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Heavy Hitters/Sparse Recovery

Sparse Recovery is the idea that noisy sparse signals can be
approximately reconstructed efficiently from a small number of
nonadaptive linear measurements.

Known as “Compress(ed/ive) Sensing,” or the “Heavy Hitters”
problem in database.
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Simple Example

Measurements Signal, s

Measurement matrix, Φ

¢
¢

¢
¢®

@@R




5.3

· · ·
0

5.3

0




=




1 1 1 1 1 1 1 1

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1




·




0

0

5.3

0

0

0

0

0




Recover position and coefficient of single spike in signal.
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In Streaming Algorithms

• Maintain vector s of frequency counts from transaction stream:

3 2 spinach sold, 1 spinach returned, 1 kaopectate sold, ...

• Recompute top-selling items upon each new sale

Linearity of Φ:

• Φ(s + ∆s) = Φ(∆s).
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Goals

• Input: All noisy m-sparse vectors in d dimensions

• Output: Locations and values of the m spikes, with

– Error Goal: Error proportional to the optimal m-term
error

Resources:

• Measurement Goal: n ≤ mpolylogd fixed measurements

• Algorithmic Goal: Computation time poly(m log(d))

– Time close to output size m¿ d.

• Universality Goal: One matrix works for all signals.
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Overview

• One sketch for all

• Goals and Results

• Chaining Algorithm

• HHS Algorithm (builds on Chaining)
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Role of Randomness

Signal is worst-case, not random.

Two possible models for random measurement matrix.
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Random Measurement Matrix “for each”
Signal

We present coin-tossing algorithm.
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Coins are flipped.

Adversary picks worst signal.
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Matrix Φ is fixed.
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Algorithm runs

• Randomness in Φ is needed to defeat the adversary.
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Universal Random Measurement Matrix

We present coin-tossing algorithm.

?
Coins are flipped.

?
Matrix Φ is fixed.

?
Adversary picks worst signal.

?
Algorithm runs

• Randomness is used to construct correct Φ efficiently
(probabilistic method).
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Why Universal Guarantee?

Often unnecessary, but needed for iterative schemes. E.g.

• Inventory s1: 100 spinach, 5 lettuce, 2 bread, 30 back-orders
for kaopectate ...

• Sketch using Φ: 98 spinach, −31 kaopectate

• Manager: Based on sketch, remove all spinach and lettuce;
order 40 kaopectate

• New inventory s2: 0 spinach, 0 lettuce, 2 bread, 10 kaopectate,
...

s2 depends on measurement matrix Φ. No guarantees for Φ on s2.

Too costly to have separate Φ per sale.

Today: Universal guarantee.
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Overview

• One sketch for all X

• Goals and Results

• Chaining Algorithm

• HHS Algorithm (builds on Chaining)

10



Goals

• Universal guarantee: one sketch for all

• Fast: decoding time poly(m log(d))

• Few: optimal number of measurements (up to log factors)

Previous work achieved two out of three.

Ref. Univ. Fast Few meas. technique

KM × X X comb’l

D, CRT X × XX LP(d)

CM∗ XX X × comb’l

Today X X X comb’l
∗restrictions apply
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Results

Two algorithms, Chaining and HHS.

Õ hides factors of log(d)/ε.

# meas. Time # out error

Chg Õ(m) Õ(m) m ‖E‖1 ≤ O(log(m)) ‖Eopt‖1
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Results

Two algorithms, Chaining and HHS.

Õ hides factors of log(d)/ε.

# meas. Time # out error

Chg Õ(m) Õ(m) m ‖E‖1 ≤ O(log(m)) ‖Eopt‖1
HHS Õ(m) Õ(m2) Õ(m) ‖E‖2 ≤ (ε/

√
m) ‖Eopt‖1
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Results

Two algorithms, Chaining and HHS.

Õ hides factors of log(d)/ε.

# meas. Time # out error

Chg Õ(m) Õ(m) m ‖E‖1 ≤ O(log(m)) ‖Eopt‖1
HHS Õ(m) Õ(m2) Õ(m) ‖E‖2 ≤ (ε/

√
m) ‖Eopt‖1

3 m ‖E‖2
≤ ‖Eopt‖2 + (ε/

√
m) ‖Eopt‖1

4 ‖E‖1 ≤ (1 + ε) ‖Eopt‖1
(3) and (4) are gotten by truncating output of HHS.
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Results

# meas. Time error Failure

K-M Õ(m) poly(m) ‖E‖2 ≤ (1 + ε) ‖Eopt‖2 “for each”

D, C-T O(m log(d)) d(1to3) ‖E‖2 ≤ (ε/
√

m) ‖Eopt‖1 univ.

