One sketch for all: Fast
algorithms for

compressed sensing

Martin J. Strauss
University of Michigan

Covers joint work with
Anna Gilbert (Michigan),
Joel Tropp (Michigan), and
Roman Vershynin (UC Davis)

Heavy Hitters/Sparse Recovery

Sparse Recovery is the idea that noisy sparse signals can be
approximately reconstructed efficiently from a small number of

nonadaptive linear measurements.

Known as “Compress(ed/ive) Sensing,” or the “Heavy Hitters”

problem in database.

Simple Example

Measurements Signal, s
Measurement matrix, ® (0 \
0
(53\ (1 1 1 1 1 1 1 1) .
0
0 = 0 0 0 0 1 1 1 1 0
5.3 0 0 1 1 0 0 1 1 0
\o/ \o 1 0 1 0o 1 o0 1) ;
\ 0/

Recover position and coefficient of single spike in signal.

2

In Streaming Algorithms

e Maintain vector s of frequency counts from transaction stream:
< 2 spinach sold, 1 spinach returned, 1 kaopectate sold, ...

e Recompute top-selling items upon each new sale
Linearity of ®:
o O(s+ As) = P(As).

Goals

e Input: All noisy m-sparse vectors in d dimensions

e Output: Locations and values of the m spikes, with

— Error Goal: Error proportional to the optimal m-term

error
Resources:
e Measurement (GGoal: n < mpolylogd fixed measurements

e Algorithmic Goal: Computation time poly(m log(d))

— Time close to output size m < d.

e Universality Goal: One matrix works for all signals.

Overview

One sketch for all

Goals and Results

Chaining Algorithm

HHS Algorithm (builds on Chaining)

Role of Randomness

Signal is worst-case, not random.

Two possible models for random measurement matrix.

Random Measurement Matrix “for each”
Signal

We present coin-tossing algorithm.

/

Coins are flipped.

l Adversary picks worst signal.

Matrix @ is ﬁxed

Algomthm runs

e Randomness in @ is needed to defeat the adversary.

7

Universal Random Measurement Matrix

We present coin-tossing algorithm.

/

Coins are flipped.

}
Matrix ® is fixed.

/

Adversary picks worst signal.

/

Algorithm runs

e Randomness is used to construct correct ® efficiently
(probabilistic method).

Why Universal Guarantee?

Often unnecessary, but needed for iterative schemes. E.g.

e Inventory si: 100 spinach, 5 lettuce, 2 bread, 30 back-orders
for kaopectate ...

e Sketch using ®: 98 spinach, —31 kaopectate

e Manager: Based on sketch, remove all spinach and lettuce;
order 40 kaopectate

e New inventory so: 0 spinach, 0 lettuce, 2 bread, 10 kaopectate,

so depends on measurement matrix ®. No guarantees for ® on ss.
Too costly to have separate ® per sale.

Today: Universal guarantee.

Overview

One sketch for all v/

Goals and Results

Chaining Algorithm

HHS Algorithm (builds on Chaining)

10

Goals

e Universal guarantee: one sketch for all
e Fast: decoding time poly(mlog(d))

e Few: optimal number of measurements (up to log factors)

Previous work achieved two out of three.

Ref. Univ. | Fast | Few meas. || technique

KM X v v comb’l
D, CRT v X s LP(d)

CM* vV v X comb’l
Today v v v comb’l

*restrictions apply

11

Results

Two algorithms, Chaining and HHS.
O hides factors of log(d) /e.

meas.

Time

out

eIrror

Chg

~

O(m)

~

O(m)

m

IE]l, < O(log(m)) || Eopslly

12

Results

Two algorithms, Chaining and HHS.
O hides factors of log(d) /e.

meas. | Time | # out | error
Chg | O(m) | O(m) | m | [|E]; <O(log(m)) || Eopill,
HHS | O(m) | O(m?) | O(m) | |E|l, < (e/v/m) || Eopll,

13

Results

Two algorithms, Chaining and HHS.
O hides factors of log(d) /e.

meas. | Time | # out | error

~ ~

Chg | O(m) | O(m) | m Ell, < O(og(m)) || Eopt

~ ~ ~

HHS | O(m) | O(m?) | O(m) | ||E|,y < (e/v/m) | Eoptll;

3 m El,
< || Eoptlly + (6/v/m) || Eoptll4
4 1E]; < (1+€) | Eoptll;

(3) and (4) are gotten by truncating output of HHS.

