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Lattice-based cryptography

• Post-quantum candidate.

• Worst-case to average-case reductions (in asymptotic sense) .

• Advanced cryptographic primitives (like FHE).

NIST standardized lattice-based algorithms for quantum-resistant 
cryptography (July, 2022). 

More details, please visit:

https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-
resistant-cryptographic-algorithms

The availability of a quantum computer is altogether a different question ☺

https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms


Lattice-based assumptions

Cryptography relies on the assumptions of computationally hard 
problems.

Lattice-based assumptions: The best known way to solve it is by 
lattice methods through a transformation to a lattice problem.

Talk overview: This doesn’t always guarantee hardness (by
counterexamples).

Lattice methods might not be the optimal strategy to approach it.



Lattice Background

A full rank matrix B ∈ ℤ𝑛×𝑛 generates a Lattice 𝐿 = 𝐿 𝐵 = 𝐵𝑧: 𝑧 ∈ ℤ𝑛

• This lattice has 𝑑𝑖𝑚 = 𝑛 and 𝑉𝑜𝑙 = |𝑑𝑒𝑡 𝐵 |



Algorithmic problem related to lattices

• Shortest (non-zero) vector problem (SVP)

• Minkowski’s theorem: Let 𝑣 be the SVP solution, then 

|| 𝑣|| ≤ 𝑛𝑉𝑜𝑙
1
𝑛

• In practice, we use lattice reduction algorithms to find approximate 
solutions.

LLL: Finds a lattice vector of norm ≤ 2
𝑛

2 𝑉𝑜𝑙
1

𝑛 in polynomial time in the 
size of its input.

BKZ with block size 𝛽: Finds a lattice vector of norm ≤ 𝛽
𝑛

𝛽𝑉𝑜𝑙
1

𝑛 in time 
2𝑂(𝛽).



Cryptanalysis of the Finite Field Isomorphism 
problem

Based on the work: D. Das, A. Joux. On the Hardness of the Finite Field Isomorphism 
Problem. EUROCRYPT’23



Reminders from Finite field theory

• Finite field with 𝑞 elements : 𝐹𝑞 , where 𝑞 is prime.

• Finite field with 𝑞𝑛 elements (𝑛 degree extension of 𝐹𝑞): 𝐹𝑞𝑛

• Isomorphic representations of Fq𝑛 using irreducible polynomials of degree
𝑛 over 𝐹𝑞

𝐹𝑞 𝑥 /𝑓(𝑥) ≈ 𝐹𝑞 𝑦 /𝐹(𝑦) ≈ …

• To find an explicit isomorphism, it is enough to know the roots of one
polynomial in 𝐹𝑞𝑛 in terms of the other representation



Finite Field Isomorphism (FFI) Distribution

Private: Public:

Uniform Sparse ternary minimal polynomial of 𝑥: 

𝑓 𝑥 = 𝑥𝑛 + 𝑔(𝑥), deg 𝑔 ≤
𝑛

2

Uniform minimal polynomial of 𝑦: 𝐹(𝑦)

Pick an Isomorphism: 𝜙

Sample 𝛽- bounded linear combinations of powers of 
𝑥: 𝑎𝑖(𝑥)

𝐴𝑖 𝑦 = 𝜙(𝑎𝑖 𝑥 )

Good 
Representation in 

polynomial 
𝑥 −basis

Bad 
Representation in 

polynomial 
y −basis



FFI problem [DHP+'18,HSWZ’20]

Given 𝑞, 𝐹 𝑦 , 𝐴1 𝑦 , 𝐴2 𝑦 ,… , 𝐴𝑘(𝑦) decide if 𝐴𝑖(𝑦) is from the FFI 
distribution or the uniform distribution.

This is the Decisional FFI (DFFI) problem.

[DHP+’18]: Y. Dorӧz, J. Hoffstein, J. Pipher, J. Silverman, B. Sunar, W. Whyte, and Z. Zhang. 
Fully homomorphic encryption from the finite field isomorphism problem. PKC’18.

[HSWZ’20]:  J. Hoffstein, J. Silverman, W. Whyte, Z. Zhang. A signature scheme from the 
finite field isomorphism problem. JoMC’20.



