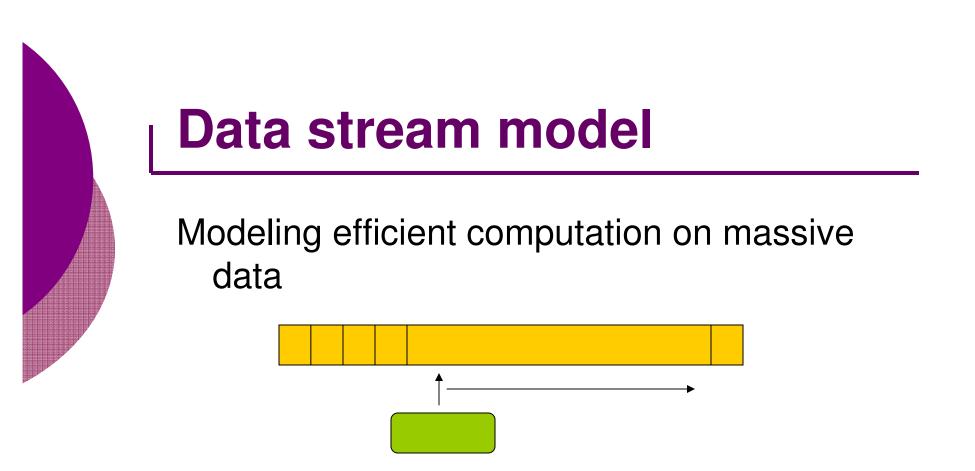
A STORY OF DISTINCT ELEMENTS

Ravi Kumar

Yahoo! Research Sunnyvale, CA ravikumar@yahoo-inc.com

(This represents joint works with Bar-Yossef, Jayram, Sivakumar, Trevisan)



Compute a function of inputs $X = x_1, ..., x_n$

Approximate, randomize, and be space-efficient!

Finding distinct elements

- Given X = x₁, ..., x_n compute F₀(X), the number of distinct elements in X, in the data stream model Assume x_i ε [m]
- (ε,δ)-approximation: Output F'₀(X) such that with probability at least 1 δ, F'₀(X) = (1 ± ε) F₀(X)
- Zeroth frequency moment
- Assume log $m = O(\log n)$; otherwise hash input
- Sampling needs lots of space
- Without randomization and approximation, this problem is uninteresting

Some applications

• Web analysis

- How many different queries were processed by the search engine in the last 48 hours?
- How many non-duplicate pages have been crawled from a given web site?
- How many unique ads has the user clicked on (or) how many unique users ever clicked a given ad?

Databases

- Query selectivity
- Query planning and execution
- Networks
 - Smart traffic routing

Some previous work

- o [Flajolet, Martin]: Assumed ideal hash functions
- [Alon, Matias, Szegedy]: Pairwise independent hashing

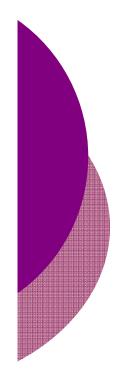
 $(2+\epsilon)$ -approximation using O(log m) space

- [Cohen]: Similar to FM, AMS
- [Gibbons, Tirthapura]: Hashing-based ε-approximation using $O(1/ε^2 \log m)$ space
- [Bar-Yossef, Kumar, Sivakumar]: Hashing-based, range-summable

 ϵ -approximation using O(1/ ϵ ³ log m) space

[Cormode, Datar, Indyk, Muthukrishnan]: Stable distributions

 ϵ -approximation using O(1/ $\epsilon^2 \log m$) space



The rest of the talk

• Upper bounds

Lower bounds

Upper bounds

What is the goal beyond $O(1/\epsilon^2 \log m)$ space? Can we get upper bounds of the form $\tilde{O}(1/\epsilon^2 + \log m)$

where Õ hides factors of the form log 1/ε and log log m?

