
Structured Output Prediction
SIGML Talk

Nitish Gupta

Department of Computer Science
University of Illinois, Urbana-Champaign

29th February, 2016

Nitish Gupta (CS, UIUC) Structured Output Prediction 29th February, 2016 1 / 45



Outline

1 Introduction
Supervised Learning : Classification
Linear Classifiers : Binary Classification

2 Multi-class Classification
Introduction
One vs. All
All vs. All
Multi-class SVM

3 Structured Output Prediction
Introduction
Structured SVM
Structured SVM Algorithm
Applications

Nitish Gupta (CS, UIUC) Structured Output Prediction 29th February, 2016 2 / 45



Outline

1 Introduction
Supervised Learning : Classification
Linear Classifiers : Binary Classification

2 Multi-class Classification
Introduction
One vs. All
All vs. All
Multi-class SVM

3 Structured Output Prediction
Introduction
Structured SVM
Structured SVM Algorithm
Applications

Nitish Gupta (CS, UIUC) Structured Output Prediction 29th February, 2016 3 / 45



Supervised Learning: General Setting

Given: Training examples : {〈xi , yi 〉} where,

x ∈ X , y ∈ Y
〈x, y〉 are i.i.d drawn from a unknown distribution P(x , y)
Input x is represented in a feature space.

Goal : Find a function f from a hypothesis space H
Predict : y∗ = f (x∗)

y can belong to :

y ∈ {0, 1} class - Binary Classification
y ∈ {1, . . . ,K} - Multi-class Classification
y ∈ R - Regression
etc....
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Supervised Learning: General Setting

To achieve the goal :
We define a loss function L(y , f (x)) to quantify the departure of our
prediction from the actual output variable.
e.g. : 0/1 loss in binary classification

Goal : Risk Minimization

RL
P(f ) =

∫
X×Y

L(y , f (x))dP(x , y) (1)

Actual Goal : Empirical Risk Minimization

Given S = {(xi , yi ) ∈ X × Y : i = 1 . . . m}

RL
S (f ) =

1

m

m∑
1

L(yi , f (xi )) (2)

As f ∈ H, PAC (Probably Approximately Correctly) learning gives
bounds on the actual risk given empirical risk.
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Linear Classifiers

Input x ∈ Rd is a d dimensional feature vector

Output y belongs to {−1, 1} corresponding to two different classes.

Learn Linear Threshold Units parametrized by w ∈ Rd and b ∈ R
classify example x as :

If wT x + b ≥ 0, Predict y = 1
If wT x + b < 0, Predict y = −1

Hyperplane in Rd where half-spaces define the two classes

VC Dimension of H, the class of linear functions in Rd is just d + 1

Non-separable data can be dealt by blowing up the feature space
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Learning Linear Classifiers

Learning Objective :

min
w

∑
i

L(yi ,w
T xi ) (3)

Same as before, just that function f is restricted to linear functions

0/1 loss is most intuitive but not used due to differentiability issues.

Actual loss functions used :
Linear Loss : max(0,−yiwT xi ) (Perceptron)
Hinge Loss : max (0, 1− yiw

T xi ) (Max Margin SVM)

Logistic Loss : log(1 + e−yiw
T xi ) (Logistic Regression)

is used along with regularization

min
w

wTw + λ
∑
i

L(yi ,w
T xi ) (4)

Term wTw enforces preferences over functions in the hypothesis
space which reduces to maximizing margin
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Loss Functions
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What is Multi-class Classification?

An input can belong to exactly one of the K classes

Training Data : Each input feature vector xi is associated with a class
label yi ∈ {1, . . . ,K}

Prediction : Given a new input, predict the class label

Eg. Object Classification, Document Classification, Optical Character
Recognition, Context sensitive spelling correction etc.
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Combining Binary Classifiers

Can we use a binary classifier to construct a multi-class classifier?

