Problem Statement

Method Description

Conclusion and Future Scope

Robust Detection in Presence of Hard Examples

Subhabrata Debnath

Co-founder & Computer Vision Researcher VisageMap Inc. subhabrata.debnath@visagemap.com s.debnath1989@gmail.com

March 11, 2016

Problem Statement	Background	Μ

Method Description

Conclusion and Future Scope

Outline

- 2 Background
- 3 Method Description

Problem Statement

Background 0000000000 Method Descriptio

Conclusion and Future Scope

Object Detection

What is Detection ?

(日) (同) (日) (日)

 Detecting an object in an image involves predicting the location of the bounding box containing it, if it is present.

Problem Statement ●00000	Background 00000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Training a Detector				
Outline				

- Problem Statement
 Training a Detector
 Hard Examples
 Aim
- 2 Background
- 3 Method Description
- 4 Results

5 Conclusion and Future Scope

Problem Statement o●○○○○	Background 0000000000000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Training a Detector			
Training a	Detector		

Weakly supervised setting

• Set of images as input, where each image has an associated label.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Training a Detector				
Training a	Detector			

Weakly supervised setting

- Set of images as input, where each image has an associated label.
- Labels only denote the presence or absence of the object of interest.

Problem Statement 0●0000	Background 000000000000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Training a Detector			
Training a	Detector		

Weakly supervised setting

- Set of images as input, where each image has an associated label.
- Labels only denote the presence or absence of the object of interest.
- No explicit information about location of the object in the image.

Problem Statement ○○●○○○	Background 00000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Hard Examples				
Outline				

5 Conclusion and Future Scope

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Hard Examples				

Problem with hard examples ?

• Including such examples in the training data naively may deteriorate the performance of the classifier, as these hardly have any structural resemblance to actual positives.

イロト イヨト イヨト イヨト

Problem Statement ○○○○●○	Background 000000000000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Aim			
Outline			

Problem Statement

- Training a Detector
- Hard Examples
- Aim
- 2 Background
- 3 Method Description
- 4 Results

5 Conclusion and Future Scope

Problem Statement		Method Description		Conclusion and Future Scope
00000	00000000000000	0000000	000000000000000000000000000000000000000	
Aim				

• A set of images with weak supervision, where some examples are hard.

Problem Statement ○○○○○●	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Aim				

• A set of images with weak supervision, where some examples are hard.

What do we want to achieve ?

• Some measure of the hardness for each training example.

Problem Statement ○○○○○●	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Aim				

• A set of images with weak supervision, where some examples are hard.

What do we want to achieve ?

- Some measure of the hardness for each training example.
- Careful training using the hardness information.

Problem Statement ○○○○○●	Background 0000000000000000	Method Description	Results 000000000000000000000	Conclusion and Future Scope
Aim				

• A set of images with weak supervision, where some examples are hard.

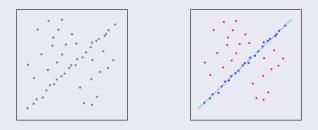
What do we want to achieve ?

- Some measure of the hardness for each training example.
- Careful training using the hardness information.
- Ultimately, building a detector model which is robust to hard examples.

Problem Statement	Background ●000000000000000000000000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm				
Outline				

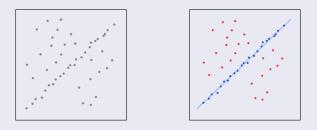
- 1 Problem Statement
- 2 Background
 - RANSAC Algorithm
 - RANSAC SVM
 - Outlier Robust SVM
 - Latent SVM
- 3 Method Description
- 4 Results

Problem Statement	Background	Method Description	Results	Conclusion and Future Scope
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	
RANSAC Algorithm				



• Learning technique to estimate model parameters by random sampling of observed data.

Problem Statement	Background 0●00000000000000000000000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm				



- Learning technique to estimate model parameters by random sampling of observed data.
- Highly robust to outliers.

Problem Statement	Background 000000000000000000000000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm				

 Select a random subset of the original data called probable inliers.

Problem Statement	Background 000000000000000000000000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm				

- Select a random subset of the original data called probable inliers.
- Ø Build a model using the above inliers.

