Structured Output Prediction SIGML Talk

Nitish Gupta

Department of Computer Science University of Illinois, Urbana-Champaign

29th February, 2016

Nitish Gupta (CS, UIUC)

Structured Output Prediction

29th February, 2016 1 / 45

Introduction

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

• Supervised Learning : Classification

• Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

Supervised Learning: General Setting

- Given: Training examples : $\{\langle x_i, y_i \rangle\}$ where,
 - $x \in \mathcal{X}$, $y \in \mathcal{Y}$
 - $\langle \mathbf{x}, y \rangle$ are i.i.d drawn from a unknown distribution P(x, y)
 - Input x is represented in a *feature space*.
- Goal : Find a function f from a hypothesis space H
 Predict : y* = f(x*)
- y can belong to :
 - $y \in \{0,1\}$ class Binary Classification
 - $y \in \{1, \dots, K\}$ Multi-class Classification
 - $y \in \mathbb{R}$ Regression
 - etc....

Supervised Learning: General Setting

- To achieve the goal :
 - We define a loss function L(y, f(x)) to quantify the departure of our prediction from the actual output variable.
 e.g.: 0/1 loss in binary classification
- Goal : Risk Minimization

$$R_{P}^{L}(f) = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(x)) dP(x, y)$$
(1)

- Actual Goal : Empirical Risk Minimization
 - Given $S = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y} : i = 1 \dots m\}$

$$R_{S}^{L}(f) = \frac{1}{m} \sum_{1}^{m} L(y_{i}, f(x_{i}))$$
⁽²⁾

 As f ∈ H, PAC (Probably Approximately Correctly) learning gives bounds on the actual risk given empirical risk.

Nitish Gupta (CS, UIUC)

Introduction

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- Input $x \in \mathbb{R}^d$ is a d dimensional feature vector
- Output y belongs to $\{-1,1\}$ corresponding to two different classes.
- Learn Linear Threshold Units parametrized by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ classify example x as :
 - If $w^T x + b \ge 0$, Predict y = 1
 - If $w^T x + b < 0$, Predict y = -1

Hyperplane in \mathbb{R}^d where half-spaces define the two classes

- VC Dimension of $\mathcal H$, the class of linear functions in $\mathbb R^d$ is just d+1
- Non-separable data can be dealt by blowing up the feature space

Learning Linear Classifiers

• Learning Objective :

$$\min_{w} \sum_{i} L(y_i, w^T x_i)$$
(3)

Same as before, just that function f is restricted to *linear* functions
0/1 loss is most intuitive but not used due to differentiability issues.
Actual loss functions used :

• Linear Loss : $max(0, -y_i w^T x_i)$ (Perceptron)

r

- Hinge Loss : max $(0, 1 y_i w^T x_i)$ (Max Margin SVM)
- Logistic Loss : $\log(1 + e^{-y_i w^T x_i})$ (Logistic Regression)

is used along with regularization

$$\min_{w} \quad w^{T}w + \lambda \sum_{i} L(y_{i}, w^{T}x_{i})$$
(4)

• Term $w^T w$ enforces preferences over functions in the hypothesis space which reduces to maximizing margin

Nitish Gupta (CS, UIUC)

Loss Functions

э

< 🗇 🕨 🔺

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- An input can belong to *exactly* one of the K classes
- Training Data : Each input feature vector x_i is associated with a class label $y_i \in \{1, \dots, K\}$
- Prediction : Given a new input, predict the class label
- Eg. Object Classification, Document Classification, Optical Character Recognition, Context sensitive spelling correction etc.

Can we use a binary classifier to construct a multi-class classifier?
Solution : Decompose the prediction into multiple binary decisions

- Methods of Decomposition :
 - One vs. All
 - All vs. All

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- Assumption : Each class is linearly separable from all the others
- Learning : Given a dataset $D = \{\langle x_i, y_i \rangle\}$ Note: $x_i \in \mathbb{R}^n, y_i \in \{1, \dots, K\}$
 - Decompose into K binary classification tasks
 - For class k, construct a binary classification task as :
 - Positive examples : Elements of D with label k
 - Negative examples : All other elements of D
 - Train K binary classifiers w_1, w_2, \ldots, w_K using any learning algorithm we have seen
- Prediction : Winner takes it

$$y^{pred} = argmax_i \quad w_i^T x \tag{5}$$

Visualizing One vs. All Classification

15 / 45

< A

One vs. All doesn't work always

Nitish Gupta (CS, UIUC)

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- Assumption : Every pair of class is separable
- Learning : Given a dataset $D = \{\langle x_i, y_i \rangle\}$ For every pair of labels (j, k) create a binary classifier with :
 - Positive examples : Elements of D with label j
 - Negative examples : Elements of D with label k
 - Train $\binom{\kappa}{2} = \mathcal{O}(k^2)$ classifiers
- Prediction : Much more complex. eg. Majority Voting, Tournament Organization etc.