Solution : Decompose the prediction into multiple binary decisions

Methods of Decomposition :

One vs. All
All vs. All
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One vs. All

Assumption : Each class is linearly separable from all the others

Learning : Given a dataset D = {〈xi , yi 〉}
Note: xi ∈ Rn, yi ∈ {1, . . . ,K}

Decompose into K binary classification tasks

For class k, construct a binary classification task as :

Positive examples : Elements of D with label k
Negative examples : All other elements of D

Train K binary classifiers w1,w2, . . . ,wK using any learning algorithm
we have seen

Prediction : Winner takes it

ypred = argmaxi wT
i x (5)
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Visualizing One vs. All Classification
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One vs. All doesn’t work always
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All vs. All Classification

Assumption : Every pair of class is separable

Learning : Given a dataset D = {〈xi , yi 〉}
For every pair of labels (j , k) create a binary classifier with :

Positive examples : Elements of D with label j

Negative examples : Elements of D with label k

Train
(
K
2

)
= O(k2) classifiers

Prediction : Much more complex. eg. Majority Voting, Tournament
Organization etc.
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Multi-class SVM

Decomposition Methods :

Do not account for how final classifier will be used

Do not optimize any global measure of correctness

Goal : To train a multi-class classifier that is ’global’
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Multi-class SVM

Figure: Margin in Binary
Classification

Figure: Margin in Multi-class
Classification

Nitish Gupta (CS, UIUC) Structured Output Prediction 29th February, 2016 21 / 45



Detour to Binary SVM

Hard SVM :
min
w

wTw

s.t. yiw
T xi ≥ 1 ∀i

Soft SVM :

min
w

wTw + λ
∑
i

max(0, 1− yiw
T xi )

Soft SVM can also be written as :

min
w

wTw + λ
∑
i

ξi

s.t. yiw
T xi ≥ 1− ξi ∀i

ξi ≥ 0 ∀i
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Multi-class SVM
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Multi-class SVM

Generalizes Binary Two-class SVM

Prediction / Inference : Winner Takes All

With K labels we have dK total weights in all :

Parameters and Inference complexity : Same as One vs. All. Order of
magnitude cheaper than All vs. All

But comes with guarantees!!!
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Structured Output Prediction

We can successfully (?) do multiclass classification

Assign topics to documents

Names to object images

Sentiments to reviews

How do we take this knowledge of ML to predict,

Assign topics to documents that come from a label hierarchy

Parse objects in scene and find relations between them. eg. OCR

Find the adjectives, verbs, nouns in reviews to possible perform aspect
based sentiments
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Structured Output Prediction : Example

Sequence Labeling : Parts-of-Speech Tagging

Input : A sequence of objects.

Output : A sequence of labels of the same length as input

Inference : For sequence size = n and T possible tags, output search
space is O(T n)
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Structured Output Prediction : Example

Optimal Tree Structure : Syntactic Parsing

Input : x ∈ X
Output : Tree Structure, y ∈ Y
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Structured Output Prediction

Can be thought of as generalized multi-class classification

The output space is exponentially large or possibly even infinite

The output labels (structures) are not opaque but can be
decomposed into meaningful components

Output can be thought of as macro-labels

The components themselves are interdependent

In most general setting can be though of as a graph between
components. In multi-class labels, these graphs are single nodes, single
linkage trees in POS tagging, binary trees in syntactic parsing etc.
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Structured Output Prediction

Input : x, Output : y = {y1, . . . , yn}

The space of y ∈ Y is exponentially large. Eg. O(T n) even for fixed
length sequences

Solution : Decompose output into components and predict each
separately

Back to Multi-class classification?

Decomposed components of output are inter-dependent and global
scoring of an output structure is required

Independent assignment of parts is correct?

The problem has now turned into a combination of multi-class and
efficient search in the output space
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Structured SVM

Learn the discriminant function F : X × Y → R

f (x ,w) = argmax
y∈Y

F (x , y ;w) (6)

Where w is a parameter vector.

F (x , y ;w) is a linear function in combined feature representation of
inputs and output Ψ(x , y)

F (x , y ,w) = 〈w ,Ψ(x , y)〉 (7)
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Loss Function

Are all structures equally different?

