Crypatanalysis of some Lattice-based Assumptions

Dipayan Das (joinning NTT Japan in December)

Lattice-based cryptography

- Post-quantum candidate.
- Worst-case to average-case reductions (in asymptotic sense) .
- Advanced cryptographic primitives (like FHE).

NIST standardized lattice-based algorithms for quantum-resistant cryptography (July, 2022).

More details, please visit:
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms

Lattice-based assumptions

Cryptography relies on the assumptions of computationally hard problems.
Lattice-based assumptions: The best known way to solve it is by lattice methods through a transformation to a lattice problem.

Talk overview: This doesn't always guarantee hardness (by counterexamples).

Lattice methods might not be the optimal strategy to approach it.

Lattice Background

A full rank matrix $\mathrm{B} \in \mathbb{Z}^{n \times n}$ generates a Lattice $L=L(B)=\left\{B z: z \in \mathbb{Z}^{n}\right\}$

- This lattice has $\operatorname{dim}=n$ and $\operatorname{Vol}=|\operatorname{det}(B)|$

Algorithmic problem related to lattices

- Shortest (non-zero) vector problem (SVP)
- Minkowski's theorem: Let v be the SVP solution, then

$$
\|v\| \leq \sqrt{n} V o l^{\frac{1}{n}}
$$

- In practice, we use lattice reduction algorithms to find approximate solutions.
LLL: Finds a lattice vector of norm $\leq 2^{\frac{n}{2}} V o l^{\frac{1}{n}}$ in polynomial time in the size of its input.
BKZ with block size β : Finds a lattice vector of norm $\leq \beta^{\frac{n}{\beta}} V o l^{\frac{1}{n}}$ in time $2^{O(\beta)}$.

Cryptanalysis of the Finite Field Isomorphism problem

Based on the work: D. Das, A. Joux. On the Hardness of the Finite Field Isomorphism Problem. EUROCRYPT'23

Reminders from Finite field theory

- Finite field with q elements : F_{q}, where q is prime.
- Finite field with q^{n} elements (n degree extension of F_{q}): $F_{q^{n}}$
- Isomorphic representations of $\mathrm{F}_{\mathrm{q}^{n}}$ using irreducible polynomials of degree n over F_{q}

$$
F_{q}[x] / f(x) \approx F_{q}[y] / F(y) \approx \ldots
$$

- To find an explicit isomorphism, it is enough to know the roots of one polynomial in $F_{q} n$ in terms of the other representation

Finite Field Isomorphism (FFI) Distribution

Private:	Public:
Uniform Sparse ternary minimal polynomial of $x:$ $f(x)=x^{n}+g(x), \operatorname{deg}(g) \leq \frac{n}{2}$	Uniform minimal polynomial of $y: F(y)$

Pick an Isomorphism: ϕ

FFI problem [DHP+'18,HSWZ'20]

Given $q, F(y), A_{1}(y), A_{2}(y), \ldots, A_{k}(y)$ decide if $A_{i}(y)$ is from the FFI distribution or the uniform distribution.
This is the Decisional FFI (DFFI) problem.
[DHP+'18]: Y. Doröz, J. Hoffstein, J. Pipher, J. Silverman, B. Sunar, W. Whyte, and Z. Zhang. Fully homomorphic encryption from the finite field isomorphism problem. PKC'18.
[HSWZ'20]: J. Hoffstein, J. Silverman, W. Whyte, Z. Zhang. A signature scheme from the finite field isomorphism problem. JoMC'20.

Toy example

```
n=16
```



```
lol
```



```
x-basis representataions
y-basis representations
```



```
lol
```



```
*)
-x^15 + x^12 -x^11 -x^10 + x^8 -x^6 -x^5 -x^3 -x^2 -*x -1
lol
```


Previous attack on Decisional FFI problem [DHP+'18,HSWZ'20]

Lattice attack

Find unusually short lattice vectors of the lattice $L \subseteq \mathbb{Z}^{k}$ spanned by the columns

For FFI samples, there
are unusually short
vectors.
For uniform samples, highly unlikely!

