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non-deterministic : . streams come
data in streams. | from?
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® Stream:aj,ay, ..., am Where a;j € [n]
® Empirical Distribution: pi = (freq. of i)/m
e Entropy: Z —pi log p;

O(€3log®> m log o) O(€?log m log 0°')
[Bhuvanagiri, Ganguly '06] [Chakribarti, Cormode, McGregor '07]
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® Stream:aj,ay, ..., am Where a;j € [n]
® Empirical Distribution: pi = (freq. of i)/m
e Entropy: Z —pi log p;

O(€3log®> m log o) O(€?log m log 0°')
[Bhuvanagiri, Ganguly '06] [Chakribarti, Cormode, McGregor '07]

® |nformation Distances: e.g. Z(\/E — \/E)2

Multiplicative Approx: All f-Divergences (except L) and
Bregman-Divergences (except L) require Q(n) space.

Additive Approx: Bound f-Divergences, Jensen-Shannon...

Embedding: Can embed Hellinger but not approximate
[Guha, McGregor,Venkatasubramarian ’06], [Guha, Indyk, McGregor '07]
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® Stream:aj,ay, ..., am Where a;j € [n]

® Empirical Markov-Chain: p; = (freq. of ij)/(freq. of i)
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® Stream:aj,ay, ..., am Where a;j € [n]

® Empirical Markov-Chain: p; = (freq. of ij)/(freq. of i)

® Markov-Entropy:
Undirected/Unweighted: O(€2 log? n log? ')

General Case: Multiplicative requires (Q(n/log n) but additive...
[Chakribarti, Cormode, McGregor '07]



lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*
*

-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

® Stream:aj,ay, ..., am Where a;j € [n]

® Empirical Markov-Chain: p; = 1/d(i) if j is a neighbour

® Markov-Entropy:
Undirected/Unweighted: O(€2 log? n log? ')

General Case: Multiplicative requires (Q(n/log n) but additive...
[Chakribarti, Cormode, McGregor '07]
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® Stream:aj,ay, ..., am Where a;j € [n]

® Empirical Markov-Chain: p; = 1/d(i) if j is a neighbour

® Markov-Entropy:
Undirected/Unweighted: O(€2 log? n log? ')

General Case: Multiplicative requires (Q(n/log n) but additive...
[Chakribarti, Cormode, McGregor '07]

® What about mixing-time, cover-time etc.!
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® Probabilistic Stream:A|, Ay, ...,An Where Ajis a
density on [n]U{J_} [Jayram, Kale,Vee ’07]



lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*
*

-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

® Probabilistic Stream:A|, Ay, ...,An Where Ajis a
density on [n]U{J_} [Jayram, Kale,Vee ’07]

® Defines distribution over “Deterministic’ Streams:

Pr({ay,...,an)) = | [ Pr(4A; = a))
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® Probabilistic Stream:A|, Ay, ...,An Where Ajis a
density on [n]U{J_} [Jayram, Kale,Vee ’07]

® Defines distribution over “Deterministic”” Streams:
Pr({ay,...,an)) = | [ Pr(4A; = a))
® Goal: Compute expected values of aggregates, e.g.

Mean, Sum, F;, Max [Jayram, Kale,Vee ’07]

Mean, Median, Fo, F> [McGregor, Muthukrishnan ’07]
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® Thm: O(log n)-pass (l1+€)-approx for E[Mean]
in O(E'I IOg n) space. [Jayram, Kale,Vee '07]
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan ’07]
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan ’07]

® Proof (Sketch):

Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan ’07]

® Proof (Sketch):
Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]
1) If E[Count]=Q(€?log n) gives error + €E[Sum/Count]
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan ’07]

® Proof (Sketch):
Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]

1) If E[Count]=Q(€?log n) gives error + €E[Sum/Count]
2) Assume E[Count]=O(€? log n):
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan ’07]

® Proof (Sketch):
Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]
1) If E[Count]=Q(€?log n) gives error + €E[Sum/Count]
2) Assume E[Count]=O(€? log n):

