify normal vs anomalous behavior^1

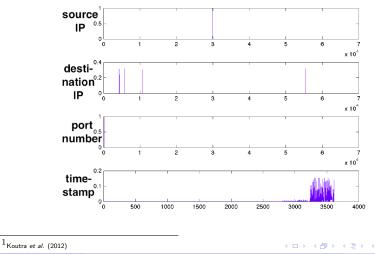


¹Koutra et al. (2012)

Piyush Rai (CSE, IIT Kanpur)

Tensor Factorization for Anomaly Detection

Data: a four-way tensor Source IP \times Dest. IP \times Port \times Time Eigenvectors of this tensor can identify normal vs anomalous behavior^1



Piyush Rai (CSE, IIT Kanpur)

Other Work Relevant to Cyber-Security

- Probabilistic modeling of rare-events
- Learning only from positive examples
- Time-series of count-data (via Poisson Processes)
- Privacy preserving machine learning (private Bayesian inference)

Thanks! Questions?

э

・ロト ・個ト ・ヨト ・ヨト