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Abstract. We present novel space and time-efficient algorithms for find-
ing frequent items over general update streams. Our algorithms are based
on a novel adaptation of the popular dyadic intervals method for finding
frequent items. The algorithms improve upon existing algorithms in both
theory and practice.

1 Introduction

There is a growing class of applications in areas of business and scientific data
processing that continuously monitor large volumes of rapidly arriving data for
detecting user-programmed scenarios, some of which may encode anomaly and
exception conditions or desirable conditions. Although a deep analysis of the
data can be done, it is both space and time consuming. Data streaming systems
are designed to give fast, but possibly approximate answers to a class of queries
while processing the input data in an online fashion. For example, consider a
satellite data processing system where continuous and voluminous weather data
has to be rapidly processed to give a forewarning of an emerging climate phe-
nomenon. While deep analysis is possible, often, an early warning capability
is very desirable, which though approximate, could then be used to trigger a
deeper analysis. As another example, consider a biological experiment scenario
where there are sensors attached to many biological subjects whose data is be-
ing continuously transmitted to a central server. Monitoring extremal aggregate
conditions over to sensor readings are often useful indicators in such scenarios.

Central to the success of data streaming systems are highly space and time-
efficient algorithms that can summarize input data streams while processing
them in an online fashion. In this paper, we present novel algorithms for data
stream processing in the same vein, specifically considering general data streams.
In the general stream model, each input record indicates arbitrary insertions or
deletions of an item, where, an item may be an IP-address, stock ticker, sensor-
id, etc.. In this model, the sum of aggregate insertions (positive) and deletions
(negative) for each item over the course of the stream may be either positive
or negative. We address the problem of finding frequent items over general data
streams.

The problems of finding frequent items and estimating item frequencies over
data streams are among the most popular primitive operations over data streams
[2, 4, 3, 5, 8, 10]. Much of the research in this basic problem has centered around



the insert-only streaming model [2, 5, 8, 10] and the strict update models [3, 6]
respectively. For general streams, there are two known approaches towards the
problem of finding approximate frequent items, namely, the non-adaptive group
testing approach [4] and the reversible sketches approach [11]. In this paper, we
present the random dyadic approach towards finding frequent items over general
streams. The proposed algorithm is novel, and extends the applicability of the
popular dyadic intervals technique for strict streams to general streams.

Data Streaming Model. A data stream σ over the domain [1, n] = {1, 2, . . . , n}
is modeled as an unbounded sequence of records of the form (pos, i, δv), where,
pos is the current sequence index, i ∈ [1, n] and δv ∈ Z. Here, δv > 0 signifies
insertion(s) of instance(s) of i and δv < 0 signifies deletion(s) of instance(s) of
i. For each data item i ∈ [1, n], its frequency fi(σ) is defined as

fi(σ) =
∑

(pos,i,δv) ∈ stream

δv, i ∈ [1, n] .

In this paper, we consider the general model, where, the n-dimensional fre-
quency vector f(σ) ∈ Zn. The frequency moment F1 of a general stream is
defined as the sum of the absolute values of the frequencies, that is, F1(σ) =∑

i∈[1,n]|fi(σ)|. The second moment of the frequency vector is defined as F2(σ) =∑
i∈[1,n](fi(σ))2. The data stream model of processing permits online computa-

tions over the input sequence using sub-linear space.
Conventions. (a) We will assume that the domain size n is a power of two.

(b) By a data stream, we always mean the current state of the stream and hence
we drop the stream argument σ; for example, fi abbreviates fi(σ).

Problem definitions. In this paper, we consider the following two problems. Let
0 < φ < ε < 1.

1. Finding F1-based frequent items, denoted by ApproxFreq1(ε, φ) is: return
all i ∈ [1, n] such that fi(σ) ≥ εF1 and do not return any i such that
fi ≤ (ε− φ)F1. A randomized algorithm for this problem satisfies the above
property for all items returned with probability 1− δ.

2. Finding F2-based frequent items, denoted by ApproxFreq2(ε, φ) is: return
all items i ∈ [1, n] such that |fi| ≥ (εF2)1/2, and no i such that |fi| <
((ε − φ)F2)1/2. A randomized algorithm satisfies the above properties with
a total success probability of at least 1− δ.

In this paper, we design randomized algorithms for finding F1 and F2-based
frequent items whose space requirement is nearly linear in φ−1.