Problem Statement	Background 000000000000000000000000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm				

- Select a random subset of the original data called probable inliers.
- 2 Build a model using the above inliers.
- Itest the rest of the data using the model above.

Problem Statement	Background 000000000000000000000000000000000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm			

- Select a random subset of the original data called probable inliers.
- Ø Build a model using the above inliers.
- Itest the rest of the data using the model above.
- If majority of the data agree with the model then accept it, else reject and repeat from 1 to 4.

Problem Statement	Background 000000000000000000000000000000000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC Algorithm			

- Select a random subset of the original data called probable inliers.
- 2 Build a model using the above inliers.
- Itest the rest of the data using the model above.
- If majority of the data agree with the model then accept it, else reject and repeat from 1 to 4.
- Sebuild model using all accepted data points.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				
Outline				

- 1 Problem Statement
- 2 Background
 - RANSAC Algorithm
 - RANSAC SVM
 - Outlier Robust SVM
 - Latent SVM
- 3 Method Description

4 Results

Problem Statement	Background ○○○○●○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

 Select a random subset of the original data called probable inliers.

Problem Statement	Background ○○○○●○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.

Problem Statement	Background ○○○○●○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.
- S Classify the rest of the data using the model above.

Problem Statement	Background ○○○○●○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.
- S Classify the rest of the data using the model above.
- If majority of the data get properly classified by the model then accept it, else reject and repeat from 1 to 4.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

-

Problem Statement	Background ○○○○●○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.
- S Classify the rest of the data using the model above.
- If majority of the data get properly classified by the model then accept it, else reject and repeat from 1 to 4.
- Sebuild model using all accepted examples.

Problem Statement	Background ○○○○●○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

Thus, RANSAC SVM

• Tries to find the "best model" which agrees with majority of the training data.

Problem Statement	Background ○○○○●○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

Thus, RANSAC SVM

- Tries to find the "best model" which agrees with majority of the training data.
- Examples being misclassified by the "best model" can be considered as outliers.

Problem Statement	Background ○○○○●○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
RANSAC SVM				

Thus, RANSAC SVM

- Tries to find the "best model" which agrees with majority of the training data.
- Examples being misclassified by the "best model" can be considered as outliers.
- Thus uses the score of just one model to decide the set of outliers.

Problem Statement	Background ○○○○○●○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				
Outline				

- RANSAC Algorithm
- RANSAC SVM
- Outlier Robust SVM
- Latent SVM

4 Results

Problem Statement 000000	Background ○○○○○○●○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

 Select a random subset of the original data called probable inliers.

Problem Statement	Background ○○○○○○●○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.

(日) (同) (日) (日)

Problem Statement	Background ○○○○○○●○○○○○○	Method Description	Results 000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- Ø Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.

(日) (同) (日) (日)

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.
- Increment the misclassification score of each misclassified example.

(日) (同) (日) (日)

Problem Statement		Method Description	Results	Conclusion and Future Scope
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- **2** Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.
- Increment the misclassification score of each misclassified example.
- Sepeat 1 to 5 enough number of times.

(日) (同) (日) (日)

Problem Statement		Method Description	Results	Conclusion and Future Scope
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- Ø Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.
- Increment the misclassification score of each misclassified example.
- Solution Repeat 1 to 5 enough number of times.
- Use the examples with the smallest number of misclassifications to build a SVM classifier model.

(日)、

Problem Statement		Method Description	Results	Conclusion and Future Scope
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- Ø Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.
- Increment the misclassification score of each misclassified example.
- Solution Repeat 1 to 5 enough number of times.
- Use the examples with the smallest number of misclassifications to build a SVM classifier model.
- Classify all of the training data again.

(日)、

Problem Statement		Method Description	Results	Conclusion and Future Scope
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	
Outlier Robust SVM				

- Select a random subset of the original data called probable inliers.
- ② Build a SVM classifier model using the above inliers.
- Olassify the rest of the data using the model above.
- Increment the misclassification score of each misclassified example.
- Solution Repeat 1 to 5 enough number of times.
- Use the examples with the smallest number of misclassifications to build a SVM classifier model.
- Classify all of the training data again.
- Oeclare all the misclassified examples as outliers.