Three algorithms with improved upper bounds

Summary of the bounds

ALG I: Space O(1/ε² log m) and time Õ(log m) per element

• ALG II: Space $\tilde{O}(1/\epsilon^2 + \log m)$ and time $\tilde{O}(1/\epsilon^2 \log m)$ per element

ALG III: Space Õ(1/ε² + log m) and time
 Õ(log m) amortized per element

ALG I: Basic idea

Suppose h:[m] \rightarrow (0, 1) is truly random

Then min (h(x_i)) is roughly ~ $1/F_0(X)$ Reciprocal of this value is $F_0(X)$ [FM, AMS]

More robust: Keep the t-th smallest value v_t v_t is roughly ~ t/F₀ A good estimator of F₀ is t/v_t

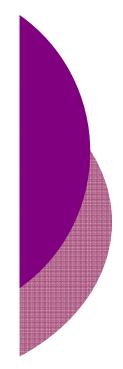
ALG I: Details

t = 1/ε²; h:[m] → h[m³], pairwise indep.; T = Ø for i = 1, ..., n do T ← t smallest values in T U h(x_i) v_t = t-th smallest value in T Output tm³/v_t = F'₀(X)

Space: O(log m) for h and O(1/ε² log m) for T
 Time: Balanced binary search tree for T

ALG I: Analysis

h is pairwise independent, injective whp $Y = \{ y_1, ..., y_k \} \text{ be distinct values, } F_0 = k$ Suppose $F'_0 > (1+\epsilon) F_0$ means $h(y_1), ..., h(y_k)$ has t values smaller than $tm^3/(F_0(1+\epsilon))$ Pr[this event] < 1/6 by Chebyshev Similar analysis for $F'_0 < (1-\epsilon) F_0$



ALG II: Basic idea

Suppose we know rough value of F_0 , say R Suppose h:[m] \rightarrow [R] is truly random Define r = Pr_h [h maps some x_i to 0]

$$r = 1 - \left(1 - \frac{1}{R}\right)^{F_0}$$

If R and F₀ are close, then r is all we need Estimate R using [AMS]

 $r = \sum_{i=1}^{F_0} (-1)^{i+1} {F_0 \choose i} R^{-i}$

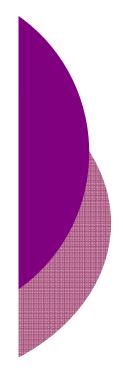
Estimate r using sufficiently indep. hash functions

Dec 20, 2006

Workshop on Data Streams, IITK

ALG II: Some details

H be $(\log 1/\epsilon)$ -wise independent hash family Estimator p = Pr_{h \epsilon H}[h maps some x_i to 0] p matches first log1/\epsilon terms in expansion of r Chebyshev inequality, inclusion-exclusion p and r will be close if $1/\epsilon^2$ estimators (hash functions) are deployed Create these hash functions from a master hash



ALG III: Basic idea

Overview of algorithm of [GT] and [BKS] Suppose h: [m] \rightarrow [m] is pairwise indep. Let h_t = projection of h onto last t bits Find min t for which r = #{x_i | $h_t(x_i) = 0$ } < 1/ ϵ^2 Output r 2^t

Can do space-efficiently since if $h_{t+1}(x_i) = 0$ then $h_t(x_i) = 0$ and so can filter

ALG III: Some details

- \circ Space = 1/ $\epsilon^2 \log m$
- Obs: Need not store elements explicitly
- Use a secondary hash function g
 - g succinct, injective
 - g suffices to store trailing zeros
- Space: log m + 1/ε² (log 1/ε + log log m)
 Amortized time: Õ(log m + log 1/ε)

Lower bounds

The general paradigm

- Consider communication complexity of a certain problem
 - One-way
 - Multi-round
- Reduce it to that of computing F₀ in the data stream model
- Obtain one-pass or multi-pass space lower bound

Ω(log m) lower bound [AMS]

Reduction from set equality problem Alice given X, Bob given Y, both m-bit vectors, and the question is if X = Y

 \circ Randomized space bound of $\Omega(\log m)$

$$X' = \phi(X), Y' = \phi(Y)$$
 where ϕ is error-
correcting code

• YES case: if X = Y, then $F_0(X' \cup Y') = n'$ • NO case: if $X \neq Y$, then $F_0(X' \cup Y') \sim 2n'$

One-pass \Omega(1/\epsilon) lower bound

Reduction from set disjointness with special instances Alice has bit vector X with |X| = m/2, Bob has bit vector Y with $|Y| = \epsilon m$

• Treated as sets YES instance: X contains Y NO instance: $X \cap Y = \emptyset$

• One-pass lower bound [BJKS]: $\Omega(1/\epsilon)$

- $Z = (1, x_1) \dots (m, x_m) (1, y_1) \dots (m, y_m)$
- YES case: If X contains Y, then $F_0(Z) = m/2$
- NO case: If X and Y are disjoint, $F_0(Z) = m/2 + \epsilon m = m/2(1 + 2 \epsilon)$

