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Object Detection

What is Detection ?

Detecting an object in an image involves predicting the
location of the bounding box containing it, if it is present.
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Training a Detector

Training a Detector

Weakly supervised setting

Set of images as input, where each image has an associated
label.

Labels only denote the presence or absence of the object of
interest.

No explicit information about location of the object in the
image.
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Hard Examples

Problem with hard examples ?

Including such examples in the training data naively may
deteriorate the performance of the classifier, as these hardly
have any structural resemblance to actual positives.
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Aim

What is our input ?

A set of images with weak supervision, where some examples
are hard.

What do we want to achieve ?

Some measure of the hardness for each training example.

Careful training using the hardness information.

Ultimately, building a detector model which is robust to hard
examples.
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RANSAC Algorithm

RANDOM SAMPLE CONSENSUS, Fischler and Bolles, 1981

Learning technique to estimate model parameters by random
sampling of observed data.

Highly robust to outliers.
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RANSAC Algorithm

RANSAC Algorithm : Fischler and Bolles, SRI 1981

1 Select a random subset of the original data called probable
inliers.

2 Build a model using the above inliers.

3 Test the rest of the data using the model above.

4 If majority of the data agree with the model then accept it,
else reject and repeat from 1 to 4.

5 Rebuild model using all accepted data points.
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RANSAC SVM

RANSAC SVM : Nishida and Kurita, ICPR 2008

1 Select a random subset of the original data called probable
inliers.

2 Build a SVM classifier model using the above inliers.

3 Classify the rest of the data using the model above.

4 If majority of the data get properly classified by the model
then accept it, else reject and repeat from 1 to 4.

5 Rebuild model using all accepted examples.
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RANSAC SVM

Thus, RANSAC SVM

Tries to find the ”best model” which agrees with majority of
the training data.

Examples being misclassified by the ”best model” can be
considered as outliers.

Thus uses the score of just one model to decide the set of
outliers.
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Outlier Robust SVM

Outlier Robust SVM : Subhabrata Debnath, Anjan Banerjee, Vinay
Namboodiri, BMVC 2015

1 Select a random subset of the original data called probable
inliers.

2 Build a SVM classifier model using the above inliers.

3 Classify the rest of the data using the model above.

4 Increment the misclassification score of each misclassified
example.

5 Repeat 1 to 5 enough number of times.

6 Use the examples with the smallest number of
misclassifications to build a SVM classifier model.

7 Classify all of the training data again.

8 Declare all the misclassified examples as outliers.
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Outlier Robust SVM

Thus, Outlier Robust SVM

Tries to find the ”best subset” which agrees with majority of
the training data.

Uses misclassification as a parameter to approximate
outlierness.

Thus uses the score of many small models to decide the set of
outliers.

Finally, exploits the property that hard examples behave like
outliers as they differ in their feature space as compared to
ordinary examples.
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Latent SVM

Latent SVM : Yu, Joachims, ICML 2009

In a typical latent svm framework, the model parameter w is learnt
by solving the following optimization problem:

min
w ,ξi≥0

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (1)

s.t.

max
hi∈H

wTΦ(xi , yi , hi )− max
ĥi∈H,ŷi∈Y

wTΦ(xi , ŷi , ĥi ) ≥ ∆(yi , ŷi )− ξi ,

∀ŷi ∈ Y , ∀ĥi ∈ H, i = 1, ..., n.

Classification rule :

arg max
y ,h

〈w , φ(xi , y , h)〉
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Latent SVM

Latent SVM : Aim

To learn a bounding box detector using image features and
class labels

Latent SVM : Basic steps

1 Using the training image and labels learn an initial model w.

2 For each image, find the highest scoring bounding box using
current w.

3 Using these bounding boxes re-learn model w.

4 Repeat 2 to 4 till desired precision.

Latent SVM : Test

Find the highest scoring bounding box in the test image.