Let Count; = Fi(ai, ..., aj) and Mean; = (a+ ... +a;)/Count;
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan '07]

® Proof (Sketch):
Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]
1) If E[Count]=Q(€?log n) gives error + €E[Sum/Count]
2) Assume E[Count]=O(€? log n):
Let Count; = Fi(ay, ..., aj)) and Mean; = (a;+ ... +a;)/Count;

Then whp. A={Count;=E[Count]] + O(€"' log n): for all j}
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® Thm:Single-pass (|+€)-approx for E[Mean] in
O(E'I |Og n) space. [McGregor, Muthukrishnan '07]

® Proof (Sketch):
Note E[Mean] = E[Sum/Count] # E[Sum]/E[Count]
1) If E[Count]=Q(€?log n) gives error + €E[Sum/Count]
2) Assume E[Count]=O(€? log n):
Let Count; = Fi(ay, ..., aj)) and Mean; = (a;+ ... +a;)/Count;
Then whp. A={Count=E[Count]] £ O(€"' log n): for all j}
Maintain Pr[Count=z|A] & E[Mean;|A] in O(€"' log n) space.
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no cares about the empirical distribution?!

W
? What if we don’t know the probabilistic stream?!




|. Models
2. Quantiles
3. Learning Distributions



“Upstream” Algorithms



“Upstream” Algorithms

® Can we infer the probabilistic stream from
one or more deterministic stream(s)?



“Upstream” Algorithms

® Can we infer the probabilistic stream from
one or more deterministic stream(s)?

“source” AI,Ay, ..., An



“Upstream” Algorithms

® Can we infer the probabilistic stream from
one or more deterministic stream(s)?

3-" a2, a3,...
E)|, by, bs,...
Ci, C2, C3,...
<€

“observed” stream(s) “source” A1,Ay, ... ,Am



“Upstream” Algorithms

® Can we infer the probabilistic stream from
one or more deterministic stream(s)?

3-" a2, a3,...
E)|, by, bs,...
Ci, C2, C3,...
<€

“observed” stream(s) “source” A1,Ay, ... ,Am

® Eg. eachAiis Lw/ppandjw/p |-p

[Batu, Kannan, Khanna, McGregor ’04], [Kannan, McGregor, '05]



“Upstream” Algorithms

® Can we infer the probabilistic stream from
one or more deterministic stream(s)?

3-" a2, a3,...
E)|, by, bs,...
Ci, C2, C3,...
<€

“observed” stream(s) “source” A1,Ay, ... ,Am

® Eg. eachAiis Lw/ppandjw/p |-p

[Batu, Kannan, Khanna, McGregor ’04], [Kannan, McGregor, '05]

® E.g.eachAis identically distributed...
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“Upstream” Algorithms

® Fach stream element is an independent
sample from an unknown distribution p.

® Goal: Estimate function f()
Space-complexity
Time-complexity

Sample-complexity
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Quantiles

Stream: m samples a distribution with density p

e-approx median: x with [ p(y)dy =1/2+ €
With m samples can find O(m-!/?)-approx median

First attempt:

Can find element of rank (1/2£€)m in O(€"! log m) space
O(s) space can find O(max(m-'2, s*'))-approx median

[Greenwald, Khanna '01], [Cormode, Korn, Muthukrishnan, Srivastava ’'06]

Thm: Can find O(m'"2log m)-approx median in
O( 1) words of space
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Stream Position

Analysis: If |E|=O(€?), we estimate p(-,C) up to % E.
If u(-0,c) =1/2 £ €, then return c.