э

(日)、

Problem Statement	Background ○○○○○○○●○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

• Tries to find the "best subset" which agrees with majority of the training data.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Tries to find the "best subset" which agrees with majority of the training data.
- Uses misclassification as a parameter to approximate outlierness.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Tries to find the "best subset" which agrees with majority of the training data.
- Uses misclassification as a parameter to approximate outlierness.
- Thus uses the score of many small models to decide the set of outliers.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Outlier Robust SVM				

- Tries to find the "best subset" which agrees with majority of the training data.
- Uses misclassification as a parameter to approximate outlierness.
- Thus uses the score of many small models to decide the set of outliers.
- Finally, exploits the property that hard examples behave like outliers as they differ in their feature space as compared to ordinary examples.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト ・ 聞

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Latent SVM				
Outline				

- RANSAC Algorithm
- RANSAC SVM
- Outlier Robust SVM
- Latent SVM

3 Method Description

4 Results

Problem Statement

Background

Method Descript

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Yu, Joachims, ICML 2009

In a typical latent svm framework, the model parameter w is learnt by solving the following optimization problem:

$$\min_{w,\xi_i \ge 0} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
 (1)

s.t.

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

$$\forall \hat{y}_i \in Y, \forall \hat{h}_i \in H, i = 1, ..., n.$$

Classification rule :

$$\underset{y,h}{\arg \max} \langle w, \phi(x_i, y, h) \rangle$$

Problem Statement	Background	Method Description	Results
	000000000000000000000000000000000000000		

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Problem Statement

Background

Method Descripti

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

1 Using the training image and labels learn an initial model w.

Method Description

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

- Using the training image and labels learn an initial model w.
- For each image, find the highest scoring bounding box using current w.

Method Description

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

- Using the training image and labels learn an initial model w.
- For each image, find the highest scoring bounding box using current w.
- O Using these bounding boxes re-learn model w.

Method Description

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

- Using the training image and labels learn an initial model w.
- For each image, find the highest scoring bounding box using current w.
- O Using these bounding boxes re-learn model w.
- Repeat 2 to 4 till desired precision.

Method Description

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

- Using the training image and labels learn an initial model w.
- For each image, find the highest scoring bounding box using current w.
- O Using these bounding boxes re-learn model w.
- Repeat 2 to 4 till desired precision.

Latent SVM : Test

• Find the highest scoring bounding box in the test image.

Method Description

Results

Conclusion and Future Scope

Latent SVM

Latent SVM : Aim

• To learn a bounding box detector using image features and class labels

Latent SVM : Basic steps

- Using the training image and labels learn an initial model w.
- For each image, find the highest scoring bounding box using current w.
- O Using these bounding boxes re-learn model w.
- Repeat 2 to 4 till desired precision.

Latent SVM : Test

- Find the highest scoring bounding box in the test image.
- If score is >threshold, output the bounding box as positive or output negative.

Problem Statement	Background ○○○○○○○○○○○	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Latent SVM				

Latent SVM : Yu, Joachims, ICML 2009

- For a particular w, the value of ξ_i is an upper bound on the loss Δ(y_i, ŷ_i).
- Equation 1 is basically minimizing the difference of two convex functions or equivalently minimizing a concave-convex sum.
- Can be solved by the Concave Convex Procedure

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Latent SVM				

The Concave Convex Procedure : Yuille and Rangarajan, NIPS 2002

• Solves the optimization :

$$\min_{w,\xi_i \ge 0} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n [\max_{\hat{h}_i \in H, \hat{y}_i \in Y} (w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) + \Delta(y_i, \hat{y}_i))]$$

$$-\max_{h_i\in H}w^{T}\Phi(x_i,y_i,h_i)](2)$$

(日) (同) (日) (日)

• Assumes an initial value of the model parameter.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Latent SVM				

The Concave Convex Procedure : Yuille and Rangarajan, NIPS 2002

• Solves the optimization :

$$\min_{w,\xi_i \ge 0} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n [\max_{\hat{h}_i \in H, \hat{y}_i \in Y} (w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) + \Delta(y_i, \hat{y}_i))]$$

$$-\max_{h_i\in H}w^{T}\Phi(x_i,y_i,h_i)](2)$$

(日) (同) (日) (日)

- Assumes an initial value of the model parameter.
- Solves for the model and latent parameters alternatively by fixing the other.