CM Õ(m2) poly(m) ‖E‖2 ≤ (ε/
√

m) ‖Eopt‖<1 Det’c

Chg Õ(m) Õ(m) ‖E‖1 ≤ O(log(m)) ‖Eopt‖1 univ.

HHS Õ(m) Õ(m2) ‖E‖2 ≤ (ε/
√

m) ‖Eopt‖1 univ.

Õ and poly() hide factors of log(d)/ε.

15



Overview

• One sketch for all X

• Goals and Results X

• Chaining Algorithm

• HHS Algorithm (builds on Chaining)
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Chaining Algorithm—Overview

• Handle the universal guarantee

• Group testing

– Process several spikes at once

– Reduce noise

• Process single spike bit-by-bit as above.

• Iterate on residual.
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Universal Guarantee

• Fix m spike positions

• Succeed except with probability exp(−m log(d))/4

– succeed “for each” signal

• Union bound over all spike configurations.

– At most exp(m log(d)) configurations of spikes.

– Convert “for each” to universal model
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Noisy Example—Isolation

Each group is defined by a mask:

signal: 0.1 0 5.3 0 0 −0.1 0.2 6.8

random mask: 1 1 1 0 1 0 1 0

product: 0.1 0 5.3 0 0 0 0.2 0
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Noisy Example
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Recover position and coefficient of single spike, even with noise.

(Mask and bit tests combine into measurements.)
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Group Testing for Spikes

E.g., m spikes (i, si) at height 1/m; ‖noise‖1 = 1/20. (For now.)

• (i, si) is a spike if |si| ≥
(

1
m

) ‖noise‖1.
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Group Testing for Spikes

E.g., m spikes (i, si) at height 1/m; ‖noise‖1 = 1/20. (For now.)

• (i, si) is a spike if |si| ≥
(

1
m

) ‖noise‖1.
Throw d positions into n = O(m) groups, by Φ.

• ≥ c1m of m spikes isolated in their groups

• ≤ c2m groups have noise ≥ 1/(2m) (see next slide.)

• ≥ (c1 − c2)m groups have unique spike and low noise—recover!

...except with probability e−m.

Repeat O(log(d)) times:

Recover Ω(m) spikes except with prob e−m log(d).
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Noise

• ‖ΦEopt‖1 ≤ ‖Φ‖1→1 ‖Eopt‖1.
• We’ll show ‖Φ‖1→1 ≤ 1.

• Thus total noise contamination is at most the signal noise.

• At most m/10 buckets get noise more than (10/m) ‖Eopt‖1
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We’ve found some spikes

We’ve found (1/4)m spikes.

• Subtract off spikes (in sketch): Φ(s−∆s) = Φs− Φ(∆s).

• Recurse on problem of size (3/4)m.

• Done after O(log(m)) iterations.

But...
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More Noise Issues

• ≥ c1m of n groups have unique spikes (of m) X
• ≤ c2m groups have noise ≥ 1/(2m) X
• ≤ c3m groups have false spike

3 Subtract off large phantom spike

3 Introduce new (negative) spike (to be found later)

• Other groups contribute additional noise (never to be found)

3 Spike threshold rises from m−1 to
(

3m
4

)−1.
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More Noise Issues

• ≥ c1m of n groups have unique spikes (of m) X
• ≤ c2m groups have noise ≥ 1/(2m) X
• ≤ c3m groups have false spike

• Other groups contribute additional noise (never to be found)

Number of spikes:

m → (c1 − c2 − c3)m ≈ (3/4)m.

Spike threshold increases—delicate analysis.

• Need spike (i, si) with |si| ≥ Ω
(

1
m log(m)

)
‖noise‖1.

3 Lets noise grow from round to round.

• Prune carefully to reduce noise.

• Get log factor in approximation.
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Drawbacks with Chaining Pursuit

• log factor in error

• 1-to-1 error bound is weaker than standard 1-to-2
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Drawbacks with Chaining Pursuit

• log factor in error

• 1-to-1 error bound is weaker than standard 1-to-2

Two algorithms, Chaining and HHS.