Contributions. We present novel, space and time-efficient algorithms to solve
the problems stated above. For the problem of finding frequent items, our tech-
nique extends the applicability of the popular dyadic intervals technique for
strict streams to general streams. We present two algorithms for the problem



ApproxFreq2(ε, φ) which improve the space requirement of the existing al-
gorithm [4] by a factor of O( 1

φ ). The solution to the F1-based frequent items
problem is shown to have better properties of precision and recall. The algo-
rithms perform well in experiments and have rigorous space versus accuracy
guarantees.

2 Review

In this section, we review relevant algorithmic techniques for processing general
data streams.

2.1 Review: finding approximate frequent items

We review two approaches for finding approximate frequent items over general
streams, namely, non-adaptive group testing [4] and reversible sketches [11].

Non-adaptive group testing. A collection of s hash tables T1, . . . , Ts is kept,
each consisting of b buckets numbered 1 to b. Associated with each hash table
Tj is a pair-wise independent random hash function hj : [1, n] → [1, b]. Each
bucket of a table contains a two dimensional array U [0 . . . 1, 1 . . . log n] of integer
counters1. We refer to a specific entry of a bucket as Tj [r].U [v][k], where, j is the
table index in [1, s], r is the bucket index in [1, b], v is a bit value that is either
0 or 1 and k is a bit position with value from [1, log n]. Corresponding to each
stream record of the form (pos, x,∆), the data structure (initialized to all zeros)
is updated as follows. Let x = xlog nxlog n−1 . . . x2x1 be the binary representation
of x.

Tj [hj(x)].U [xk][k] = Tj [hj(x)].U [xk][k] + ∆
j = 1, . . . , s, k = 1, . . . , log n .

For the problem ApproxFreq1(ε, φ) with (φ < ε), b is set to d 2
φe and s is set to

O(log((φδ)−1(log(1/φ)))) in order to ensure that the problem ApproxFreq1(ε, φ)
is solved with error probability at most δ. In addition, a data structure for es-
timating F1 of the stream to within a constant factor (say, (1 ± 1

8 )) is also
kept. The procedure for inference is the following. A bucket Tj [r] contributes
at most one element x towards a set of candidate frequent items as follows.
Let F̂1 = (estimate of F1) /(1 + 1/8). For each j ∈ [1, s] and r ∈ [1, b], the
procedure RetrFrequent(j, r) is invoked for each hash table Tj and each
bucket r ∈ [1, b] of Tj to obtain a candidate set of non-nil elements re-
turned from the invocation RetrFrequent (j, r). These are the candidate fre-
quent items–their frequencies are estimated by treating the data structure as a
Count-Min sketch structure [3] and (x, f̂x) is returned as a frequent item and
its estimate provided, f̂x ≥ (ε − φ)F̂1. The space requirement of this technique

1 For k ∈ [1 . . . log n], r ∈ [1, b] and j ∈ [1, s], we have Tj [r].U [0][k] + Tj [r].U [1][k] =∑
hj(x)=r fx. The latter quantity is stored in another counter associated with the

bucket Tj [r] thus reducing the storage associated with each bucket from 2 log n coun-
ters to 1 + log n counters. This optimization is done in the experiments.



procedure RetrFrequent(j, r) // j ∈ [1, s], r ∈ [1, b]
Returns x ∈ [1, n] or nil in case of perceived ambiguity.
x := 0;
for k = 1 to log n {

if (Tj [r].U [1][k] ≥ (ε− φ)F̂1) and (Tj [r].U [0][k] ≥ (ε− φ)F̂1)
return nil

else if (Tj [r].U [1][k] ≥ (ε− φ)F̂1) x := x + 2k−1

else if (Tj [r].U [0][k] < (ε− φ)F̂1)) return nil
}

is O(φ−1(log n)(log F1)(log((φδ)−1 log φ−1))) bits. The time required to process
each stream update is O((log((φδ)−1 log φ−1)) log n).

The group testing approach was used by [4] to present algorithms for the
problem ApproxFreq2(ε, φ), that is, retrieve all items i such that fi > (εF2)1/2

and not retrieve any items i with fi < ((ε−φ)F2)1/2. The data structure has the
same structure as the one described above; in addition to the array U kept for
each hash table bucket Tj [r], this structure also keeps log n AMS sketches, that
is, Tj [r].U [v][k] is an AMS sketch of the sub-stream defined by the items that
map to bucket r of table j and have value v in bit position k. The asymptotic
space requirement is O( 1

φ2 (log n)(log F1)(log((φδ)−1 log φ−1))) bits [4].
Reversible sketches. The reversible sketches paper [11] keeps s = O(log n

δ )
tables Tj , where, each table has b buckets and each bucket is simply a counter
that stores the sum of the frequencies of all the items that map to that bucket. A
bucket Tj [r] is considered to contain a potential frequent item provided, Tj [r] ≥
(ε− φ)F1. The reversible sketches does not keep any additional bits in the data
structure to retrieve the items. Instead, the hash function is constructed in a
modular manner that allows the retrieval of the items. The main problem with
the approach is that the retrieval method can be very time-consuming (as we
found in our experiments ), since, the number of candidate frequent items can
be as large as nα, for α ranging from 0.5 to 0.9.