Problem Statement	Background	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Latent SVM				

The Concave Convex Procedure : Yuille and Rangarajan, NIPS 2002

• Solves the optimization :

$$\min_{w,\xi_i \ge 0} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n [\max_{\hat{h}_i \in H, \hat{y}_i \in Y} (w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) + \Delta(y_i, \hat{y}_i))]$$

$$-\max_{h_i\in H}w^{T}\Phi(x_i,y_i,h_i)](2)$$

(日) (同) (日) (日)

- Assumes an initial value of the model parameter.
- Solves for the model and latent parameters alternatively by fixing the other.
- High dependence on initialization of latent variables.

Problem Statement	Background 000000000000000	Method Description ●000000	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				
Outline				

- 2 Background
- Method DescriptionMethod Overview
 - Modifying the constraints

4 Results

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

• Problem

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

Problem

• Due to presence of hard examples in data, initialization becomes even more important.

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Problem
 - Due to presence of hard examples in data, initialization becomes even more important.
- Solution

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Problem
 - Due to presence of hard examples in data, initialization becomes even more important.
- Solution
 - Exclude outliers declared by Outlier Robust SVM from model initialization.

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Problem
 - Due to presence of hard examples in data, initialization becomes even more important.
- Solution
 - Exclude outliers declared by Outlier Robust SVM from model initialization.
- Can we improve any further ?

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Problem
 - Due to presence of hard examples in data, initialization becomes even more important.
- Solution
 - Exclude outliers declared by Outlier Robust SVM from model initialization.

- Can we improve any further ?
 - Impose an ordering on training.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

• Teach easy examples first, followed by harder examples gradually.

3.0

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Teach easy examples first, followed by harder examples gradually.
- Easiness directly proportional to distance from the hyperplane.

・ロト ・ 理 ・ ・ ヨ ・ ・

Problem Statement 000000	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Teach easy examples first, followed by harder examples gradually.
- Easiness directly proportional to distance from the hyperplane.
- New objective function :

$$\min_{\substack{w,\xi_i \ge 0, v \in \{0,1\}}} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n v_i \xi_i - \frac{1}{K} \sum_{i=1}^n v_i$$
(3)

(日)、(同)、(日)、(日)

• Variables v_i indicate whether i^{th} sample is easy or not.

Problem Statement	Background 00000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Teach easy examples first, followed by harder examples gradually.
- Easiness directly proportional to distance from the hyperplane.
- New objective function :

$$\min_{\substack{w,\xi_i \ge 0, v \in \{0,1\}}} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n v_i \xi_i - \frac{1}{K} \sum_{i=1}^n v_i$$
(3)

(日) (同) (日) (日)

- Variables v_i indicate whether i^{th} sample is easy or not.
- Solved using alternate convex search.

Problem Statement	Background 00000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

- Teach easy examples first, followed by harder examples gradually.
- Easiness directly proportional to distance from the hyperplane.
- New objective function :

$$\min_{w,\xi_i \ge 0, v \in \{0,1\}} \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^n v_i \xi_i - \frac{1}{K} \sum_{i=1}^n v_i$$
(3)

- Variables v_i indicate whether i^{th} sample is easy or not.
- Solved using alternate convex search.
- Considers all samples in the final iteration, thus provides the same guarantees as CCCP.

(日) (同) (日) (日)

Problem Statement 000000	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

Thus so far !

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

Thus so far !

• Initialize latent parameter using non-outliers from Outlier Robust SVM.

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

Thus so far !

- Initialize latent parameter using non-outliers from Outlier Robust SVM.
- Solve the optimization using Self Paced Learning.

Why initialization helps ?

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Method Overview				

Thus so far !

- Initialize latent parameter using non-outliers from Outlier Robust SVM.
- Solve the optimization using Self Paced Learning.

Why initialization helps ?

 As self paced learning distance from the hyperplane as a measure of easiness, thus initial approximation may become skewed.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Modifying the constra	ints			
Outline				

- 2 Background
- 3 Method Description
 - Method Overview
 - Modifying the constraints

4 Results

000000	000000000000000000	0000000	000000000000000000000000000000000000000		
Modifying the constraints					

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Modifying the constra	ints			

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

• This essentially enforces that, the true detection should score higher than the false detection for each image.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Modifying the constra	ints			

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

- This essentially enforces that, the true detection should score higher than the false detection for each image.
- Generally the number of images in which the object is absent \gg than images where the object is present.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Modifying the constra	ints			

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

- This essentially enforces that, the true detection should score higher than the false detection for each image.
- Generally the number of images in which the object is absent \gg than images where the object is present.
- Thus the optimization may focus more on reducing the score of the highest scoring box of the negative class.