# meas. Time # out error

Chg Õ(m) Õ(m) m ‖E‖1 ≤ O(log(m)) ‖Eopt‖1
HHS Õ(m) Õ(m2) Õ(m) ‖E‖2 ≤ (ε/

√
m) ‖Eopt‖1

3 m ‖E‖2
≤ ‖Eopt‖2 + (ε/

√
m) ‖Eopt‖1

4 ‖E‖1 ≤ (1 + ε) ‖Eopt‖1
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Overview

• Assume limited dyanmic range: ‖s‖2 ≤ dlog(d) ‖Eopt‖1.
3 E.g., preprocess with (simplified) Chaining algorithm

• While ‖s‖2 > (ε/
√

m) ‖Eopt‖1, reduce ‖s‖2 by factor 2.

3 Identify fraction of spikes

3 Estimate values.
◦ Separation of Identification and Estimation eliminates

problems caused by false positives.
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2-error

Our focus:

• ≈ q spikes with magnitude ≈ 1/t

• Noise ‖Eopt‖1 = ‖ν‖1 = 1.

(Try all q’s and t’s in a geometric progression.)

Remark:

• In Chaining (1← 1) setup, can assume 1/t ≥ 1/q. (Spike
height 1/t is big.)

• Challenge here: Possibly 1/t = 1/
√

qm.
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Double Hashing

Have: q spikes at 1/t; noise 1.

Double hashing:

• Each position goes to 1 group among q. (As in Chaining.)

• Within each group, each position expects to go to t/q groups
among (t/q)2.

(Some log factors suppressed.)
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First Hashing

Have: q spikes at 1/t; noise 1.

Throw positions into q buckets, by Φ. As in Chaining, except with
prob e−q log(d) =

(
d
q

)−1
,

• Ω(q) spikes are isolated from other spikes

• ‖Φ‖1→1 ≤ 1.

3 Thus only O(q) buckets get noise more than 1/q.
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Second Hashing

Have 1 spike at 1/t; noise ‖ν‖1 ≤ 1/q.

Use r = (t/q)2 rows of Bernoulli(q/t).
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Second Hashing

Have 1 spike at 1/t; noise ‖ν‖1 ≤ 1/q.

Use r = (t/q)2 rows of Bernoulli(q/t).




↓

0 1 1 0 0 0 1 1

1 1 0 1 1 0 0 0
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• Our spike survives r′ = r · (q/t) = t/q times.
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Second Hashing

Have 1 spike at 1/t; noise ‖ν‖1 ≤ 1/q.

Use r = Õ((t/q)2) rows of Bernoulli(q/t).



↓

0 1 0 0 0 1 1

1 0 1 1 0 0 0







1/dq

1/t

1/dq

1/dq

1/dq

1/dq

1/dq




• Our spike survives r′ = r · (q/t) = t/q times.

• On surviving submatrix, expect r′ · (q/t) = one 1 per other
column.
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Second Hashing

Have 1 spike at 1/t; noise ‖ν‖1 ≤ 1/q.

With prob 1/d3,

• Our spike survives r′ = r · (q/t) = t/q times.

• On surviving submatrix, expect r′ · (q/t) = one 1 per column.

Take union bound over d spikes and d matrix columns.

For any noise ‖ν‖1 = 1/q, some row gets average noise,
(1/q)/r′ = 1/t.

Can recover spike of magnitude 1/t from noise 1/(2t).
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Number of Measurements

Number of measurements: q(t/q)2 log(d) = poly(log(d)/ε)t2/q, for

• First hashing (q rows)

• Second hashing ((t/q)2 rows)

• Bit tests (log(d) rows)

• (Several!) omitted factors of log(d) and 1/ε.

Note: q/t2 = ‖s‖22 > (m−1/2 ‖Eopt‖1)2 = 1/m.

So number of measurements is t2/q ≤ m.
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Cost

Re-measure Õ(m)-sparse vector by matrix with at most Õ(m) rows:

• Time: m2poly(log(d)/ε).

Matrix generation, first hashing:

• Generate m rv’s from m-wise independent family

• Time mpolylog(d).

Matrix generation, second hashing:

• m times, generate m rv’s from 2-wise independent family

• Time m2polylog(d).

Improvement to m3/2 possible here; bottleneck of m2 in Estimation.
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Estimation

Have:

• Set A of positions in signal s.

• Measurements Φs, for random DFT-row-submatrix Φ.

Want:

• Estimate s̃A for sA with

• ‖s̃A − sA‖2 ≤ ‖s− sA‖2 + m−1/2 ‖s− sA‖1.
Note: Can assume by ‖s− sA‖2 small, by goodness of
identification.

39



Estimator

s̃A = Φ+
A(Φs) (Least squares).

s̃A =
(

Φ+
A

)
·


 ΦA







sA




• Correctness mostly follows from Candès-Tao,
Rudelson-Vershynin.