FHE from FFI problem (oversimplified) [DHP+’18]

- Let $p=2$
- $m_{a}, m_{b} \in\{0,1\}$
- $\operatorname{Enc}\left(m_{a}\right)=C_{a}=p C(y)+m_{a}, \operatorname{Enc}\left(m_{b}\right)=C_{b}=p C^{\prime}(y)+m_{b}$
- $\operatorname{Dec}\left(C_{a}\right)=\left(p c(x)+m_{a}\right) \bmod p=m_{a}$
- $\operatorname{Dec}\left(C_{a}+C_{b}\right)=\left(p c(x)+p c^{\prime}(x)+m_{a}+m_{b}\right) \bmod p=m_{a}+m_{b}$
- $\operatorname{Dec}\left(C_{a} \cdot C_{b}\right)=\left(p^{2} c(x) c^{\prime}(x)+p c(x) m_{b}+p c^{\prime}(x) m_{a}+m_{a} \cdot m_{b}\right) \bmod p=$ $m_{a} \cdot m_{b}$
- Correctness: Choose q sufficiently large to avoid modular reductions in x-basis representations
- When $q=2^{n^{\delta}}, \delta \in(0,1)$, the Encryption scheme is FHE [DHP +18]

Trace of finite field

- Let $\alpha \in F_{q^{n}}$, trace is defined by

$$
\operatorname{Tr}(\alpha)=\alpha+\alpha^{q}+\cdots+\alpha^{q^{n-1}} \in F_{q}
$$

- Trace is linear.
- Trace computation is polynomial time.
- Trace is invariant under basis representations.

Symmetric polynomials

- Roots of $f(x)$ in $F_{q^{n}}$ (in terms of polynomial x-basis):

$$
\left\{\alpha_{0}=x, \alpha_{1}=x^{q}, \ldots, \alpha_{n-1}=x^{q^{n-1}}\right\}
$$

- Define Symmetric polynomials

$$
\sigma_{1}\left(\alpha_{i}\right)=-\sum \alpha_{i}, \sigma_{2}\left(\alpha_{i}\right)=\sum \sum \alpha_{i} \alpha_{j}, \ldots, \sigma_{n}\left(\alpha_{i}\right)=(-1)^{n} \prod \alpha_{i}
$$

Trace of polynomial x-basis

$$
\begin{aligned}
f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n} \text { where } \sigma_{d} & =0 \text { for } 1 \leq d \leq \frac{n}{2}-1 \\
\sigma_{d} & \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\operatorname{Tr}\left(x^{d}\right)\right| & =n \bmod q \text { for } d=0 \\
& =0 \bmod q \text { for } 1 \leq d \leq \frac{n}{2}-1 \\
& =d \bmod q \text { for } \frac{n}{2} \leq d \leq n-1 \text { and } \sigma_{d} \neq 0 \\
& =0 \bmod q
\end{aligned} \quad \sigma_{d}=0
$$

Trace of polynomial x-basis

$f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n}$ where $\sigma_{d}=0$ for $1 \leq d \leq \frac{n}{2}-1$

$$
\sigma_{d} \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
$$

- Then for $1 \leq d \leq \frac{n}{2}-1$
- $\sigma_{d}=0$
- $\operatorname{Tr}\left(x^{d}\right)=0 \bmod q$

Using Newton-Girard formula:

$$
\begin{aligned}
& \operatorname{Tr}\left(x^{d}\right) \\
& =(-1)^{d} d \sum_{r_{i} \in \mathbb{N}: r_{1}+2 r_{2}+\cdots+d r_{d}=d} \frac{\left(r_{1}+r_{2}+\cdots r_{d}-1\right)!}{r_{1}!r_{2}!\ldots r_{d}!} \prod_{j=1}^{d}\left(-\sigma_{j}\right)^{r_{j}}
\end{aligned}
$$