14

Results

meas. Time error Failure
K-M O(m) poly(m) | ||Ell, < (1 +€)[[Eoptll, | “for each”
D, C-T | O(mlog(d)) | d"% | |El, < (¢/vm) | Eoptll, | univ.
CM O(m*) | poly(m) | [|Elly < (¢/v/m) [|Eops|l., | Det'c
Chg O(m) O(m) | |IE]l, < O(log(m)) || Eopsll, | univ.
HHS O(m) O(m?) | ||Blly < (¢/v/m) || Bopill, | univ.

O and poly() hide factors of log(d) /.

15

Overview

One sketch for all v/
Goals and Results v/
Chaining Algorithm
HHS Algorithm (builds on Chaining)

16

Chaining Algorithm—Overview

Handle the universal guarantee

Group testing
— Process several spikes at once

— Reduce noise
Process single spike bit-by-bit as above.

Iterate on residual.

17

Universal Guarantee

e Fix m spike positions

e Succeed except with probability exp(—mlog(d))/4

— succeed “for each” signal

e Union bound over all spike configurations.
— At most exp(m log(d)) configurations of spikes.

— Convert “for each” to universal model

18

Noisy Example—Isolation

Each group is defined by a mask:

signal: 0.1 0 53 0 0 —-0.1 0.2 6.8
randommask: 1 1 1 0 1 0 1 0
product: 0.1 0 53 0 O 0 0.2 0

19

Noisy Example

(0.1\

/5.6\(11111111\0

0.3
0
021 =1 0 0 0 0 1 1 1 1 0
5.0 0 0 1 1 0 0 1 1 0

\o/ \o 1 o 1 0o 1 o0 1)

0.2
\ 0/
Recover position and coefficient of single spike, even with noise.

(Mask and bit tests combine into measurements.)

20

Group Testing for Spikes

E.g., m spikes (¢, s;) at height 1/m; ||noise||; = 1/20. (For now.)

o (i,s;) is a spike if |s;| > (L) ||noise],.

21

Group Testing for Spikes

E.g., m spikes (¢, s;) at height 1/m; ||noise||; = 1/20. (For now.)
o (i,s;) is a spike if |s;| > () ||noise]|,.

Throw d positions into n = O(m) groups, by ®.
e > cym of m spikes isolated in their groups

o < com groups have noise > 1/(2m) (see next slide.)

e > (c1 — co)m groups have unique spike and low noise—recover!

m

...except with probability e~

Repeat O(log(d)) times:

—m log(d) .

Recover (m) spikes except with prob e

22

Noise

||(I)E0ptH1 < H(I)||1—>1 ||Eopt||1-
We'll show ||®]|,_; < 1.
Thus total noise contamination is at most the signal noise.

At most m/10 buckets get noise more than (10/m) || Eops||;

2
7 1 0 0 0 0 1 ;
91=10 0 0 1 1 O A
5 0O 1 1 0 0 O -

23

We’ve found some spikes

We’ve found (1/4)m spikes.
e Subtract off spikes (in sketch): ®(s — As) = &s — ®(As).
e Recurse on problem of size (3/4)m.

e Done after O(log(m)) iterations.

But...

24

More Noise Issues

> cym of n groups have unique spikes (of m) v/

< com groups have noise > 1/(2m) v’

< c3m groups have false spike

& Subtract off large phantom spike

& Introduce new (negative) spike (to be found later)

Other groups contribute additional noise (never to be found)

& Spike threshold rises from m~1! to (STm)_l.

25

More Noise Issues

e > cym of n groups have unique spikes (of m) v/
e < com groups have noise > 1/(2m) v
e < c3m groups have false spike

e Other groups contribute additional noise (never to be found)

Number of spikes:
m — (g —co—c3)m =~ (3/4)m.
Spike threshold increases—delicate analysis.

e Need spike (¢, s;) with |s;| > Q (m) |noise||; .
& Lets noise grow from round to round.
e Prune carefully to reduce noise.

e Get log factor in approximation.