Toy example



Previous attack on Decisional FFI problem 
[DHP+’18,HSWZ’20]

Lattice attack
Find unusually short lattice vectors of the lattice 𝐿 ⊆ ℤ𝑘 spanned by the columns

𝐴𝑖(𝑦)

𝑘

n

𝑚𝑜𝑑 𝑞



FHE from FFI problem (oversimplified) [DHP+’18]

• Let 𝑝 = 2

• 𝑚𝑎 , 𝑚𝑏 ∈ {0,1}

• Enc 𝑚𝑎 = 𝐶𝑎 = 𝑝𝐶(𝑦) + 𝑚𝑎, Enc 𝑚𝑏 = 𝐶𝑏 = 𝑝𝐶′(𝑦) + 𝑚𝑏

• Dec(𝐶𝑎) = (𝑝𝑐 𝑥 + 𝑚𝑎) 𝑚𝑜𝑑 𝑝 = 𝑚𝑎

• Dec(𝐶𝑎 + 𝐶𝑏) = (𝑝 𝑐 𝑥 + 𝑝𝑐′ 𝑥 +𝑚𝑎 +𝑚𝑏 )𝑚𝑜𝑑 𝑝 = 𝑚𝑎 +𝑚𝑏

• Dec(𝐶𝑎 . 𝐶𝑏) = (𝑝2 𝑐 𝑥 𝑐′ 𝑥 + 𝑝 𝑐 𝑥 𝑚𝑏 + 𝑝𝑐′ 𝑥 𝑚𝑎 +𝑚𝑎. 𝑚𝑏) 𝑚𝑜𝑑 𝑝 =
𝑚𝑎. 𝑚𝑏

• Correctness: Choose 𝑞 sufficiently large to avoid modular reductions in 𝑥-basis 
representations

• When 𝑞 = 2𝑛
𝛿
, 𝛿 ∈ (0,1), the Encryption scheme is FHE [DHP+18]

Bounded 
Expansion 

factor
The sparse 

ternary choice 
of 𝑓(𝑥)

bounds the 
noise growth 

after 
multiplications



Trace of finite field

• Let 𝛼 ∈ 𝐹𝑞𝑛 , trace is defined by

𝑇𝑟 𝛼 = 𝛼 + 𝛼𝑞 +⋯+ 𝛼𝑞
𝑛−1

∈ 𝐹𝑞

• Trace is linear.

• Trace computation is polynomial time.

• Trace is invariant under basis representations.



Symmetric polynomials

• Roots of 𝑓(𝑥) in 𝐹𝑞𝑛(in terms of polynomial 𝑥-basis):

{𝛼0 = 𝑥, 𝛼1 = 𝑥𝑞 , … , 𝛼𝑛−1 = 𝑥𝑞
𝑛−1

}

• Define Symmetric polynomials

𝜎1(𝛼𝑖) = −∑𝛼𝑖 , 𝜎2(𝛼𝑖) = ∑∑𝛼𝑖𝛼𝑗 , … , 𝜎𝑛(𝛼𝑖) = −1 𝑛∏𝛼𝑖



Trace of polynomial 𝑥-basis

𝑓 𝑥 = 𝑥𝑛 + 𝜎1𝑥
𝑛−1 +⋯+ 𝜎𝑛 where 𝜎𝑑 = 0 for 1≤ 𝑑 ≤

𝑛

2
− 1

𝜎𝑑 ∈ 0,±1 for
𝑛

2
≤ 𝑑 ≤ 𝑛

Then

𝑇𝑟 𝑥𝑑 = 𝑛 𝑚𝑜𝑑 𝑞 for 𝑑 = 0

= 0 𝑚𝑜𝑑 𝑞 for 1 ≤ 𝑑 ≤
𝑛

2
− 1

= 𝑑 𝑚𝑜𝑑 𝑞 for 
𝑛

2
≤ 𝑑 ≤ 𝑛 − 1 and  𝜎𝑑 ≠ 0

= 0𝑚𝑜𝑑 𝑞 𝜎𝑑 = 0



Trace of polynomial 𝑥-basis

𝑓 𝑥 = 𝑥𝑛 + 𝜎1𝑥
𝑛−1 +⋯+ 𝜎𝑛 where 𝜎𝑑 = 0 for 1≤ 𝑑 ≤

𝑛

2
− 1

𝜎𝑑 ∈ 0,±1 for
𝑛

2
≤ 𝑑 ≤ 𝑛

• Then for 1 ≤ 𝑑 ≤
𝑛

2
− 1

• 𝜎𝑑 = 0

• 𝑇𝑟(𝑥𝑑) = 0 𝑚𝑜𝑑 𝑞
Using Newton-Girard formula:   

𝑇𝑟 𝑥𝑑

= −1 𝑑𝑑 

𝑟𝑖∈ℕ:𝑟1+2𝑟2+⋯+𝑑𝑟𝑑=𝑑

𝑟1 + 𝑟2 +⋯𝑟𝑑 − 1 !