Trace of polynomial x-basis

$$
f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n} \text { where } \sigma_{d}=0 \text { for } 1 \leq d \leq \frac{n}{2}-1
$$

$$
\sigma_{d} \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
$$

- Then for $\frac{\mathrm{n}}{2} \leq d \leq n-1$

Only one solution for $r_{i}: r_{1}+2 r_{2}+\cdots+d r_{d}=d$ that contributes in the sum:

$$
\begin{aligned}
\left(r_{1}=0, r_{2}=0, \ldots, r_{d}=1\right) \\
\left|\operatorname{Tr}\left(x^{d}\right)\right|=d \text { mod } q \text { when } \sigma_{d} \neq 0 \\
=0 \text { mod } q \text { when } \sigma_{d}=0
\end{aligned} \left\lvert\, \begin{aligned}
& \text { Using Newton-Girard formula: } \\
& \operatorname{Tr}\left(x^{d}\right) \quad \\
& =(-1)^{d} d \sum_{r_{i} \in \mathbb{N}: r_{1}+2 r_{2}+\cdots+d r_{d}=d} \frac{\left(r_{1}+r_{2}+\cdots r_{d}-1\right)!}{r_{1}!r_{2}!\ldots r_{d}!} \prod_{j=1}^{d}\left(-\sigma_{j}\right)^{r_{j}}
\end{aligned}\right.
$$

Trace of FFI samples

- Let $a_{i}(x)$ is a β-linear combinations of x-basis.

Then $\left|\operatorname{Tr}\left(a_{i}(x)\right)\right|=\left|\operatorname{Tr}\left(A_{i}(y)\right)\right| \leq \beta n^{2}$

Polynomial-time attack on DFFI problem

- Let $q>4 \beta n^{2}$
- Let $A_{1}(y), A_{2}(y), \ldots, A_{k}(y)$ be the given samples.

Compute the trace of the samples.

If the absolute value of traces $\leq \beta n^{2}$, output FFI distribution.

Otherwise, output uniform distribution.

- Advantage: $1-\frac{1}{2^{k}}$

Polynomial-time semantic attack on the FHE

- Let p is not a divisor of n
- $C_{a}=p C(y)+m$, where $m \in\{0,1\}$
- $\operatorname{Tr}\left(C_{a}\right)=p \operatorname{Tr}(c(x))+\operatorname{Tr}(m)$ is small.

$$
\begin{aligned}
\operatorname{Tr}\left(C_{a}\right) \bmod p & =0, \text { Return } m=0 \\
& =1, \text { Return } m=1
\end{aligned}
$$

Polynomial-time semantic attack on the FHE

- Let p is a divisor of n
- $C_{a}=p C(y)+m$, where $m \in\{0,1\}$
- Pick any FFI sample C^{*} such that p is not a divisor of $\operatorname{Tr}\left(C^{*}\right)$
- $\operatorname{Tr}\left(C_{a} \cdot C^{*}\right)=p \operatorname{Tr}\left(c^{*}(x) . c(x)\right)+m \operatorname{Tr}\left(c^{*}(x)\right)$ is still small.

The choice of $f(x)$ makes sure the coefficients of the product in x-basis are small.
$\operatorname{Tr}\left(C_{a} C^{*}\right) \bmod p=0$, Return $m=0$
$=1$, Return $m=1$

- The large q makes sure there is no modular reduction!

Cryptanalysis of the Partial Vandermonde Knapsack Problem

Based on the work: D. Das, A. Joux. Key Recovery Attack on the Partial Vandermonde Knapsack Problem. In submission

Partial Vandermonde (PV) Knapsack Problem

Let $R_{q}=F_{q}[x] / g(x)$ be a quotient polynomial ring, where

- $g(x)=x^{n}-1$ for prime n
$=x^{n}+1$ for power of two n
- Prime q such that $g(x)$ splits linearly over F_{q}

When n is prime, $q=1 \bmod n$
When n is power-of-two, $q=1 \bmod 2 n$
Ω : The set of all the primitive roots of $g(x)$ over F_{q}

PV Knapsack Problem [HPSSW'14,HS'15,DHSS'20, LZA'18,BSS'22]

- Ω_{t} : Uniformly random subset of Ω with t distinct elements.
- $f(x) \in R_{q}$: Coefficients are sampled uniformly at random from the set $\{-1,0,1\}$.