If score is >threshold, output the bounding box as positive or
output negative.
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Latent SVM

Latent SVM : Yu, Joachims, ICML 2009

For a particular w, the value of ξi is an upper bound on the
loss ∆(yi , ŷi ).

Equation 1 is basically minimizing the difference of two convex
functions or equivalently minimizing a concave-convex sum.

Can be solved by the Concave Convex Procedure
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Latent SVM

The Concave Convex Procedure : Yuille and Rangarajan, NIPS
2002

Solves the optimization :

min
w ,ξi≥0

1

2
‖w‖2 +

C

n

n∑
i=1

[ max
ĥi∈H,ŷi∈Y

(wTΦ(xi , ŷi , ĥi ) + ∆(yi , ŷi ))

- max
hi∈H

wTΦ(xi , yi , hi )](2)

Assumes an initial value of the model parameter.

Solves for the model and latent parameters alternatively by
fixing the other.

High dependence on initialization of latent variables.
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ĥi∈H,ŷi∈Y

(wTΦ(xi , ŷi , ĥi ) + ∆(yi , ŷi ))
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Method Overview

Better initialization ?

Problem

Due to presence of hard examples in data, initialization
becomes even more important.

Solution

Exclude outliers declared by Outlier Robust SVM from model
initialization.

Can we improve any further ?

Impose an ordering on training.
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Method Overview

Self Paced Learning : P. Kumar, B. Packer, and D. Koller, NIPS
2010

Teach easy examples first, followed by harder examples
gradually.

Easiness directly proportional to distance from the hyperplane.

New objective function :

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n

n∑
i=1

viξi −
1

K

n∑
i=1

vi (3)

Variables vi indicate whether i th sample is easy or not.

Solved using alternate convex search.

Considers all samples in the final iteration, thus provides the
same guarantees as CCCP.



Problem Statement Background Method Description Results Conclusion and Future Scope

Method Overview

Self Paced Learning : P. Kumar, B. Packer, and D. Koller, NIPS
2010

Teach easy examples first, followed by harder examples
gradually.

Easiness directly proportional to distance from the hyperplane.

New objective function :

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n

n∑
i=1

viξi −
1

K

n∑
i=1

vi (3)

Variables vi indicate whether i th sample is easy or not.

Solved using alternate convex search.

Considers all samples in the final iteration, thus provides the
same guarantees as CCCP.



Problem Statement Background Method Description Results Conclusion and Future Scope

Method Overview

Self Paced Learning : P. Kumar, B. Packer, and D. Koller, NIPS
2010

Teach easy examples first, followed by harder examples
gradually.

Easiness directly proportional to distance from the hyperplane.

New objective function :

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n

n∑
i=1

viξi −
1

K

n∑
i=1

vi (3)

Variables vi indicate whether i th sample is easy or not.

Solved using alternate convex search.

Considers all samples in the final iteration, thus provides the
same guarantees as CCCP.



Problem Statement Background Method Description Results Conclusion and Future Scope

Method Overview

Self Paced Learning : P. Kumar, B. Packer, and D. Koller, NIPS
2010

Teach easy examples first, followed by harder examples
gradually.

Easiness directly proportional to distance from the hyperplane.

New objective function :

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n

n∑
i=1

viξi −
1

K

n∑
i=1

vi (3)

Variables vi indicate whether i th sample is easy or not.

Solved using alternate convex search.

Considers all samples in the final iteration, thus provides the
same guarantees as CCCP.



Problem Statement Background Method Description Results Conclusion and Future Scope

Method Overview

Self Paced Learning : P. Kumar, B. Packer, and D. Koller, NIPS
2010

Teach easy examples first, followed by harder examples
gradually.

Easiness directly proportional to distance from the hyperplane.

New objective function :

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n

n∑
i=1

viξi −
1

K

n∑
i=1

vi (3)

Variables vi indicate whether i th sample is easy or not.

Solved using alternate convex search.