Algorithm: Maintain lower/upper bound [a, b] for median and c in [a,b]
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Algorithm: Maintain lower/upper bound [a, b] for median and c in [a,b]
Split stream in segments Sy, Ej, S2, E, ..., Sp, Ep

Value Phase i 1) Sample 2) Estimate 3) Update
A . . . . : :
) o e . ® . @
° o ° ° % ® o ° ’.C ....... .... ..... S e .’.. °®
° N °. 9 ¢ ® ° o °®
O [ o: o ® @ o o O
¢ ¢ ¢ P P
S o o o °
o . R o o
Stream Position
\Y E Y. E, S3 E;

Analysis: If |E|=O(€?), we estimate p(-,C) up to % E.
If u(-0,c) =1/2 £ €, then return c.
If |Si|=O(€"') and p(a,b)=Q(€"), then can find c in [a,b].
Expect p(a,b) to half in each phase, hence p = O(log €')



Algorithm: Maintain lower/upper bound [a, b] for median and c in [a,b]
Split stream in segments Sy, Ej, S2, E, ..., Sp, Ep
Value Phase i: |) Sample 2) Estimate 3) Update
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Algorithm: Maintain lower/upper bound [a, b] for median and c in [a,b]
Split stream in segments Sy, Ej, S2, E, ..., Sp, Ep

Value Phase i 1) Sample 2) Estimate 3) Update
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Thm: €-approx median with O(€?log €2%) samples and O(1) space

Thm: Given a length m stream in random order, can return an
element with rank m/2 £ O(m'"?log? m) using O(1) space.
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length n index i in
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® Assume there exists single-pass algorithm returning
the median with prob. at least 3/4 using S space.
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2+x 2i+X; 2n+xn§ 0 0 2n+2

---------------------------------------------------------------------------------------------
*

INDEX: “What’s the value of x;?”

Requires QQ(n) bits transmitted.

Alice
length n index i in
: : MEMORY STATE OF ALGORITHM
binary string x range [n]

® Assume there exists single-pass algorithm returning
the median with prob. at least 3/4 using S space.

® Thm: S=Q(n) [Henzinger, Raghavan, and Rajagopalan *99]



Alice
length n
binary string x

index i in
range [ni]



Alice: picks b randomly from [n|] and
/ inserts a random permutation of,
{0, ... ,0,24x,....2n0 +2y,,2n +2,...,2n + 2}
(m—nl ::’1,2—1))/2 (m—n1 ::’LQ—|—b)/2
*
Alice
length n index i in

binary string x range [ni]



Alice: picks b randomly from [n|] and
/ inserts a random permutation of,

"'7*_;{ 97 ,9,2+x1,...,2n1+wn1,gn+2,---72n+%}

~" ~N"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

MEMORY STATE OF ALGORITHM and “b”

Alice

length n index i in
binary string x range [ni]



Alice: picks b randomly from [n|] and
/ inserts a random permutation of,

"'7*_;{ 97 ,9,2+x1,...,2n1+wn1,gn+2,---72n+%}

~" ~N"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

MEMORY STATE OF ALGORITHM and “b”

Bob: inserts a random permutation of,

Alice

{0, ... ,0,2n+2,...,2n+ 2}
length n| — ~— g index i in
(n2+b—j—1)/2 (n2—b+j)/2

binary string x range [ni]



inserts a random permutation of,
{0, ... ,0,24x,....2n0 +2y,,2n +2,...,2n + 2}

~" ~N"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

/ Alice: picks b randomly from [n|] and

MEMORY STATE OF ALGORITHM and “b”

Bob: inserts a random permutation of,

: Alice

{0, ... ,0,2n+2,...,2n+ 2}
length n| — ~— g index i in
(n2+b—j—1)/2 (n2—b+j)/2

binary string x range [ni]
® If nj=o(\n) and nina/n=o(l) then ordering

is “close” to random.



Alice: picks b randomly from [n|] and
/ inserts a random permutation of,

p{0, ... 0.2+, 20 +2p,20+2,..., 20+ 2}

~" ~N"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

MEMORY STATE OF ALGORITHM and “b”

Bob: inserts a random permutation of,

Alice 0, ... ,0,2n+2,....2n+2)
length n| — ~— g index i in
(n2+b—7—1)/2 (n2—b+j)/2

binary string x range [ni]
® If nj=o(Vn) and nin2/n=0o(l) then ordering

is “close” to random.