PV Knapsack problem:

Given R_{q}, Ω_{t}, and $f(\omega)$ for $\omega \in \Omega_{t}$ find $f(x)$ when $t \approx \frac{n}{2}$.
Initially PV Knapsack problem was called the partial Fourier recovery problem.
[HPSSW'14]: J. Hoffstein, J. Pipher, J. Schanck, J. Silverman, and W. Whyte. Practical signatures from the partial Fourier recovery problem. ACNS' 14.
[HS'15]: J. Hoffstein and J. Silverman. Pass-encrypt: a public key cryptosystem based on partial evaluation of polynomials. DCC'15.
[LZA'18]: X. Lu, Z. Zhang, and M. Au. Practical signatures from the partial Fourier recovery problem revisited: A provably-secure and Gaussian-distributed construction. ACISP'18.
[DHSS'20]: Y. Doröz, J. Hoffstein, J. Silverman, and B. Sunar. MMSAT: A scheme for multimessage multiuser signature aggregation. Eprint'20.
[BSS'22]: K. Boudgoust, A. Sakzad, and R. Steinfeld. Vandermonde meets Regev: public key encryption schemes based on partial Vandermonde problems. DCC'22.

Previous attack (Direct primal attack)[HPSSW'14] for $\omega \in \Omega_{t}$
$\approx+r$

Previous attack (Direct primal attack)[HPSSW'14]

- PV Knapsack problem: Find the uSVP solution $(f,-1)$ on the Kernel lattice

$$
L^{\perp}=\left\{x \in \mathbb{Z}^{n+1}: V x=0 \bmod q\right\}
$$

With $\operatorname{Dim}=n+1 \quad \mathrm{Vol}=q^{t}$

- $\|(f,-1)\| \approx \sqrt{\frac{2 n}{3}}$ which is unusually short in the lattice L^{\perp}.

Previous attack (Dual attack)[BGP'22]

- Distinguishing attack
- Doesn't affect the hardness of recovering f.
"We note however that this does not fully invalidate the claim made in [LZA18], since the 128 bit-security is claimed against search attackers, and not distinguishing attackers." [BGP'22]
- The attack exploits specific Ideal structure of the problem to map to an SVP instance of smaller dimension.
[BGP'22]: K. Boudgoust, E. Gachon, and A. Pellet-Mary. Some easy instances of Ideal-SVP and implications on the partial Vandermonde Knapsack problem. Crypto'22.

Attack on the PV Knapsack problem

- For any $f(x) \in R_{q}$, we can interpret $f\left(\frac{1}{x}\right) \in R_{q}$
- $\frac{1}{x}=x^{n-1} \in R_{q}$ when n is prime.
$\cdot \frac{1}{x}=-x^{n-1} \in R_{q}$ when n is power-of-two.

Attack on the PV Knapsack problem

- Consider $\Omega_{2 t_{1}}=\left\{\omega \in \Omega_{t}:\left(\omega, \omega^{-1}\right) \in \Omega_{t}\right\} \subseteq \Omega_{t}$ with $0 \leq t_{1} \leq\left\lfloor\frac{t}{2}\right\rfloor$
- We know the evaluations $f(\omega)$ and $f\left(\omega^{-1}\right)$
- We can compute $f(\omega) \pm f\left(\omega^{-1}\right)$ for $\omega \in \Omega_{2 t_{1}}$

This gives t_{1} evaluations of $\psi_{ \pm}(x)=f(x) \pm f\left(\frac{1}{x}\right)$ at $\omega \in \Omega_{2 t_{1}}$

Idea: Find $\psi_{ \pm}(x)$ using lattice of smaller dimensions and do linear algebra to recover $f(x)$. Finding each of $\psi_{ \pm}(x)$ can be performed in parallel.