Departure from 0/1 Loss

Arbitrary loss function ∆ : Y × Y → R. ∆(y , y ′) : Loss for predicting
y ′ instead of y

Empirical Risk Minimization :

RL
S (f (x ,w)) =

1

m

m∑
1

∆(yi , f (xi ,w)) (8)
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Margin Maximization : Hard Margin SVM

Strutured Output Prediction as Multi-class Classification

Hard Margin SVM

For all y ∈ Y\yi , we want

〈w ,Ψ(xi , yi )〉 − 〈w ,Ψ(xi , y)〉 ≥ 1

〈w ,Ψ(xi , yi )−Ψ(xi , y)〉 ≥ 1

Writing Ψ(xi , yi )−Ψ(xi , y) as δΨi (y) we get,

SVM0 : min
w
‖w‖2

s.t. 〈w , δΨi (y)〉 ≥ 1 ∀y ∈ Y\yi
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Margin Maximization : Soft Margin SVM

Soft Margin SVM

SVM1 : min
w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w , δΨi (y)〉 ≥ 1− ξi ∀y ∈ Y\yi
ξi ≥ 0

Issues

Violating margin constraints for any y 6= yi is equivalent

Margin for y with high loss ∆(y , yi ) should be penalized more
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Margin Maximization : Slack Re-scaling

Slack Re-scaling SVM

SVM∆s
1 : min

w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w , δΨi (y)〉 ≥ 1− ξi
∆(y , yi )

∀y ∈ Y\yi

ξi ≥ 0

Note

∆(y , yi ) > 0 for all y 6= yi

Penalty only applies to y for which 〈w , δΨi (y)〉 ≤ 1
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SVM Algorithm for Structured Output Spaces

The problem remains the same :

Size of problems is still immense.

n(|Y| − 1) margin inequality constraints

Solution proposed : Find a much smaller subset of constraints to best
approximate the optimization problem

Algorithm to find subset of constraints should be fast (and correct,
obviously). Preferably polynomial time

Should be general enough to work for a large range of structures and
loss functions (0/1 losses, F1 score, MAP etc.)
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Overview of Structured SVM Algorithm

To achieve :
Reduce the problem to a polynomially sized subset of constraints such that
the solution fulfills all constraints up to a precision of ε

Solution :

Instead of keeping all constraints in optimization, find the most
violated constraint (if any), i.e. y ′ for each xi

If the margin violation exceeds ξi by more than ε, add constraint
corresponding to xi , y

′ in working set

Compute the solution with respected to new constraint set

Rinse and Repeat
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Structured SVM Algorithm continued ..

Recipe for applying the algorithm :

Implement the joint feature map Ψ(x , y), explicitly or via joint kernel
function

Implement the loss function ∆(yi , y)

Finding maximum violated constraint is still difficult

Trivial solution : Perform exhaustive search over all possible structures

Pragmatic Solution : Exploit the structure of Ψ for output spaces. Eg.
Markovian assumptions, CKY-parsing for trees etc.
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Applications : Multi-class Classification

Modelling :

Λc(y) = [(δ(y1, y), . . . , δ(yk , y)], δ(a, b) = 1 iff a = b, zero otherwise

Ψ(x , y) = φ(x)⊗ ΛC (y) ∈ Rd×K

F (x , y ,w) = 〈w ,Ψ(x , y)〉

Algorithm :

The number of classes K in simple multi-class is small enough to
perform exhaustive search over Y
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Applications : Multi-class with Output Features

Modelling :

Λ(y) ∈ RR

Left to modelling choice. Taxonomies can also be embedded and ∆
can be defined with a tree loss

Ψ(x , y) = φ(x)⊗ ΛC (y) ∈ Rd×R

F (x , y ,w) =
∑R

r=1 λr (y)〈wr , φ(x)〉

Provides generalization across different classes y . Classes now share
properties

Algorithm :

Number of classes is still small to perform exhaustive search over Y
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Applications : Sequence Labelling

x = x1, x2, . . . , xT

y = y1, y2, . . . , yT

Modelling :

F (x , y ,w) =

〈
w ′,

T∑
t=1

φ(x t)⊗ Λc(y t)

〉
+ η

〈
w ′′,

T∑
t=1

Λc(y t)⊗ Λc(y t+1)

〉
(9)

Algorithm :

Use Dynamic Programming since costs are additive in the
decomposition
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Thank you!

Questions?

Resources :
Cognitive Computation Group, UIUC

cogcomp.cs.illinois.edu
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