Online learning and prediction: just play along! A pre-Antaragni talk on online learning!

SIGML

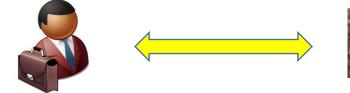
Special Interest Group in Machine Learning

Purushottam Kar

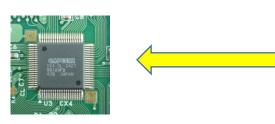
Department of CSE 11T Kanpur

Learning Problems

• Portfolio selection:



• Branch prediction:

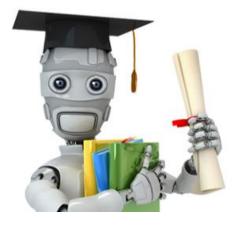


if (num > 0) {
 printf("%d is a positive
 if (num % 2 == 0)
 printf("%d is an even
 else
 printf("%d is an odd
}
else

printf("%d is a negative

• Click prediction:

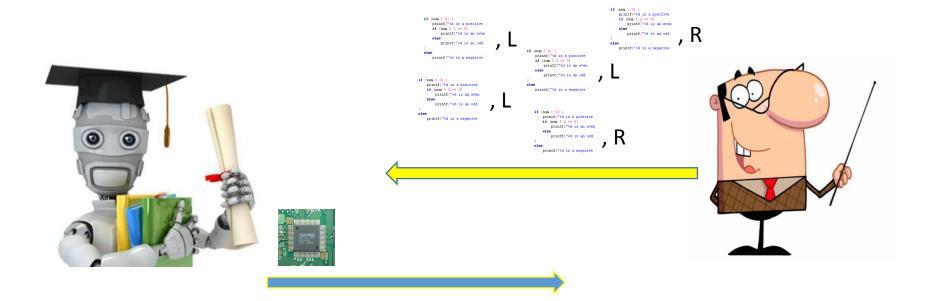
Supervised Learning



Learner

Teacher

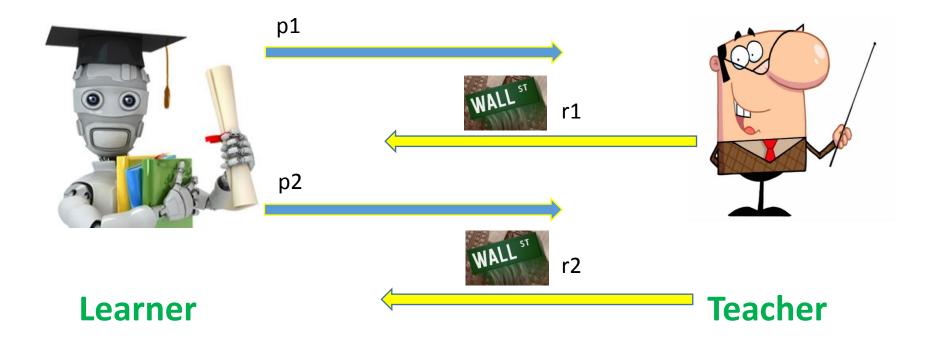
Passive Supervised Learning



Learner

Teacher

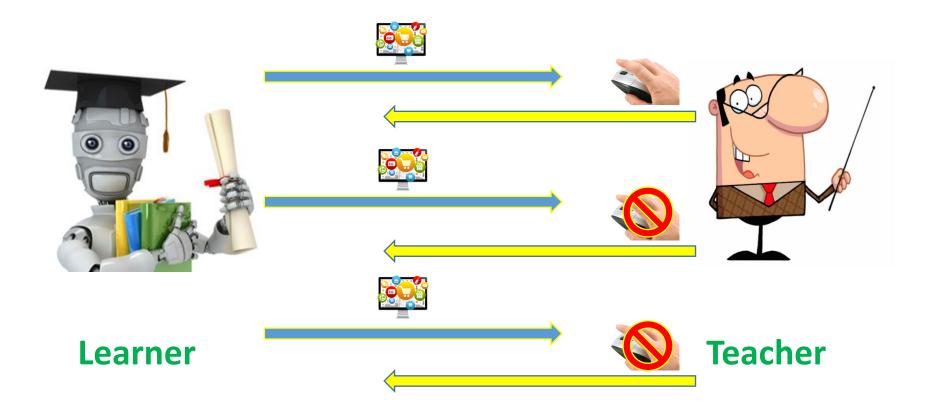
Online Supervised Learning



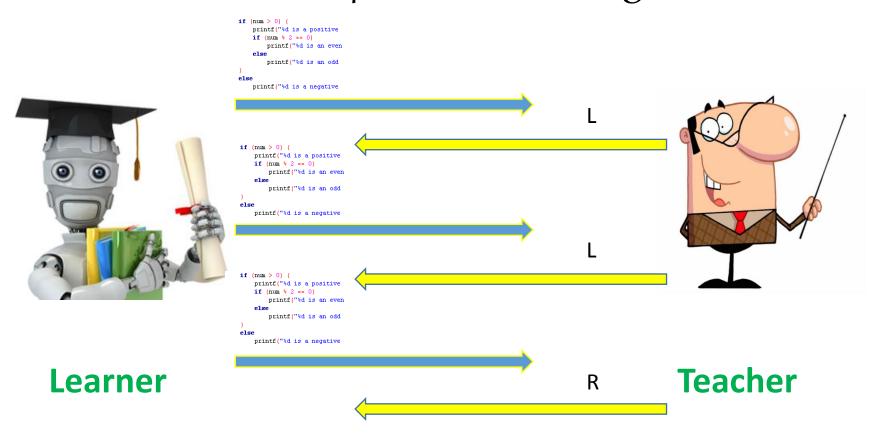
Corpus = <p1,r1> * <p2,r2> * ... <pT,rT>

coursera.org

Online Supervised Learning



Active Supervised Learning



The Online Learning Model

How we assess Online Learning Algorithms

The Online Learning Model

- An attempt to model an interactive and adaptive environment
 - We have a set of actions ${\mathcal A}$
 - Environment has a set of loss functions $\mathcal{L} = \{\ell : A \to \Re_+\}$
- In each round *t*
 - We play some action $a_t \in \mathcal{A}$
 - Environment responds with a loss function $\boldsymbol{\ell}_t \in \boldsymbol{\mathcal{L}}$