Attack on the PV Knapsack problem

- The mapping

$$
x^{i} \rightarrow x^{i}+1 / x^{i} \text { for } 0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \text { is well defined. }
$$

By linearity, $\psi_{+}(x)=f(x)+f\left(\frac{1}{x}\right)$ can be generated by the basis (of order $\left\lceil\frac{n}{2}\right\rceil$)

$$
\left\{2,\left(x+\frac{1}{x}\right),\left(x^{2}+\frac{1}{x^{2}}\right), \ldots,\left(x^{\left\lfloor\frac{n}{2}\right\rfloor}+\frac{1}{x^{\left\lfloor\frac{n}{2}\right\rfloor+1}}\right)\right\}
$$

Similarly, $\psi_{-}(x)=f(x)-f\left(\frac{1}{x}\right)$ can be generated by the basis (of order $\left[\frac{n}{2}\right]$)

$$
\left\{\left(x-\frac{1}{x}\right),\left(x^{2}-\frac{1}{x^{2}}\right), \ldots,\left(x^{\left\lfloor\frac{n}{2}\right\rfloor}-\frac{1}{x^{\left\lfloor\frac{n}{2}\right\rfloor+1}}\right)\right\}
$$

- If $f(x)$ has uniformly random coefficients in $\{-1,0,1\}, \psi_{ \pm}(x)$ has coefficients in $\{-2,-1,0,1,2\}$ and $\left\|\psi_{ \pm}\right\| \approx \sqrt{\frac{4\left[\frac{n}{2}\right\rceil}{3}}$ in the new basis representations.

Attack on the PV Knapsack problem

for $\omega \in \Omega_{2 t_{1}}$

New Primal Attack on the PV Knapsack problem

PV Knapsack problem reduced to finding the uSVP solution on the Kernel lattice

$$
L_{W_{+}}^{\perp}=\left\{x \in \mathbb{Z}^{\left[\frac{n}{2}\right]+1}: W_{+} x=0 \bmod q\right\}
$$

With $\operatorname{Dim}=\left\lceil\frac{n}{2}\right\rceil+1 \quad \mathrm{Vol}=q^{t_{1}}$
$\left\|\left(\psi_{ \pm},-1\right)\right\| \approx \sqrt{\frac{4\left|\frac{n}{2}\right|}{3}}$ which is also unusually short in the lattice $L_{W_{ \pm}}^{\perp}$.

Analysis of the attack

- uSVP cost depends on the root Hermite factor $\delta=\gamma^{1 / d i m}, \gamma=\frac{\lambda_{2}}{\lambda_{1}}$ is the uniqueness gap [GN'08].
- The attack gets faster as t_{1} increases.

Probability distribution of the number of pairs t_{1} :

$$
\pi_{1}\left(t_{1}\right)=\frac{\binom{\left.\frac{n}{2}\right\rfloor}{ t_{1}}\binom{\left.\frac{n}{2}\right]-t_{1}}{t-2 t_{1}} 2^{t-2 t_{1}}}{\binom{2\left[\frac{n}{2}\right\rfloor}{ t}}
$$

$$
\pi_{1}\left(t_{1}\right) \text { for } n=512, t=256
$$

[GN'08]: N. Gama and P. Nguyen. Predicting lattice reduction. Eurocrypt'08.

Effect of the attack on the concrete parameters

All the parameters from the literature contain a non-negligible fraction of weak keys, which are easily identified and extremely susceptible to our attack.

Example: We recovered the secret key of a parameter set from [LZA'18] for a fraction of

- 2^{-15} of the public keys in about 117 hours ($\approx 2^{50}$ bits operation)
- 2^{-19} of the public keys in about 30 hours ($\approx 2^{48}$ bits operation)
- 2^{-23} of the public keys in about 10 hours ($\approx 2^{46}$ bits operation)
- 2^{-30} of the public keys in about 8 hours ($\approx 2^{45}$ bits operation)

The direct primal attack provides 54-bits security using LWE estimator [APS'15].
It was initially claimed to have a 128-bit security against key recovery attack [LZA18], which was reduced to 87-bit security using the distinguishing attack from [BGP'22].
[APS'15] M. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. JoMC'15.

Conclusion

"40 years Advances in Cryptology: How will future judge Us?"
Crypto'20 Rump talk by Yvo Desmedt available at https://www.youtube.com/watch?v=MTafCIFZOi8\&list=PLeeS-3MI-rppZMjRn2bNhb1FU-JOLMjRU\&index=36\&t=4650s

- Lattice-based assumptions are "relatively" NEW.
- CRYPTANALYSIS challenges our assumptions.