𝑟1! 𝑟2! … 𝑟𝑑!
ෑ

𝑗=1

𝑑

−𝜎𝑗
𝑟𝑗



Trace of polynomial 𝑥-basis

𝑓 𝑥 = 𝑥𝑛 + 𝜎1𝑥
𝑛−1 +⋯+ 𝜎𝑛 where 𝜎𝑑 = 0 for 1≤ 𝑑 ≤

𝑛

2
− 1

𝜎𝑑 ∈ 0,±1 for
𝑛

2
≤ 𝑑 ≤ 𝑛

• Then for 
n

2
≤ 𝑑 ≤ 𝑛 − 1

Only one solution for 𝑟𝑖: 𝑟1 + 2𝑟2 +⋯+ 𝑑𝑟𝑑 = 𝑑 that contributes in the sum: 

(𝑟1 = 0, 𝑟2 = 0,… , 𝑟𝑑 = 1)

|𝑇𝑟 𝑥𝑑 | = 𝑑 𝑚𝑜𝑑 𝑞 when 𝜎𝑑 ≠ 0

= 0 𝑚𝑜𝑑 𝑞 when 𝜎𝑑 = 0

Using Newton-Girard formula:   

𝑇𝑟 𝑥𝑑

= −1 𝑑𝑑 

𝑟𝑖∈ℕ:𝑟1+2𝑟2+⋯+𝑑𝑟𝑑=𝑑

𝑟1 + 𝑟2 +⋯𝑟𝑑 − 1 !

𝑟1! 𝑟2! … 𝑟𝑑!
ෑ

𝑗=1

𝑑

−𝜎𝑗
𝑟𝑗



Trace of FFI samples

• Let 𝑎𝑖(𝑥) is a 𝛽-linear combinations of 𝑥-basis.

Then 𝑇𝑟 𝑎𝑖 𝑥 = 𝑇𝑟 𝐴𝑖 𝑦 ≤ 𝛽𝑛2



Polynomial-time attack on DFFI problem

• Let 𝑞 > 4𝛽𝑛2

• Let 𝐴1 𝑦 , 𝐴2 𝑦 ,… , 𝐴𝑘(𝑦) be the given samples.

• Advantage: 1 −
1

2𝑘

Trace is uniformly 
distributed in 𝐹𝑞 for uniform 

samples.

Compute the trace of the samples.

If the absolute value of traces ≤ 𝛽𝑛2, 
output FFI distribution.

Otherwise, output uniform 
distribution.



Polynomial-time semantic attack on the FHE

• Let 𝑝 is not a divisor of 𝑛

• 𝐶𝑎 = 𝑝𝐶(𝑦) + 𝑚, where 𝑚 ∈ {0,1}

• 𝑇𝑟 𝐶𝑎 = 𝑝𝑇𝑟(𝑐 𝑥 ) + 𝑇𝑟 𝑚 is small.

𝑇𝑟 𝐶𝑎 𝑚𝑜𝑑 𝑝 = 0, Return 𝑚 = 0
= 1, Return 𝑚 = 1



Polynomial-time semantic attack on the FHE

• Let 𝑝 is a divisor of 𝑛

• 𝐶𝑎 = 𝑝𝐶(𝑦) + 𝑚, where 𝑚 ∈ {0,1}

• Pick any FFI sample 𝐶∗ such that 𝑝 is not a divisor of 𝑇𝑟(𝐶∗)

• 𝑇𝑟(𝐶𝑎 . 𝐶
∗ ) = 𝑝𝑇𝑟(𝑐∗ 𝑥 . 𝑐 𝑥 ) + 𝑚 𝑇𝑟(𝑐∗(𝑥)) is still small.

• The large 𝑞 makes sure there is no modular reduction!

The choice of 𝑓(𝑥) makes sure the coefficients of the product in 𝑥-basis are small.

𝑇𝑟 𝐶𝑎𝐶
∗ 𝑚𝑜𝑑 𝑝 = 0, Return 𝑚 = 0

= 1, Return 𝑚 = 1



Cryptanalysis of the Partial Vandermonde
Knapsack Problem
Based on the work: D. Das, A. Joux. Key Recovery Attack on the Partial Vandermonde
Knapsack Problem. In submission



Partial Vandermonde (PV) Knapsack Problem

Let 𝑅𝑞 = 𝐹𝑞 𝑥 /𝑔(𝑥) be a quotient polynomial ring, where

• 𝑔 𝑥 = 𝑥𝑛 − 1 for prime 𝑛

= 𝑥𝑛 + 1 for power of two 𝑛

• Prime 𝑞 such that 𝑔(𝑥) splits linearly over 𝐹𝑞
When 𝑛 is prime, 𝑞 = 1 𝑚𝑜𝑑 𝑛

When 𝑛 is power-of-two, 𝑞 = 1 𝑚𝑜𝑑 2𝑛

Ω: The set of all the primitive roots of 𝑔(𝑥) over 𝐹𝑞



PV Knapsack Problem
[HPSSW’14,HS’15,DHSS’20, LZA’18,BSS’22]

• Ω𝑡: Uniformly random subset of Ω with 𝑡 distinct elements.