26

Drawbacks with Chaining Pursuit

e log factor in error

e 1-to-1 error bound is weaker than standard 1-to-2

27

Drawbacks with Chaining Pursuit

e log factor in error

e 1-to-1 error bound is weaker than standard 1-to-2

Two algorithms, Chaining and HHS.

meas. | Time | # out | error

~ ~

Chg | O(m) | O(m) | m E|, < O(log(m)) || Eopt |l

HHS | O(m) | O(m?) | O(m) | ||E|ly < (¢/v/m) || Eoptll;

I

3 m El,
< | Eoptlly + (6/v/m) [Eoptll

4 IE], < (1+¢) [Fopilly

28

Overview

o Assume limited dyanmic range: ||s|, < d'%8@ || Eqp,.
& E.g., preprocess with (simplified) Chaining algorithm

e While |[s||, > (¢/v/m) || Eopt||,, reduce ||s||, by factor 2.
<& Identify fraction of spikes

<& Estimate values.

o Separation of Identification and Estimation eliminates

problems caused by false positives.

29

2-error

Our focus:

e = ¢ spikes with magnitude ~ 1/t

o Noise ||Eopill, = |V||; = 1.
(Try all ¢’s and ¢’s in a geometric progression.)
Remark:

e In Chaining (1 < 1) setup, can assume 1/t > 1/q. (Spike
height 1/t is big.)
e Challenge here: Possibly 1/t =1/,/qm.

30

Double Hashing

Have: ¢ spikes at 1/t; noise 1.
Double hashing:

e Each position goes to 1 group among ¢. (As in Chaining.)
e Within each group, each position expects to go to t/q groups
among (t/q)?.

(Some log factors suppressed.)

31

First Hashing

Have: ¢ spikes at 1/t; noise 1.

Throw positions into g buckets, by ®. As in Chaining, except with

prob e—2108(d) — (2)_17

e ()(q) spikes are isolated from other spikes
o o], <1.

<& Thus only O(q) buckets get noise more than 1/q.

32

Second Hashing

Have 1 spike at 1/t; noise ||v||; < 1/q.

Use r = (t/q)? rows of Bernoulli(q/t).

(

l
0
1
0
1

o O = =

—_ - O O

_ o O =

(1/da)

\ |

1 0 1 1/dq
0 1 1|]1/dg
1 1 0| |1/dq
0 0 0/ |1/dq

\1/dq}

33

Second Hashing

Have 1 spike at 1/t; noise ||v||; < 1/q.
Use r = (t/q)? rows of Bernoulli(q/t).

[\

o1 1 0 0 0 1 1

\11011000)

(1/da)
1/t

1/dq

1/dgq

1/dq
1/dq

\1/dq}

e Our spike survives r’ = r - (q/t) = t/q times.

34

Second Hashing

Have 1 spike at 1/t; noise ||v||; < 1/q.
Use 7 = O((t/q)?) rows of Bernoulli(q/t). (1/61 \
q
1/t

[1)
1/dq

0 1 0 0 0 1 1|]1/dg

1/dq
\l 0110 0 0/|1/dg

\1/dq}

e Our spike survives ' =r - (q/t) = t/q times.

e On surviving submatrix, expect ' - (q/t) = one 1 per other
column.

35

Second Hashing

Have 1 spike at 1/t; noise ||v||; < 1/q.
With prob 1/d?,

e Our spike survives r’ = r - (q/t) = t/q times.

e On surviving submatrix, expect ' - (¢/t) = one 1 per column.
Take union bound over d spikes and d matrix columns.

For any noise ||v||; = 1/q, some row gets average noise,
(1/q)/r" =1/t.

Can recover spike of magnitude 1/t from noise 1/(2t).

36

Number of Measurements

Number of measurements: q(t/q)*log(d) = poly(log(d)/e)t?/q, for

e First hashing (g rows)

e Second hashing ((t/q)? rows)

e Bit tests (log(d) rows)

e (Severall) omitted factors of log(d) and 1/e.

2 —
Note: q/t* = [|s]l; > (m™'/? || Eope,)* = 1/m.

So number of measurements is t%/q < m.

37

Cost

Re-measure O(m)-sparse vector by matrix with at most O(m) rows:
e Time: m?poly(log(d)/e).
Matrix generation, first hashing;:
e Generate m rv’s from m-wise independent family
e Time mpolylog(d).
Matrix generation, second hashing:
e m times, generate m rv’s from 2-wise independent family
e Time m?polylog(d).