 - We are forced to incur a loss $\ell_t(a_t)$
 - Environment can adapt to our actions (or even be adversarial)
- Our goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$
 - Can cumulative loss be brought down to zero : mostly no !
 - More reasonable measure of performance: single best action in hindsight
 - Regret: $R_T \coloneqq \sum_{t=1}^T \ell_t(a_t) \min_{a \in \mathcal{A}} \sum_{t=1}^T \ell_t(a)$
 - Why is this a suitable notion of performance ?

Making it big in the stock market

- Learning investment profiles
 - Set of actions is the d -dimensional simplex $\mathcal{A} = \{p \in \Re^d, p \ge 0, \|p\|_1 = 1\}$
 - Reward received at t^{th} step is $\langle p^t, r^t \rangle$ where r^t is the return given by market
 - Total reward (assume w.l.o.g. initial corpus is D = 1)

$$\prod_{t=1}^{T} \langle p_t, r_t \rangle = \exp\left(\sum_{t=1}^{T} \log \langle p_t, r_t \rangle\right)$$

- Returns affected by investment, other market factors (adaptive, adversarial)
- Can think of $\ell(p,r) = -\log\langle p,r \rangle$ as a negative reward or a loss $\ell_t(p_t) = -\log\langle p_t,r_t \rangle$
- Regret (equivalently) given by

$$\mathcal{R}_T = \sum_{t=1}^T \ell(p_t, r_t) - \min_{p \in \mathcal{A}} \sum_{t=1}^T \ell(p, r_t)$$

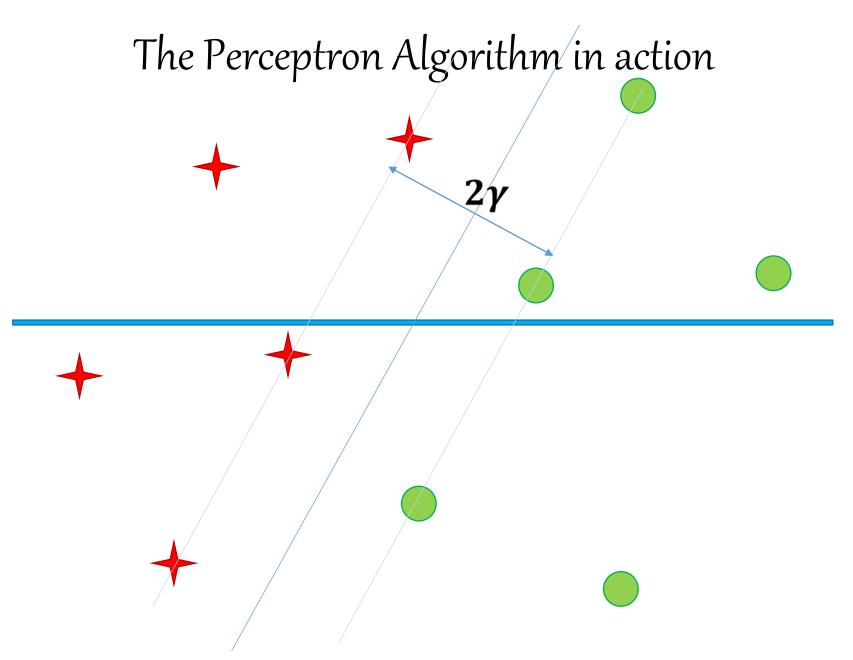
Goal: make as much profit as the single best investment profile in hindsight