• 𝑓 𝑥 ∈ 𝑅𝑞: Coefficients are sampled uniformly at random from the set {−1,0,1}.

PV Knapsack problem:

Given 𝑅𝑞, Ω𝑡, and 𝑓 𝜔 for 𝜔 ∈ Ω𝑡 find 𝑓(𝑥) when 𝑡 ≈
𝑛

2
.

Initially PV Knapsack problem was called the partial Fourier recovery problem.

[HPSSW’14]: J. Hoffstein, J. Pipher, J. Schanck, J. Silverman, and W. Whyte. Practical signatures from the partial Fourier recovery problem. 
ACNS’14.

[HS’15]: J. Hoffstein and J. Silverman. Pass-encrypt: a public key cryptosystem based on partial evaluation of polynomials. DCC’15.

[LZA’18]: X. Lu, Z. Zhang, and M. Au. Practical signatures from the partial Fourier recovery problem revisited: A provably-secure and 
Gaussian-distributed construction. ACISP’18.

[DHSS’20]: Y. Dorӧz, J. Hoffstein, J. Silverman, and B. Sunar. MMSAT: A scheme for multimessage multiuser signature aggregation. Eprint’20.

[BSS’22]: K. Boudgoust, A. Sakzad, and R. Steinfeld. Vandermonde meets Regev: public key encryption schemes based on partial 
Vandermonde problems. DCC’22.



Previous attack (Direct primal attack)[HPSSW’14]
for 𝜔 ∈ Ω𝑡

𝑉
1 𝜔 𝜔2… 𝜔𝑛−1

𝑓

𝑓(𝜔) 𝑚𝑜𝑑 𝑞

0

−1

𝑡
𝑛 + 1

𝑓 𝜔



Previous attack (Direct primal attack)[HPSSW’14]

• PV Knapsack problem: Find the uSVP solution (𝑓, −1) on the Kernel 
lattice

𝐿⊥= {𝑥 ∈ ℤ𝑛+1: 𝑉𝑥 = 0 𝑚𝑜𝑑 𝑞 }

With 𝐷𝑖𝑚 = 𝑛 + 1 𝑉𝑜𝑙 = 𝑞𝑡

• || (𝑓, −1) || ≈
2𝑛

3
which is unusually short in the lattice 𝐿⊥. 



Previous attack (Dual attack)[BGP’22]

• Distinguishing attack

• Doesn’t affect the hardness of recovering 𝑓.

“We note however that this does not fully invalidate the claim made in [LZA18], 
since the 128 bit-security is claimed against search attackers, and not distinguishing 
attackers.” [BGP’22]

• The attack exploits specific Ideal structure of the problem to map to 
an SVP instance of smaller dimension.

[BGP’22]: K. Boudgoust, E. Gachon, and A. Pellet-Mary. Some easy instances of Ideal-SVP and 

implications on the partial Vandermonde Knapsack problem. Crypto’22.



Attack on the PV Knapsack problem

• For any 𝑓 𝑥 ∈ 𝑅𝑞, we can interpret 𝑓
1

𝑥
∈ 𝑅𝑞

•
1

𝑥
= 𝑥𝑛−1 ∈ 𝑅𝑞 when 𝑛 is prime.

•
1

𝑥
= −𝑥𝑛−1 ∈ 𝑅𝑞 when 𝑛 is power-of-two.



Attack on the PV Knapsack problem

• Consider Ω2𝑡1 = 𝜔 ∈ Ω𝑡: 𝜔, 𝜔
−1 ∈ Ω𝑡 ⊆ Ω𝑡 with 0 ≤ 𝑡1 ≤ ⌊

𝑡

2
⌋

• We know the evaluations 𝑓(𝜔) and 𝑓(𝜔−1)

• We can compute 𝑓 𝜔 ± 𝑓(𝜔−1) for 𝜔 ∈ Ω2𝑡1

This gives 𝑡1 evaluations of 𝜓± 𝑥 = 𝑓 𝑥 ± 𝑓
1

𝑥
at 𝜔 ∈ Ω2𝑡1

Idea: Find 𝜓±(𝑥) using lattice of smaller dimensions and do linear algebra to 
recover 𝑓(𝑥). Finding each of 𝜓±(𝑥) can be performed in parallel.



