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Recap
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Optimization vs Inference

All ML problems require estimating parameters given data. Primarily two views:

1. Learning as Optimization

Parameter θ is a fixed unknown

Seeks a point estimate (single best answer) for θ

θ̂ = arg min
θ

Loss(D; θ) subject to constraints on θ

Probabilistic methods such as MLE and MAP also fall in this category

2. Learning as (Bayesian) Inference

Parameter θ is a random variable with a prior distribution P(θ)

Seeks a posterior distribution over the parameters

P(θ | D) =
P(D | θ)P(θ)

P(D)
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Bayesian Learning

Prior distribution specifies our prior belief/knowledge about parameters θ

Bayesian inference updates the prior and gives the posterior
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Why be Bayesian?

Posterior P(θ|D) quantifies uncertainty in the parameters

More robust predictions by averaging over the posterior P(θ|D)

P(dtest |θ̂) vs P(dtest |D) =

∫
P(dtest |θ)P(θ|D)dθ

Allows inferring hyperparameters of the model and doing model comparison

Offers a natural way for informed data acquisition (active learning)

Can use the predictive posterior of unseen data points to guide data selection

Can do nonparametric Bayesian modeling
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Nonparametric Bayesian Learning

How big/complex my model should be? How many parameters suffice?

Model-selection or cross-validation, can often be expensive and impractical

Nonparametric Bayesian Models: Allow unbounded number of parameters

The model can grow/shrink adaptively as we observe more and more data

We “let the data speak” how complex the model needs to be
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What’s a Nonparametric Bayesian Model?

An NPBayes model is NOT a model with no parameters!

It has potentially infinite many (unbounded number of) parameters

It has the ability to “create” new parameters if data requires so..

Some non-Bayesian models are also nonparametric. For example: nearest
neighbor regression/classification, kernel SVMs, kernel density estimation

NPBayes models offer the benefits of both Bayesian modeling and
nonparametric modeling
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Examples of NPBayes Models

Some modeling problems and NPBayes models of choice1:

1Table courtesy: Zoubin Ghahramani
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Gaussian Process

A Gaussian Process (GP) is a distribution over functions f : f ∼ GP(µ,Σ)

.. such that f ’s value at a finite set of points x1, . . . , xN is jointly Gaussian

{f (x1), f (x2), . . . , f (xN)} ∼ N (µ,K)

If µ = 0, a GP is fully specified by its covariance (kernel) matrix K

Covariance matrix defined by a kernel function k(xn, xm). Some examples:

k(xn, xm) = exp
(
− ||xn−xm||2

2σ2

)
: Gaussian kernel

k(xn, xm) = v0 exp
{
−
(
|xn−xm|

r

)α}
+ v1 + v2δnm

GP based modeling also allows learning the kernel hyperparameters from data
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Gaussian Process

Left: some functions drawn from a GP prior N (0,K)

Right: posterior over these functions after observing 5 examples {xn, yn}
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Gaussian Process Regression

Training data: {xn, yn}Nn=1. Response is a noisy function of the input

yn = f (xn) + εn

Assume a zero-mean Gaussian error

p(ε|σ2) = N (ε|0, σ2)

Leads to a Gaussian likelihood model for the responses

p(yn|f (xn)) = N (yn|f (xn), σ2)

Denote y = [y1, . . . , yN ]> ∈ RN , f = [f (x1), . . . , f (xN)]> ∈ RN and write

p(y |f) = N (y |f, σ2IN)

In GP regression, we assume f drawn from a GP

p(f) = N (f|0,K)
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Gaussian Process Regression

The likelihood model
p(y |f) = N (y |f, σ2IN)

The prior distribution
p(f) = N (f|0,K)

The marginal distribution over the responses y

p(y) =

∫
p(y |f)p(f)df = N (y |0, σ2IN + K)
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Making Predictions

Recall, the marginal distribution over the responses y = [y1, . . . , yN ]

p(y) = N (y |0, σ2IN + K) = N (y |0,CN)

Adding the response y∗ of a new test point x∗

p([y , y∗]) = N ([y , y∗]|0,CN+1)

where the (N + 1)× (N + 1) matrix CN+1 is given by

CN+1 =

[
C k∗

k∗
> c

]
and k∗ = [k(x∗, x1), . . . , k(x∗, xN)], c = k(x∗, x∗) + σ2
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Making Predictions on Test Data

Recall p([y , y∗]) = N ([y , y∗]|0,CN+1). The predictive distribution will be

p(y∗|y) =
p([y , y∗])

p(y)

p(y∗|y) = N (y∗|m(x∗), σ
2(x∗))

m(x∗) = k∗
>C−1N y

σ2(x∗) = c − k∗
>C−1N k∗

Note that for GP regression, exact inference is possible at test time!
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Interpreting GP predictions..

