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ε results about  F0

(This represents joint works with Bar-Yossef, 
Jayram, Sivakumar, Trevisan)
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Data stream model

Modeling efficient computation on massive 
data

Compute a function of inputs X = x1, …, xn

Approximate, randomize, and be space-efficient!
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Finding distinct elements

� Given X = x1, …, xn compute F0(X), the number of 
distinct elements in X, in the data stream model
Assume xi ε [m]

� (ε,δ)-approximation: Output F’0(X) such that with 
probability at least 1 - δ, F’0(X) = (1 ± ε) F0(X)

� Zeroth frequency moment
� Assume log m = O(log n); otherwise hash input
� Sampling needs lots of space
� Without randomization and approximation, this 

problem is uninteresting
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Some applications

� Web analysis
� How many different queries were processed by the 

search engine in the last 48 hours?
� How many non-duplicate pages have been crawled from 

a given web site?
� How many unique ads has the user clicked on (or) how 

many unique users ever clicked a given ad?

� Databases
� Query selectivity
� Query planning and execution

� Networks
� Smart traffic routing
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Some previous work

� [Flajolet, Martin]: Assumed ideal hash functions
� [Alon, Matias, Szegedy]: Pairwise independent 

hashing
(2+ε)-approximation using O(log m) space

� [Cohen]: Similar to FM, AMS
� [Gibbons, Tirthapura]: Hashing-based
ε-approximation using O(1/ε2 log m) space 

� [Bar-Yossef, Kumar, Sivakumar]: Hashing-based, 
range-summable
ε-approximation using O(1/ε3 log m) space

� [Cormode, Datar, Indyk, Muthukrishnan]: Stable 
distributions
ε-approximation using O(1/ε2 log m) space
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The rest of the talk

� Upper bounds

� Lower bounds
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Upper bounds

What is the goal beyond O(1/ε2 log m) space?

Can we get upper bounds of the form

Õ(1/ε2 + log m) 

where Õ hides factors of the form log 1/ε and log 
log m?

Three algorithms with improved upper bounds
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Summary of the bounds

� ALG I: Space O(1/ε2 log m) and time Õ(log
m) per element

� ALG II: Space Õ(1/ε2 + log m) and time 
Õ(1/ε2 log m) per element

� ALG III: Space Õ(1/ε2 + log m) and time 
Õ(log m) amortized per element
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ALG I: Basic idea

Suppose h:[m] → (0, 1) is truly random

Then min (h(xi)) is roughly ~ 1/F0(X)
Reciprocal of this value is F0(X) [FM, AMS]

More robust:  Keep the t-th smallest value vt

vt is roughly ~ t/F0

A good estimator of F0 is t/vt

0 1
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ALG I: Details

t = 1/ε2; h:[m] → h[m3], pairwise indep.; T = ∅

for i = 1, …, n do 

T ← t smallest values in T U h(xi)

vt = t-th smallest value in T

Output tm3/vt = F’0(X)

� Space: O(log m) for h and O(1/ε2 log m) for T

� Time: Balanced binary search tree for T
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ALG I: Analysis

h is pairwise independent, injective whp

Y = { y1, …, yk } be distinct values, F0 = k

Suppose F’0 > (1+ε) F0

means h(y1), …, h(yk) has t values smaller 
than tm3/(F0(1+ε))

Pr[this event] < 1/6 by Chebyshev

Similar analysis for F’0 < (1-ε) F0
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ALG II: Basic idea

Suppose we know rough value of F0, say R

Suppose h:[m] → [R] is truly random

Define r = Prh[h maps some xi to 0]   

r = 1−
(
1− 1

R

)F0

If R and F0 are close, then r is all we need

Estimate R using [AMS]

r =
∑F0

i=1
(−1)i+1

(
F0

i

)
R
−i

Estimate r using sufficiently indep. hash functions 
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ALG II: Some details

H be (log1/ε)-wise independent hash family

Estimator p = Prh ε H[h maps some xi to 0]

p matches first log1/ε terms in expansion of r

Chebyshev inequality, inclusion-exclusion

p and r will be close if 1/ε2 estimators (hash 
functions) are deployed

Create these hash functions from a master 
hash



Dec 20, 2006 Workshop on Data Streams, IITK 15

ALG III: Basic idea

Overview of algorithm of [GT] and [BKS]

Suppose h: [m] → [m] is pairwise indep.