Considers all samples in the final iteration, thus provides the
same guarantees as CCCP.
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Thus so far !

Initialize latent parameter using non-outliers from Outlier
Robust SVM.

Solve the optimization using Self Paced Learning.

Why initialization helps ?

As self paced learning distance from the hyperplane as a
measure of easiness, thus initial approximation may become
skewed.
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Modifying the constraints

Revisiting the constraints of latent SVM

max
hi∈H

wTΦ(xi , yi , hi )− max
ĥi∈H,ŷi∈Y

wTΦ(xi , ŷi , ĥi ) ≥ ∆(yi , ŷi )− ξi ,

This essentially enforces that, the true detection should score
higher than the false detection for each image.

Generally the number of images in which the object is absent
� than images where the object is present.

Thus the optimization may focus more on reducing the score
of the highest scoring box of the negative class.

This imbalance can be handled elegantly using Blaschko’s
ranking constraints.
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Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS
2010

The constraints can be modified such that, the true detection
for each image should score higher than the false detections
for all the images.

This leads to modification in the objective function such that
we can simultaneously localize and rank object detections.

Thus our final objective function and constraints :-

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n.n+

n∑
i=1

viξi −
1

K

n∑
i=1

vi (4)

s.t :∑
i ,j

(〈w , φ(xi , yi )〉 − 〈w , φ(xj , ŷj)〉) ≥
∑
i ,j

∆(yj , ŷj)− ξi
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∆(yj , ŷj)− ξi



Problem Statement Background Method Description Results Conclusion and Future Scope

Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS
2010

The constraints can be modified such that, the true detection
for each image should score higher than the false detections
for all the images.

This leads to modification in the objective function such that
we can simultaneously localize and rank object detections.

Thus our final objective function and constraints :-

min
w ,ξi≥0,v∈{0,1}

1

2
‖w‖2 +

C

n.n+

n∑
i=1

viξi −
1

K

n∑
i=1

vi (4)

s.t :∑
i ,j

(〈w , φ(xi , yi )〉 − 〈w , φ(xj , ŷj)〉) ≥
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Setup

Setup

Dataset used

Training : PASCAL VOC 2007 train data (including 0 labels,
2501 examples per class)

Test : PASCAL VOC 2007 validation data (including 0 labels,
2510 examples per class)
Classes : Aeroplane, motorbike, person

Proposal generation technique

Segmentation As Selective Search for Object Recognition
(Sande, Koen, Uijlings, Jasper, Gevers, Theo, Smeulders,
Arnold, ICCV 2011.)
Hypotheses : 2500 bounding boxes on an average per image
on PASCAL VOC 2007.
These bounding boxes correspond to the values the latent
variables can take for each image.
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Setup

Setup

Feature extraction

Pre-trained convolutional neural network using caffe framework
for feature extraction.

Network pre-trained on Imagenet Large Scale Visual
Recognition Challenge 2012 dataset which contains 1000
classes.
Layer 7 responses were used as features, giving a 4096
dimension feature for each input image.

SVM used for Outlier removal

Linear SVM.
LibLinear package : Fan, Chang, Hsieh, Wang, Lin. 2008
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Detection results

Detection results

Figure: Detection results of aeroplane, motorbike and person class
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mAP graphs

Mean average precision : aeroplane

Figure: Detection results of aeroplane, motorbike and person class
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mAP graphs

Mean average precision : motorbike
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mAP graphs

Mean average precision : person
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mAP graphs

Mean average precision comparison
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Conclusion

Hard examples can often degrade the performance of the
detector and thus should be treated carefully.

Imposing an ordering on learning may help us to obtain a
better solution.

Limitation

Hardness in feature space may not correspond to visual
hardness.

Latent SVM primal objective being non-convex, may still
converge to a local optimum.

Future Scope

The work can be extended to provide robust detection when
(i) image labels are noisy (ii) bounding box labels are noisy.

Application of Outlier Robust SVM to other ML problems.
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