Let’s look at the predictions made by GP regression

p(y∗|y) = N (y∗|m(x∗), σ
2(x∗))

m(x∗) = k∗
>C−1N y

σ2(x∗) = c − k∗
>C−1N k∗

Two interpretations for the mean prediction m(x∗)

An SVM like interpretation

m(x∗) = k∗
>C−1

N y = k∗
>α =

N∑
n=1

k(x∗, xn)αn

where α is akin to the weights of support vectors

A nearest neighbors interpretation

m(x∗) = k∗
>C−1

N y = w
>
y =

N∑
n=1

wnyn

where w is akin to the weights of the neighbors
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Inferring Hyperparameters

Recall, the marginal distribution over the responses y = [y1, . . . , yN ]

p(y |σ2, θ) = N (y |0, σ2IN + Kθ)

Can maximize the (log) marginal likelihood w.r.t. σ2 and the kernel
hyperparameterss θ and get point estimates of the hyperparameters

log p(y |σ2, θ) = −1

2
log |σ2IN + Kθ| −

1

2
y
>(σ2IN + Kθ)−1y + const

Note: Can also put hyperpriors on the hyperparameters and infer the
hyperparameters in a fully Bayesian manner
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Gaussian Process Classification

Non-binary labels (multiclass, counts, etc.) can also be easily handled
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GP vs (Kernel) SVM

The objective function of a soft-margin SVM looks like

1

2
||w ||2 + C

N∑
n=1

(1− ynfn)+

where fn = w
>
xn and yn is the true label for xn

Kernel SVM: fn =
∑N

m=1 αmk(xn, xm). Denote f = [f1, . . . , fN ]>

We can write ||w ||
2

2 = α>Kα = f>K−1f, and kernel SVM objective becomes

1

2
f>K−1f + C

N∑
n=1

(1− ynfn)+

Negative log of the likelihood p(f|X) of a GP can be written as

1

2
f>K−1f−

N∑
n=1

log p(yn|fn) + const
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GP vs (Kernel) SVM

Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs

Both GP and SVM need dealing with (storing/inverting) large kernel matrices

Various approximations proposed to address this issue (applicable to both)

Ability to learn the kernel hyperparameters in GP is very useful, e.g.,

Learning the kernel bandwidth for Gaussian kernels

k(xn, xm) = exp

(
−||xn − xm||2

2σ2

)

Doing feature selection (via Automatic Relevance Determination)

k(xn, xm) = exp

(
−

D∑
d=1

(xnd − xmd)2

2σd
2

)

Learning compositions of kernels for more flexible modeling

K = Kθ1 + Kθ2 + . . .
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Other Usage of GP

Nonlinear Dimensionality Reduction: Gaussian Process Latent Variable
Models

Bayesian Optimization: Optimizing functions that have an unknown
functional form and are expensive to evaluate

Deep Gaussian Processes: Data assumed to be an output of a multivariate
GP, inputs to each GP are outputs of another GP, and so on..

Many applications: Robotics and control, vision, spatial statistics, and so on..
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Resources on Gaussian Processes

Book: Gaussian Processes for Machine Learning (freely available online)

MATLAB Packages: Useful to play with, build applications, extend existing
models and inference algorithms for GPs (both regression and classification)

GPML: http://www.gaussianprocess.org/gpml/code/matlab/doc/

GPStuff: http://research.cs.aalto.fi/pml/software/gpstuff/
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Next Talk

Nonparametric Bayesian models for mixture modeling (clustering): Dirichlet
Processes and Chinese Restaurant Process

Nonparametric Bayesian models for latent factor modeling (dimensionality
reduction): Beta Processes and Indian Buffet Process
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Thanks! Questions?
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