® An algorithm succeeding w/p 3/4 for
random-ordering, succeeds w/p 2/3.



inserts a random permutation of,
{0, ... ,0,24x,....2n0 +2y,,2n +2,...,2n + 2}

~N"

/ Alice: picks b randomly from [n|] and

~"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

MEMORY STATE OF ALGORITHM and “b”

Bob: inserts a random permutation of,

Alice

{0, ... ,0,2n+2,...,2n+ 2}
length n| — ~— g index i in
(n2+b—j—1)/2 (n2—b+j)/2

binary string x range [ni]
® If nj=o(Vn) and nin2/n=0o(l) then ordering

is “close” to random.

® An algorithm succeeding w/p 3/4 for
random-ordering, succeeds w/p 2/3.

® Thm:S=Q(n'?3)



inserts a random permutation of,
{0, ... ,0,24x,....2n0 +2y,,2n +2,...,2n + 2}

~N"

/ Alice: picks b randomly from [n|] and

~"

(m—n1—no—>b)/2 (m—nq1—ns+b)/2

MEMORY STATE OF ALGORITHM and “b”

Bob: inserts a random permutation of,

Alice

{0, ... ,0,2n+2,...,2n+ 2}
length n| — ~— g index i in
(n2+b—7—1)/2 (n2—b+j)/2

binary string x range [ni]
® If nj=o(Vn) and nin2/n=0o(l) then ordering

is “close” to random.

® An algorithm succeeding w/p 3/4 for
random-ordering, succeeds w/p 2/3.

® Thm: S=Q(n”2) [Guha, McGregor "06]
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Learning Distributions

® Stream: m samples a distribution with k
piece-wise linear density function p

® Goal: Find k piece-wise linear density
function P’ such that |u-p’| < €

® Thm: O(ké €) samples and O(k? €-%P)
space with p passes.  [Chang, Kannan '06]




Learning Distributions

Stream: m samples a distribution with k
piece-wise linear density function p

Goal: Find k piece-wise linear density
function P’ such that |u-p’| < €

Thm: O(k® €¢) samples and O(k3 €-2/P)
space with p passes.  [Chang, Kannan '06]

Thm: O(k? €*) samples and O(k) space
with one pass. [Guha, McGregor *06]
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Learning Distributions

® Split into t) intervals of approx equal mass

O(I1/t1?) samples and quantile algorithm

® Test if p conditioned on each interval [a,b]
is B-far from linear

O(k/B3)/u(a,b) samples, quantize, use L|-sketch

® Recurse on each non-linear interval
O(I</|3)

>
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Learning Distributions

T

0Q

Only O(kt2) nodes

at each level.
t




Learning Distributions

Only O(kt2) nodes
at each level.

Bottom nodes have
insignificant mass




Summary

Chang, Kannan '06

Samples O(k?€?) | O(ké €?)
Space O(k2€2) | O(I3 €2p)
Passes I P

Re-order!? 4 4




Summary

Chang, Kannan '06

Guha, McGregor ’06

Samples O(k2e2) | O(kée®) | Ok2e?) | Ok2e™)
Space O(2e?) [OK3e??)| O(K) | O(ke?r)
Passes I P I P

Re-order? v v v
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a) Estimating
“stochastic properties”
such as entropy and

f-Divergences.

.
---------------------------------------------------------

--------------------------------------------------------

: b) Estimating expected

. values of aggregate
properties given a

“probabilistic stream.”

. *
--------------------------------------------------------------
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a) Estimating c) Learning about the
. “stochastic properties” . source of a stream, i.e.
such as entropy and “upstream algorithms.”
f-Divergences. : :

Examples:

.
-------------------------------------------------------

sequence reconstruction,
stream of iid samples,

........................................................... etc?
: b) Estimating expected : Algorithms:
. values of aggregate . quantiles/sufficient-statistics,
properties givena . piecewise-linear distributions,
“probabilistic stream.” etc?

. * . *
-------------------------------------------------------------------------------------------------------------------------------------------
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