Simple Online Algorithms

What makes online learning click ?

Online Linear Classification

- Perceptron Algorithm
- 1. Start with $w_0 = 0$
- 2. Classify o_t as sign $(w_{t-1}^{\top}x_{o_t})$
- 3. If correct classification i.e. $y_t = \operatorname{sign}(w_t^{\top} x_{o_t})$, then let $w_t = w_{t-1}$
- 4. Else $w_t = w_{t-1} + y_t x_{o_t}$
- Loss function $\ell_{0/1}(w, o) = \mathbb{I}\{y_o w^\top x_o < 0\}$ i.e. 1 iff w misclassifies o
- If there exists a perfect linear separator w^* such that $y_t w^{*\top} x_{o_t} \ge \gamma$, $\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \le \frac{1}{\gamma^2}$
- If there exists an imperfect separator w^* such that $y_t {w^*}^\top x_{o_t} \ge \gamma \xi_t$, $\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \le \frac{1}{\gamma^2} + \frac{1}{\gamma} \sum \xi_t$

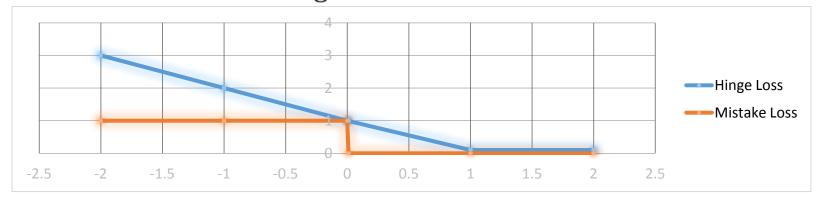


Online Regression

- The Perceptron Algorithm was (almost) a gradient descent algorithm
- Consider the loss function

$$\ell_{\text{hinge}}(w, x) = \max\{1 - yw^{\top}x, 0\}$$

• $\tilde{\ell}$ is a convex *surrogate* to the mistake function $\ell_{0/1}(w, x) = \mathbb{I}\{yw^{\top}x < 0\}$ $\ell_{\text{hinge}}(w, x) \ge \ell_{0/1}(w, x)$



- When perceptron makes a mistake i.e. $\ell_{0/1}(w, x) = 1$, we have $\nabla_w \ell_{hinge}(w, x) = -yx$
- Thus the perceptron update step $w_t = w_{t-1} + y_t x_{o_t}$ is a gradient step !

Online Regression via Online Gradient Descent

- Suppose we are taking actions $a_t \in \mathcal{A}$ and receiving losses $\ell_t \in \mathcal{L}$
 - Assume that all loss function $\ell_t \colon \mathcal{A} \to \mathfrak{R}_+$ are convex and Lipchitz
 - Examples $\ell_t(a) = (a^T x_t y_t)^2$, $\ell_t(a) = -\log(a^T x_t)$, $\ell_t(a) = [1 y_t a^T x_t]_+$
- Online Gradient Descent (for linear predictions problems)
- 1. Start with $a_0 = 0$
- 2. Receive object x_t and predict value $a_{t-1}^{\top} x_t$ for object x_t
- 3. Receive loss function ℓ_t and update $a_t = a_{t-1} \frac{1}{\sqrt{t}} \nabla_a \ell_t(a_{t-1})$
 - Some more work needed to ensure that $a_t \in \mathcal{A}$ as well
- We can ensure that

$$R_{T} = \sum_{t=1}^{T} \ell_{t}(a_{t}) - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell_{t}(a) \le \mathcal{O}(\sqrt{T})$$