The gap-hamming problem [IW]

Alice given X, Bob given Y, both m-bit vectors

Promise

- YES instance: $h(X, Y) \ge m/2$
- NO instance: $h(X, Y) \le m/2 \sqrt{m}$

Gap-hamming problem: distinguish the two cases in one-pass or multi-round communication model

Gap-hamming captures F0

•
$$Z = (1, x_1) \dots (m, x_m) (1, y_1) \dots (m, y_m)$$

• $F_0(Z) = 2h(X,Y) + (m - h(X, Y)) = m + h(X,Y)$

○ YES case: if $h(X, Y) \ge m/2$ then $F_0(Z) \ge 3m/2$

○ NO case: if h(X, Y) ≤ m/2 - \sqrt{m} then F₀(Z) ≤ 3m/2 - \sqrt{m} = 3m/2(1 - 1/ \sqrt{m})

Can be shown that $\Omega((\sqrt{m})^c)$ lower bound for gaphamming leads to $\Omega(1/\epsilon^c)$ lower bound for F_0

Easy $\Omega(\sqrt{m})$ lower bound for gap-hamming

Reduce from set disjointness of \sqrt{m} size

- Alice given X, Bob given Y, both \sqrt{m} -bit vectors, and the question is if $X \cap Y = \emptyset$
- Randomized space bound of $\Omega(\sqrt{m})$ [KS, R]
- Each bit in X, Y is expanded to \sqrt{m} bit block so that if $x_i \neq y_i$ then this block has hamming distance $\sqrt{m/2}$ and if $x_i = y_i$ then has hamming distance 0
- YES case: if $X \cap Y = \emptyset$, then h(X',Y') = m/2
- NO case: if X ∩ Y ≠ Ø then h(X',Y') < m/2 $\sqrt{m/2}$

One-pass Ω(m) lower bound for gap-hamming [IW, W]

- o Indyk and Woodruff, Woodruff showed $\Omega(m)$ lower bound in the one-way model
 - Using VC-dimension and embedding
 - We will show a simpler proof of this result

Reduction from indexing [JKS]

Alice has n-bit vector T with |T| = n/2 and Bob has index i; assume n/2 is odd
Using public randomness, Alice and Bob pick a random n-bit ±1 vector r
Alice computes x = sign (<T, r>)
Bob computes y = sign (r_i)
Now look at the correlation between random variables x and y

Analyzing the correlation

Let $s = \sum_{i \in T} r_i$ n/2 odd implies Pr[s < 0] = Pr[s > 0] = 1/2 \circ NO case: If i ε T, then x is independent of y so $Pr[x = y] = Pr[sign(s) = sign(r_i)] = 1/2$ • YES case: If i ε T, then let s = s' + r_i $Pr[s' = 0] = n = c/\sqrt{n}$ $Pr[s' < 0] = Pr[s' > 0] = (1 - \eta)/2$ $Pr[x = y] = Pr[s' = 0] + Pr[sign(s') = sign(r_i) | s' \neq 0]$ $= n + (1 - n)/2 = (1 + c/\sqrt{n})/2$

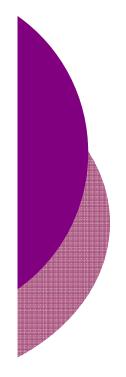
Amplifying the gap

- We have random variables x and y with the property that
 - NO case: Pr[x = y] = 1/2
 - YES case: $Pr[x = y] = 1/2 + c'/\sqrt{n}$
- Repeat with different independent random vectors r¹, r², ..., r^t to get t-bit vectors X and Y
 - Chernoff shows that if t = O(n) then whp we have
 NO case: h(X, Y) ≥ (1/2 c₁)n
 YES case: h(X, Y) ≤ (1/2 c₁)n c₂√n

Open problem

- Close the gap between the upper and lower bounds for F₀ for multi-pass algorithms
 - One-pass algorithm with space $O(1/\epsilon^2)$
 - One-pass lower bound of $\Omega(1/\epsilon^2)$

 \circ Conjecture: the multi-pass space complexity of F_0 is $\Omega(1/\epsilon^2)$



thank you!

ravikumar@yahoo-inc.com