Attack on the PV Knapsack problem

• The mapping

𝑥𝑖 → 𝑥𝑖 + 1/𝑥𝑖 for 0 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ is well defined.

By linearity, 𝜓+ 𝑥 = 𝑓 𝑥 + 𝑓
1

𝑥
can be generated by the basis (of order ⌈

𝑛

2
⌉)

2, 𝑥 +
1

𝑥
, 𝑥2 +

1

𝑥2
, … , 𝑥

𝑛
2 +

1

𝑥
𝑛
2 +1

Similarly, 𝜓−(𝑥) = 𝑓 𝑥 − 𝑓
1

𝑥
can be generated by the basis  (of order ⌊

𝑛

2
⌋)

𝑥 −
1

𝑥
, 𝑥2 −

1

𝑥2
, … , 𝑥

𝑛
2 −

1

𝑥
𝑛
2
+1

• If 𝑓(𝑥) has uniformly random coefficients in {−1,0,1}, 𝜓±(𝑥) has coefficients in {−2,−1,0,1,2} and 

||𝜓± || ≈
4⌈
𝑛

2
⌉

3
in the new basis representations.



Attack on the PV Knapsack problem
for 𝜔 ∈ Ω2𝑡1

𝑊+

𝜓+(𝜔)2 𝜔 + 𝜔−1 … 𝜔
𝑛
2 + 𝜔

−
𝑛
2 +1 𝜓+

−1

0

𝑚𝑜𝑑 𝑞

𝑡1

𝑛2+
1

𝜓+ 𝜔



New Primal Attack on the PV Knapsack 
problem
PV Knapsack problem reduced to finding the uSVP solution on the 
Kernel lattice

𝐿𝑊+

⊥ = {𝑥 ∈ ℤ
𝑛
2

+1
:𝑊+𝑥 = 0 𝑚𝑜𝑑 𝑞 }

With 𝐷𝑖𝑚 = ⌈
𝑛

2
⌉ + 1 𝑉𝑜𝑙 = 𝑞𝑡1

||(𝜓±, −1) || ≈
4⌈
𝑛

2
⌉

3
which is also unusually short in the lattice 𝐿𝑊±

⊥ .



Analysis of the attack

• uSVP cost depends on the root Hermite factor 𝛿 = 𝛾1/𝑑𝑖𝑚, 𝛾 =
𝜆2

𝜆1
is the

uniqueness gap [GN’08]. 

• The attack gets faster as 𝑡1 increases.

Probability distribution of the number of pairs 𝑡1:

𝜋1 𝑡1 =

⌊
𝑛
2⌋

𝑡1

𝑛
2 −𝑡1
𝑡−2𝑡1

2𝑡−2𝑡1

2⌊
𝑛
2⌋

𝑡

[GN’08]: N. Gama and P. Nguyen. Predicting lattice reduction. Eurocrypt’08.

𝜋1 𝑡1 for 𝑛 = 512, 𝑡 = 256



Effect of the attack on the concrete parameters

All the parameters from the literature contain a non-negligible fraction of weak keys, which are 
easily identified and extremely susceptible to our attack.

Example: We recovered the secret key of a parameter set from [LZA’18]  for a fraction of

• 2−15 of the public keys in about 117 hours (≈ 250 bits operation)

• 2−19 of the public keys in about 30 hours (≈ 248 bits operation)

• 2−23 of the public keys in about 10 hours (≈ 246 bits operation)

• 2−30 of the public keys in about 8 hours (≈ 245 bits operation)

The direct primal attack provides 54-bits security using LWE estimator [APS’15].

It was initially claimed to have a 128-bit security against key recovery attack [LZA18], which was reduced to 87-bit 
security using the distinguishing attack from [BGP’22].

[APS’15] M. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. JoMC’15.



Conclusion

“40 years Advances in Cryptology: How will future judge Us?”
Crypto’20 Rump talk by Yvo Desmedt available at https://www.youtube.com/watch?v=MTafClFZOi8&list=PLeeS-3Ml-

rppZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s

• Lattice-based assumptions are “relatively” NEW.

• CRYPTANALYSIS challenges our assumptions.

https://www.youtube.com/watch?v=MTafClFZOi8&list=PLeeS-3Ml-rppZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s
https://www.youtube.com/watch?v=MTafClFZOi8&list=PLeeS-3Ml-rppZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s
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