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- Decomposition Methods :
 - Do not account for how final classifier will be used
 - Do not optimize any global measure of correctness

• Goal : To train a multi-class classifier that is 'global'

Figure: Margin in Binary Classification

Figure: Margin in Multi-class Classification

< 17 ▶

Detour to Binary SVM

 $\min_{w} \quad w^{T} w$ s.t. $y_{i} w^{T} x_{i} \geq 1 \quad \forall i$

• Soft SVM :

• Hard SVM :

$$\min_{w} w^{T}w + \lambda \sum_{i} \max(0, 1 - y_{i}w^{T}x_{i})$$

• Soft SVM can also be written as :

$$\begin{array}{ll} \min_{w} & w^{T}w + \lambda \sum_{i} \xi_{i} \\ \text{s.t.} & y_{i}w^{T}x_{i} \geq 1 - \xi_{i} \quad \forall i \\ & \xi_{i} \geq 0 \quad \forall i \end{array}$$

Nitish Gupta (CS, UIUC)

Nitish Gupta (CS, UIUC)

29th February, 2016

- Generalizes Binary Two-class SVM
- Prediction / Inference : Winner Takes All
- With K labels we have dK total weights in all :
 - Parameters and Inference complexity : Same as One vs. All. Order of magnitude cheaper than All vs. All
 - But comes with guarantees!!!

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

- We can successfully (?) do multiclass classification
 - Assign topics to documents
 - Names to object images
 - Sentiments to reviews
- How do we take this knowledge of ML to predict,
 - Assign topics to documents that come from a label hierarchy
 - Parse objects in scene and find relations between them. eg. OCR
 - Find the adjectives, verbs, nouns in reviews to possible perform aspect based sentiments

Structured Output Prediction : Example

Sequence Labeling : Parts-of-Speech Tagging

- Input : A sequence of objects.
- Output : A sequence of labels of the same length as input

The	Fed	raises	interest	rates
Determiner	Noun	Verb	Noun	Noun
Other possible tags in different contexts,	Verb (I <i>fed</i> the dog)	(Poems	Verb don't <i>interest</i> me)	Verb (He rates movies online)

Inference : For sequence size = n and T possible tags, output search space is $\mathcal{O}(T^n)$

Structured Output Prediction : Example

Optimal Tree Structure : Syntactic Parsing

- Input : $x \in \mathcal{X}$
- Output : Tree Structure, $y \in \mathcal{Y}$

- Can be thought of as generalized multi-class classification
- The output space is exponentially large or possibly even infinite
- The output labels (structures) are not opaque but can be *decomposed* into meaningful components
 - Output can be thought of as macro-labels
 - The components themselves are interdependent
 - In most general setting can be though of as a graph between components. In multi-class labels, these graphs are single nodes, single linkage trees in POS tagging, binary trees in syntactic parsing etc.

Structured Output Prediction

• Input : **x**, Output : $y = \{y_1, ..., y_n\}$

- The space of y ∈ 𝔅 is exponentially large. Eg. 𝔅(𝔅ⁿ) even for fixed length sequences
 - Solution : Decompose output into components and predict each separately
 - Back to Multi-class classification?
- Decomposed components of output are inter-dependent and global scoring of an output structure is required
 - Independent assignment of parts is correct?
 - The problem has now turned into a combination of multi-class and efficient search in the output space

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

• Learn the discriminant function $F : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$

$$f(x, w) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} F(x, y; w)$$
(6)

Where w is a parameter vector.

 F(x, y; w) is a linear function in combined feature representation of inputs and output Ψ(x, y)

$$F(x, y, w) = \langle w, \Psi(x, y) \rangle$$
(7)

Are all structures equally different?

- Departure from 0/1 Loss
- Arbitrary loss function $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. $\Delta(y, y') :$ Loss for predicting y' instead of y
- Empirical Risk Minimization :

$$R_{5}^{L}(f(x,w)) = \frac{1}{m} \sum_{1}^{m} \Delta(y_{i}, f(x_{i},w))$$
(8)

Margin Maximization : Hard Margin SVM

Strutured Output Prediction as Multi-class Classification

Hard Margin SVM

• For all $y \in \mathcal{Y} \setminus y_i$, we want

$$egin{aligned} &\langle w, \Psi(x_i, y_i)
angle - \langle w, \Psi(x_i, y)
angle \geq 1 \ &\langle w, \Psi(x_i, y_i) - \Psi(x_i, y)
angle \geq 1 \end{aligned}$$

• Writing $\Psi(x_i, y_i) - \Psi(x_i, y)$ as $\delta \Psi_i(y)$ we get,

$$\begin{aligned} & \text{SVM}_0: \quad \min_w \|w\|^2 \\ & \text{s.t.} \qquad \langle w, \delta \Psi_i(y) \rangle \geq 1 \quad \forall y \in \mathcal{Y} \backslash y_i \end{aligned}$$