• Small space and runtime Õ(m2) immediate.

• Open: m×m DFT submatrix times vector faster than m2.
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Recap

New compressed sensing/heavy hitter algorithms that get

• Universal guarantee

• Decoding time poly(m log(d))

• Optimal number of measurements (up to log factors)

Chaining material based on paper:

Algorithmic Linear Dimension Reduction in the `1 Norm
for Sparse Vectors (available from my homepage)

HHS material based on paper:

One sketch for all: Fast algorithms for compressed sensing
(submitted; available soon.)

by Gilbert, Strauss, Tropp, Vershynin
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Euclid v. Taxicab

Optimal error vector Eopt = s− sm is s with m heavy hitters zeroed
out.

Our error vector is E = s− s̃.

• Ideally, ‖E‖2 ≤ (1 + ε) ‖Eopt‖2.
3 Achievable with “for each” guarantee

3 Impossible with universal guarantee
(Cohen-Dahmen-DeVore, 2006)

• Best with universal guarantee is ‖E‖2 ≤ ε√
m
‖Eopt‖1 (and

related).
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Alternative Characterization

• ‖E‖2 ≤ (1 + ε) ‖Eopt‖2 vacuous unless Eopt ∈ B2(1).

• ‖E‖2 ≤ ε√
m
‖Eopt‖1 vacuous unless Eopt ∈ B1(

√
m/ε).

Defeat Φ by finding s with s ∈ null(Φ).

• Any Φ: There’s s ∈ null(Φ) with Eopt ∈ B2(1).

• Our Φ: There’s no s ∈ null(Φ) with Eopt ∈ B1(
√

m/ε).

Today: Universal failure guarantee, with `1 noise.
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Cor.: Algorithmic Dimension Reduction

Goal: (Rd, `1)→ (Rn, `1), for n¿ d.

Impossibility results, in general (Brinkman and Charikar, 2003)

Chaining algorithm:

(Xd
m, `1)→ (Rn, `1),

for n = mpolylogd, and Xd
m ⊆ Rd is m-sparse signals.

• Robust to perturbations

• Compute and invert in time mpolylogd.

• Distortion polylog(m).

cf. Charikar and Sahai: Distortion (1 + ε) but
n = Θ((m/ε)2 log(d)).
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Analysis

‖s̃A − sA‖2 =
∥∥Φ+

AΦs− sA

∥∥
2

=
∥∥Φ+

AΦ(s− sA)
∥∥

2

≤ O(‖s− sA‖K) (Need this!)

= O(‖s− sA‖2 + m−1/2 ‖s− sA‖1).

We’ll bound
∥∥Φ+

AΦ
∥∥

K→2
by bounding

•
∥∥Φ+

A

∥∥
2→2

• ‖Φ‖K→2
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Operator bounds

Need to bound

•
∥∥Φ+

A

∥∥
2→2

• ‖Φ‖K→2

Candès-Tao, Rudelson-Vershynin:

• All size-(2m) column submatrices are near-isometries (RIC)

• ...so ‖Φ+‖2→2 ≤ 2 immediately

We show RIC implies bound on ‖Φ‖K→2.
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K to 2 Bound

If s is q spikes of (near-)equal size, m ≤ q ≤ 2m, then
‖Φs‖2 ≤ m−1/2 ‖s‖1.
Suppose ‖Φx‖2 ≤ m−1/2 ‖Φx‖1 and ‖Φy‖2 ≤ m−1/2 ‖Φy‖1, for x

and y disjointly supported. Then

‖Φ(x + y)‖2 ≤ ‖Φx‖2 + ‖Φy‖2
≤ m−1/2(‖x‖1 + ‖y‖1)
= m−1/2 ‖x + y‖1
≤ m−1/2 ‖x + y‖K

Combine all groups of size ≥ m this way.
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K to 2 Bound

If s is q ≤ m spikes of (near-)equal size t, then ‖Φs‖2 ≤ ‖s‖2.
Do all q = 1, 2, 4, 8, . . . , m and O(log(d)) relevant values of t.
Suppose ‖Φx‖2 ≤ ‖x‖2 and ‖Φy‖2 ≤ ‖y‖2, for x and y disjointly
supported. Then

‖Φ(x + y)‖2 ≤ ‖Φx‖2 + ‖Φy‖2
≤ ‖x‖2 + ‖y‖2
=
√

2 ‖x + y‖2 ,

by Cauchy-Schwarz. Give up factor polylog(d) in this proof.

Slicker proof gives no overhead from RIC to K → 2 norm.
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