Let ht = projection of h onto last t bits

Find min t for which r = #{xi | ht(xi) = 0} < 1/ε2

Output r 2t

Can do space-efficiently since if ht+1(xi) = 0 
then ht(xi) = 0 and so can filter
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ALG III: Some details

� Space = 1/ ε2 log m

� Obs: Need not store elements explicitly

� Use a secondary hash function g
� g succinct, injective

� g suffices to store trailing zeros

� Space: log m + 1/ε2 (log 1/ε + log log m)

� Amortized time: Õ(log m + log 1/ε) 
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Lower bounds

The general paradigm
� Consider communication complexity of a 

certain problem 
� One-way
� Multi-round

� Reduce it to that of computing F0 in the 
data stream model

� Obtain one-pass or multi-pass space lower 
bound
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Ω(log m) lower bound [AMS]

Reduction from set equality problem

Alice given X, Bob given Y, both m-bit 
vectors, and the question is if X = Y

� Randomized space bound of Ω(log m)

X’ = φ(X), Y’ = φ(Y) where φ is error-
correcting code

� YES case: if X = Y, then F0(X’ U Y’) = n’

� NO case: if X ≠ Y, then F0(X’ U Y’) ~ 2n’
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One-pass Ω(1/ε) lower bound

Reduction from set disjointness with special instances
Alice has bit vector X with |X| = m/2, Bob has bit 

vector Y with |Y| = εm
� Treated as sets

YES instance: X contains Y
NO instance: X ∩ Y = ∅

� One-pass lower bound [BJKS]: Ω(1/ε) 
Z = (1, x1) … (m, xm) (1, y1) … (m, ym)
� YES case: If X contains Y, then F0(Z) = m/2
� NO case: If X and Y are disjoint, F0(Z) = m/2+ ε m = 

m/2(1 + 2 ε)
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The gap-hamming problem [IW]

Alice given X, Bob given Y, both m-bit 
vectors

� Promise
� YES instance: h(X, Y) ≥ m/2
� NO instance: h(X, Y) ≤ m/2 - √m

Gap-hamming problem: distinguish the two 
cases in one-pass or multi-round 
communication model
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Gap-hamming captures F0

� Z = (1, x1) … (m, xm) (1, y1) … (m, ym)

� F0(Z) = 2h(X,Y) + (m - h(X, Y)) = m + h(X,Y)

� YES case: if h(X, Y) ≥ m/2 then F0(Z) ≥ 3m/2

� NO case: if h(X, Y) ≤ m/2 - √m then F0(Z) ≤ 3m/2 -
√m = 3m/2(1 – 1/√m)

Can be shown that Ω((√m)c) lower bound for gap-
hamming leads to Ω(1/εc) lower bound for F0
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Easy Ω(√m) lower bound for 

gap-hamming

Reduce from set disjointness of √m size

Alice given X, Bob given Y, both √m-bit vectors, and 
the question is if X ∩ Y = ∅

� Randomized space bound of Ω(√m) [KS, R]

Each bit in X, Y is expanded to √m bit block so that if 
xi ≠ yi then this block has hamming distance √m/2 
and if xi = yi then has hamming distance 0

� YES case: if X ∩ Y = ∅, then h(X’,Y’) = m/2

� NO case: if X ∩ Y ≠ ∅ then h(X’,Y’) < m/2 - √m/2



Dec 20, 2006 Workshop on Data Streams, IITK 23

One-pass Ω(m) lower bound for 

gap-hamming [IW, W]

� Indyk and Woodruff, Woodruff showed 
Ω(m) lower bound in the one-way model
� Using VC-dimension and embedding

� We will show a simpler proof of this result
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Reduction from indexing [JKS]

Alice has n-bit vector T with |T| = n/2 and 
Bob has index i; assume n/2 is odd

Using public randomness, Alice and Bob pick 
a random n-bit ±1 vector r

Alice computes x = sign (‹T, r›)

Bob computes y = sign (ri)

Now look at the correlation between random 
variables x and y
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Analyzing the correlation

Let s = ∑i ε T ri
n/2 odd implies Pr[s < 0] = Pr[s > 0] = 1/2 

� NO case: If i ε T, then x is independent of y

so Pr[x = y] = Pr[sign(s) = sign(ri)] = 1/2 

� YES case: If i ε T, then let s = s’ + ri
Pr[s’ = 0] = η = c/√n

Pr[s’ < 0] = Pr[s’ > 0] = (1 – η)/2

Pr[x = y] = Pr[s’ = 0] + Pr[sign(s’) = sign(ri) | s’ ≠ 0] 

= η + (1 – η)/2 = (1 +  c/√n)/2 
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Amplifying the gap

� We have random variables x and y with the 
property that 
� NO case: Pr[x = y] = 1/2

� YES case: Pr[x = y] = 1/2 + c’/√n

� Repeat with different independent random 
vectors r1, r2, …, rt to get t-bit vectors X and Y
� Chernoff shows that if t = O(n) then whp we have 

� NO case: h(X, Y) ≥ (1/2 – c1)n

� YES case: h(X, Y) ≤ (1/2 – c1)n – c2√n
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Open problem

� Close the gap between the upper and 
lower bounds for F0 for multi-pass 
algorithms
� One-pass algorithm with space O(1/ε2)

� One-pass lower bound of Ω(1/ε2)

� Conjecture: the multi-pass space  
complexity of F0 is Ω(1/ε2)
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thank you!

ravikumar@yahoo-inc.com