Problem Statement	Background 000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Modifying the constra	ints			

$$\max_{h_i \in H} w^T \Phi(x_i, y_i, h_i) - \max_{\hat{h}_i \in H, \hat{y}_i \in Y} w^T \Phi(x_i, \hat{y}_i, \hat{h}_i) \geq \Delta(y_i, \hat{y}_i) - \xi_i,$$

- This essentially enforces that, the true detection should score higher than the false detection for each image.
- Generally the number of images in which the object is absent \gg than images where the object is present.
- Thus the optimization may focus more on reducing the score of the highest scoring box of the negative class.
- This imbalance can be handled elegantly using Blaschko's ranking constraints.

Results

Conclusion and Future Scope

Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS 2010

• The constraints can be modified such that, the true detection for each image should score higher than the false detections for all the images.

Results

Conclusion and Future Scope

Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS 2010

- The constraints can be modified such that, the true detection for each image should score higher than the false detections for all the images.
- This leads to modification in the objective function such that we can simultaneously localize and rank object detections.

Results

Conclusion and Future Scope

Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS $2010\,$

- The constraints can be modified such that, the true detection for each image should score higher than the false detections for all the images.
- This leads to modification in the objective function such that we can simultaneously localize and rank object detections.
- Thus our final objective function and constraints :-

Results

Conclusion and Future Scope

Modifying the constraints

Ranking constraints : Blaschko and Vedaldi and Zisserman, NIPS 2010

- The constraints can be modified such that, the true detection for each image should score higher than the false detections for all the images.
- This leads to modification in the objective function such that we can simultaneously localize and rank object detections.
- Thus our final objective function and constraints :-

$$\min_{w,\xi_i \ge 0, v \in \{0,1\}} \frac{1}{2} \|w\|^2 + \frac{C}{n.n_+} \sum_{i=1}^n v_i \xi_i - \frac{1}{K} \sum_{i=1}^n v_i \qquad (4)$$

s.t :

$$\sum_{i,j} (\langle w, \phi(x_i, y_i) \rangle - \langle w, \phi(x_j, \hat{y_j}) \rangle) \geq \sum_{i,j} \Delta(y_j, \hat{y_j}) - \xi_i$$

Problem Statement 000000	Background 000000000000000	Method Description	Results ●000000000000000000000000000000000000	Conclusion and Future Scope
Setup				
Outline				

- Problem Statement
- 2 Background
- 3 Method Description
- 4 Results

- Outlier detections
- Detection results
- mAP graphs

Problem Statement	Background 0000000000000000	Method Description	Results ⊙●OOOOOOOOOOOOOOO	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

Problem Statement	Background 000000000000000	Method Description	Results ⊙●⊙○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Problem Statement	Background 0000000000000000	Method Description	Results ⊙●O○○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)
 - Classes : Aeroplane, motorbike, person

э

Problem Statement	Background 000000000000000	Method Description	Results ⊙●O○○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)
 - Classes : Aeroplane, motorbike, person
- Proposal generation technique

Problem Statement	Background 000000000000000	Method Description	Results ⊙●O○○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)
 - Classes : Aeroplane, motorbike, person
- Proposal generation technique
 - Segmentation As Selective Search for Object Recognition (Sande, Koen, Uijlings, Jasper, Gevers, Theo, Smeulders, Arnold, ICCV 2011.)

Problem Statement	Background 000000000000000	Method Description	Results ⊙●⊙○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)
 - Classes : Aeroplane, motorbike, person
- Proposal generation technique
 - Segmentation As Selective Search for Object Recognition (Sande, Koen, Uijlings, Jasper, Gevers, Theo, Smeulders, Arnold, ICCV 2011.)
 - Hypotheses : 2500 bounding boxes on an average per image on PASCAL VOC 2007.