Improvement to m3/2 possible here; bottleneck of m?2 in Estimation.

38

Estimation

Have:

e Set A of positions in signal s.

e Measurements ®s, for random DFT-row-submatrix .
Want:

e Estimate s4 for s4 with

o [[3a —sally < lls —sally +m™"2 [|s — sall;.

Note: Can assume by ||s — 54|, small, by goodness of
identification.

39

Estimator

54 = @7 (®Ps) (Least squares).

()

SA

\

e Correctness mostly follows from Candes-Tao,

Rudelson-Vershynin.
e Small space and runtime O(m?) immediate.
e Open: m x m DFT submatrix times vector faster than m?.

40

Recap

New compressed sensing/heavy hitter algorithms that get

e Universal guarantee
e Decoding time poly(m log(d))

e Optimal number of measurements (up to log factors)

Chaining material based on paper:

Algorithmic Linear Dimension Reduction in the /; Norm
for Sparse Vectors (available from my homepage)

HHS material based on paper:

One sketch for all: Fast algorithms for compressed sensing

(submitted; available soon.)

by Gilbert, Strauss, Tropp, Vershynin

41

Euclid v. Taxicab

Optimal error vector Eqpe = § — sy, is s with m heavy hitters zeroed

out.

Our error vector is £ = s — s.

o Ideally, |E|l; < (1+¢) | Eoptll,-
<& Achievable with “for each” guarantee

<& Impossible with universal guarantee
(Cohen-Dahmen-DeVore, 2006)

e Best with universal guarantee is || E||, < NG | Eopt||; (and
related).

42

Alternative Characterization

o |[El, < (1+¢€)]|Eoptll, vacuous unless Fope € Ba(1).
o [|[E|, < N | Eopt||; vacuous unless Eopy € Bi(v/m/e).

Defeat ® by finding s with s € null(®).

e Any ®: There’s s € null(®) with E,py € Ba(1).
e Our ®: There’s no s € null(®) with Fou € Bi(y/m/e).

Today: Universal failure guarantee, with ¢! noise.

43

Cor.: Algorithmic Dimension Reduction

Goal: (R%, /1) — (R™, ¢1), for n < d.
Impossibility results, in general (Brinkman and Charikar, 2003)
Chaining algorithm:
(X5,) — (R, £1),

for n = mpolylogd, and X¢ C R¢ is m-sparse signals.

e Robust to perturbations

e Compute and invert in time mpolylogd.

e Distortion polylog(m).

cf. Charikar and Sahai: Distortion (1 + €) but
n = O((m/e)? log(d)).

44

Analysis

|27 ®s — s,
H(I):Z(I)(S - SA)H2
O(||s — sall) (Need this!)

O(lls = sally +m™"2||s — sall).

154 — 54l

IA

We’ll bound HCIDXCIDHK_>2 by bounding

o [[2%l

o [|P]x_s

45

Operator bounds

Need to bound

Candes-Tao, Rudelson-Vershynin:

e All size-(2m) column submatrices are near-isometries (RIC)

o .50 ||®T|,_, < 2 immediately

We show RIC implies bound on ||®|| .

46

K to 2 Bound

If s is ¢ spikes of (near-)equal size, m < ¢ < 2m, then
|@s]l, <m~1/2|s]];.

Suppose ||zl < m~/2 |@z]], and [|@y], < m=Y/? @yl for 2
and y disjointly supported. Then

12z +y)ll, < [zll, + 12y,

< m Y2(||zll, + lyll,)
= m_1/2\w+y\|1
< m_1/2\$+y”K

Combine all groups of size > m this way.

47

K to 2 Bound

If s is ¢ < m spikes of (near-)equal size ¢, then ||®s|, < ||s]|5-

Do all g =1,2,4,8,...,m and O(log(d)) relevant values of t.
Suppose ||Px|, < ||z||, and || Py|, < ||yll5, for z and y disjointly
supported. Then

[Pz +y)lly < [[Dzfly + [Pyl
< lzlly + 1wl

by Cauchy-Schwarz. Give up factor polylog(d) in this proof.

Slicker proof gives no overhead from RIC to K — 2 norm.

48