Margin Maximization : Soft Margin SVM

Soft Margin SVM

SVM₁:
$$\min_{w} \|w\|^{2} + C \sum_{i=1}^{n} \xi_{i}$$

s.t. $\langle w, \delta \Psi_{i}(y) \rangle \geq 1 - \xi_{i} \quad \forall y \in \mathcal{Y} \setminus y_{i}$
 $\xi_{i} \geq 0$

Issues

- Violating margin constraints for any $y \neq y_i$ is equivalent
- Margin for y with high loss $\Delta(y, y_i)$ should be penalized more

Slack Re-scaling SVM

SVM₁^{$$\Delta s$$}: $\min_{w} ||w||^2 + C \sum_{i=1}^n \xi_i$
s.t. $\langle w, \delta \Psi_i(y) \rangle \ge 1 - \frac{\xi_i}{\Delta(y, y_i)} \quad \forall y \in \mathcal{Y} \setminus y_i$
 $\xi_i \ge 0$

Note

•
$$\Delta(y, y_i) > 0$$
 for all $y \neq y_i$

• Penalty only applies to y for which $\langle w, \delta \Psi_i(y) \rangle \leq 1$

• Supervised Learning : Classification

• Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

SVM Algorithm for Structured Output Spaces

The problem remains the same :

- Size of problems is still immense.
- $n(|\mathcal{Y}|-1)$ margin inequality constraints

Solution proposed : Find a much smaller subset of constraints to best approximate the optimization problem

- Algorithm to find subset of constraints should be fast (and correct, obviously). Preferably polynomial time
- Should be general enough to work for a large range of structures and loss functions (0/1 losses, F1 score, MAP etc.)

To achieve :

Reduce the problem to a polynomially sized subset of constraints such that the solution fulfills **all** constraints up to a precision of ϵ

Solution :

- Instead of keeping all constraints in optimization, find the most violated constraint (if any), i.e. y' for each x_i
- If the margin violation exceeds ξ_i by more than ε, add constraint corresponding to x_i, y' in working set
- Compute the solution with respected to new constraint set
- Rinse and Repeat

Recipe for applying the algorithm :

- Implement the joint feature map Ψ(x, y), explicitly or via joint kernel function
- Implement the loss function $\Delta(y_i, y)$
- Finding maximum violated constraint is still difficult
 - Trivial solution : Perform exhaustive search over all possible structures
 - Pragmatic Solution : Exploit the structure of Ψ for output spaces. Eg. Markovian assumptions, CKY-parsing for trees etc.

- Supervised Learning : Classification
- Linear Classifiers : Binary Classification

2 Multi-class Classification

- Introduction
- One vs. All
- All vs. All
- Multi-class SVM

- Introduction
- Structured SVM
- Structured SVM Algorithm
- Applications

Modelling :

• $\Lambda^{c}(y) = [(\delta(y_1, y), \dots, \delta(y_k, y)], \delta(a, b) = 1 \text{ iff } a = b, \text{ zero otherwise}$

•
$$\Psi(x,y) = \phi(x) \otimes \Lambda^{\mathcal{C}}(y) \in \mathbb{R}^{d \times K}$$

•
$$F(x, y, w) = \langle w, \Psi(x, y) \rangle$$

Algorithm :

• The number of classes K in simple multi-class is small enough to perform exhaustive search over ${\mathcal Y}$

Applications : Multi-class with Output Features

Modelling :

• $\Lambda(y) \in \mathbb{R}^R$

Left to modelling choice. Taxonomies can also be embedded and Δ can be defined with a tree loss

•
$$\Psi(x,y) = \phi(x) \otimes \Lambda^{\mathcal{C}}(y) \in \mathbb{R}^{d \times R}$$

•
$$F(x, y, w) = \sum_{r=1}^{R} \lambda_r(y) \langle w_r, \phi(x) \rangle$$

• Provides generalization across different classes *y*. Classes now share properties

Algorithm :

 $\bullet\,$ Number of classes is still small to perform exhaustive search over ${\cal Y}$

Applications : Sequence Labelling

$$x = x^1, x^2, \dots, x^T$$
$$y = y^1, y^2, \dots, y^T$$

Modelling :

$$F(x, y, w) = \left\langle w', \sum_{t=1}^{T} \phi(x^{t}) \otimes \Lambda^{c}(y^{t}) \right\rangle + \eta \left\langle w'', \sum_{t=1}^{T} \Lambda^{c}(y^{t}) \otimes \Lambda^{c}(y^{t+1}) \right\rangle$$
(9)

Algorithm :

• Use Dynamic Programming since costs are additive in the decomposition

Thank you!

Questions?

Resources : Cognitive Computation Group, UIUC cogcomp.cs.illinois.edu

Nitish Gupta (CS, UIUC)

Structured Output Prediction

29th February, 2016 45 / 45