э

(日)、

Problem Statement	Background 000000000000000	Method Description	Results ⊙●⊙○○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Dataset used
 - Training : PASCAL VOC 2007 train data (including 0 labels, 2501 examples per class)
 - Test : PASCAL VOC 2007 validation data (including 0 labels, 2510 examples per class)
 - Classes : Aeroplane, motorbike, person
- Proposal generation technique
 - Segmentation As Selective Search for Object Recognition (Sande, Koen, Uijlings, Jasper, Gevers, Theo, Smeulders, Arnold, ICCV 2011.)
 - Hypotheses : 2500 bounding boxes on an average per image on PASCAL VOC 2007.
 - These bounding boxes correspond to the values the latent variables can take for each image.

(日)、

Problem Statement	Background 0000000000000000	Method Description	Results 000000000000000000000000000000000000	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.

Problem Statement	Background 0000000000000000	Method Description	Results ⊙⊙●○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.
 - Network pre-trained on Imagenet Large Scale Visual Recognition Challenge 2012 dataset which contains 1000 classes.

Problem Statement	Background 0000000000000000	Method Description	Results ⊙⊙●○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.
 - Network pre-trained on Imagenet Large Scale Visual Recognition Challenge 2012 dataset which contains 1000 classes.
 - Layer 7 responses were used as features, giving a 4096 dimension feature for each input image.

Problem Statement	Background 0000000000000000	Method Description	Results ⊙⊙●○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.

イロト 不得 トイヨト イヨト

э

- Network pre-trained on Imagenet Large Scale Visual Recognition Challenge 2012 dataset which contains 1000 classes.
- Layer 7 responses were used as features, giving a 4096 dimension feature for each input image.
- SVM used for Outlier removal

Problem Statement	Background 0000000000000000	Method Description	Results ⊙⊙●○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.
 - Network pre-trained on Imagenet Large Scale Visual Recognition Challenge 2012 dataset which contains 1000 classes.
 - Layer 7 responses were used as features, giving a 4096 dimension feature for each input image.
- SVM used for Outlier removal
 - Linear SVM.

Problem Statement	Background 0000000000000000	Method Description	Results ⊙⊙●○○○○○○○○○○○	Conclusion and Future Scope
Setup				

- Feature extraction
 - Pre-trained convolutional neural network using caffe framework for feature extraction.
 - Network pre-trained on Imagenet Large Scale Visual Recognition Challenge 2012 dataset which contains 1000 classes.
 - Layer 7 responses were used as features, giving a 4096 dimension feature for each input image.
- SVM used for Outlier removal
 - Linear SVM.
 - LibLinear package : Fan, Chang, Hsieh, Wang, Lin. 2008

э

・ロット 御 マ イロット キャー

Problem Statement	Background 00000000000000	Method Description	Results ○○○●○○○○○○○○○○○○○○	Conclusion and Future Scope
Outlier detections				
Outline				

- 1 Problem Statement
- 2 Background
- 3 Method Description
- 4 Results
 - Setup
 - Outlier detections
 - Detection results
 - mAP graphs

Background

Method Descript

Results

Conclusion and Future Scope

Outlier detections

Background

Method Descript

Results

Conclusion and Future Scope

Outlier detections

Background 0000000000

l Me 0000000 00

Method Descriptio

Results

Conclusion and Future Scope

Outlier detections

Background 0000000000

nd M

Method Description

Results

Conclusion and Future Scope

Outlier detections

Background

Method Descriptio

Results

Conclusion and Future Scope

Outlier detections

Background 00000000000 Method Description

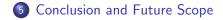
Results

Conclusion and Future Scope

Outlier detections

Problem Statement	Background 000000000000000	Results ○○○○○○○○●○○○○○	Conclusion and Future Scope
Detection results			
Outline			

- Problem Statement
- 2 Background
- 3 Method Description
- 4 Results
 - Setup
 - Outlier detections
 - Detection results
 - mAP graphs



Results

Detection results

Detection results

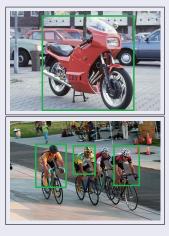


Figure: Detection results of aeroplane, motorbike and person class

Problem Statement	Background 000000000000000	Method Description	Results ○○○○○○○○○○●○○○○	Conclusion and Future Scope
mAP graphs				
Outline				

- Problem Statement
- 2 Background
- 3 Method Description
- Results 4

 - Setup
 - Outlier detections
 - Detection results
 - mAP graphs

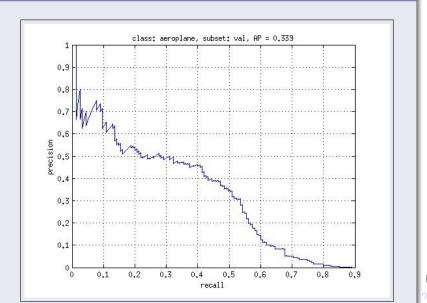
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Background 00000000000 Method Descrip

Results ○○○○○○○○○○○○○○○○○○○ Conclusion and Future Scope

mAP graphs

Mean average precision : aeroplane



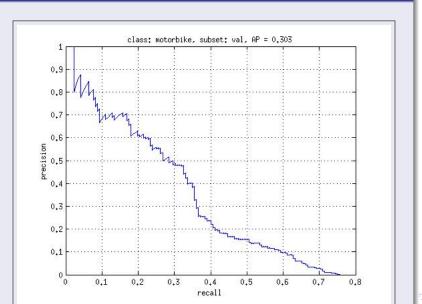
Background 00000000000 Method Descr

Results

Conclusion and Future Scope

mAP graphs

Mean average precision : motorbike

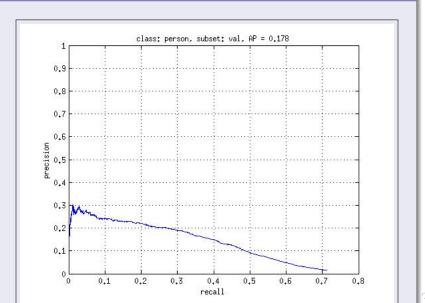


Background 00000000000 Method De

 Conclusion and Future Scope

mAP graphs

Mean average precision : person



Background

Method Descrij 0000000 Results ○○○○○○○○○○○○○○ Conclusion and Future Scope

mAP graphs

Mean average precision comparison

Background

Method Descriptio

Conclusion and Future Scope

Conclusion

• Hard examples can often degrade the performance of the detector and thus should be treated carefully.

Background

Method Descriptic

Results

Conclusion and Future Scope

Conclusion

- Hard examples can often degrade the performance of the detector and thus should be treated carefully.
- Imposing an ordering on learning may help us to obtain a better solution.

Background

Method Description

Conclusion and Future Scope

Conclusion

- Hard examples can often degrade the performance of the detector and thus should be treated carefully.
- Imposing an ordering on learning may help us to obtain a better solution.

Limitation

 Hardness in feature space may not correspond to visual hardness.

Background

Method Description

Results

Conclusion and Future Scope

Conclusion

- Hard examples can often degrade the performance of the detector and thus should be treated carefully.
- Imposing an ordering on learning may help us to obtain a better solution.

Limitation

- Hardness in feature space may not correspond to visual hardness.
- Latent SVM primal objective being non-convex, may still converge to a local optimum.

Background 00000000000 Method Description

Results

Conclusion and Future Scope

Conclusion

- Hard examples can often degrade the performance of the detector and thus should be treated carefully.
- Imposing an ordering on learning may help us to obtain a better solution.

Limitation

- Hardness in feature space may not correspond to visual hardness.
- Latent SVM primal objective being non-convex, may still converge to a local optimum.

Future Scope

The work can be extended to provide robust detection when
 (i) image labels are noisy (ii) bounding box labels are noisy.

Background 00000000000 Method Description

Results

Conclusion and Future Scope

Conclusion

- Hard examples can often degrade the performance of the detector and thus should be treated carefully.
- Imposing an ordering on learning may help us to obtain a better solution.

Limitation

- Hardness in feature space may not correspond to visual hardness.
- Latent SVM primal objective being non-convex, may still converge to a local optimum.

Future Scope

- The work can be extended to provide robust detection when
 (i) image labels are noisy (ii) bounding box labels are noisy.
- Application of Outlier Robust SVM to other ML problems.

Background 00000000000 Method Descriptic

Results

Conclusion and Future Scope

THANK YOU