2.2 Review: Use of dyadic intervals

The dyadic intervals technique is a simple building block for design of algo-
rithms for insert-only and strict streams. We briefly review the technique and
its applications. Recall that we have assumed n to be a power of 2.

A dyadic interval at level l is an interval of size 2l from the family of intervals
of the form [i2l + 1, (i + 1)2l], for 0 ≤ i ≤ n

2l − 1 and 0 ≤ l ≤ log n. The set of
dyadic intervals of levels 0 through log n form a complete binary tree as follows.
The root of the tree is the single dyadic interval [1, n] and the leaf nodes are the
singleton intervals. Moreover, for 0 ≤ l < log n, each dyadic interval at level l of
the form I = [i2l + 1, (i + 1)2l] has two children at level l − 1, namely, the left
and the right halves of Ih. The left child of I is the interval [i2l +1, (2i+1) ·2l−1]
and the right child is the interval [(2i + 1) · 2l−1 + 1, (i + 1)2l]. The frequency of



a dyadic interval I is defined as the sum of the individual frequencies of items
in I, and is denoted as fI .

The following observations can be made for strict streams (i.e, fi ≥ 0, for all
i ∈ [1, n]). Since each level 0 item belongs to one and only one dyadic interval at
a given level l, the sum of the interval frequencies at level l is the same as the
sum of the item frequencies at level 0, which is F1. That is, F1 =

∑
{fI | I is a

dyadic interval at level l}, for each l = 0, 1, . . . , log n. If an item i is frequent (i.e.,
fi ≥ εF1), then the dyadic interval I that contains i at any level l has frequency
fI ≥ fi ≥ εF1 and is therefore also frequent at level l.

Frequent items algorithm using dyadic intervals. An algorithm for solving
ApproxFreq(ε, φ) is as follows. For each level l = 0, . . . , blog εnc, a data struc-
ture for estimating the frequency of a given dyadic interval (for e.g., a Count-Min
sketch sketch or Countsketch) is kept. The elements at level l are the set of
dyadic intervals interval I at level l and the frequency of an interval I is de-
fined as the sum of the frequencies of the items that belong to I, that is, the
leaves of the sub-tree of the dyadic binary tree rooted at I: fI =

∑
{fi | i ∈ I}.

The set of dyadic intervals at level l are identified with their starting position
modulo 2l. Corresponding to a stream update (pos, x,∆), we propagate the up-
date (pos, b x

2l c,∆) to the data structure at level l, for l = 0, 1, . . . , blog(εn)c.
The inference procedure for finding frequent items is as follows. Start from the
structure at level lmax = blog(εn)c and estimate the frequencies of each of the
2lmax dyadic intervals at level l0 using the data structure. Select those intervals
whose estimated frequency is at least (ε− φ

2 )F1; consider its left and right child,
estimate their frequencies using the structure at the next lower level, retain only
those intervals whose estimated frequency is at least (ε − φ

2 )F1; this process
is continued until the ground level is reached and the structure at level 0 is
processed.

The main problem in applying this technique to general streams is that, since,
item frequencies can be negative, a frequent item or interval at level l may be
contained in an interval at level l + 1 that is not frequent at its level.

3 Algorithm Countsketch Dyadic

In this section, we present the algorithm Countsketch Dyadic for finding
frequent items over general streams with respect to the second moment. That
is, the problem ApproxFreq2(ε, φ) is to retrieve all items i such that |fi| ≥
(εF2)1/2 and not return any i such that |fi| < ((ε − φ)F2)1/2. The solution
presented improves the space requirement of the current best algorithm by a
factor of O( 1

φ ) while preserving time-efficiency of processing stream updates and
of retrieving the frequent items.

The basic idea is to randomly re-distribute the items in the dyadic intervals
using random permutations. Let π be a random permutation of [1, n] that is very
nearly t-wise independent (t = 3 will suffice). A typical way of generating π is
by the use of Fiestel permutations using Luby and Rackoff’s technique [9]. The
advantage of using Fiestel permutations is that it is very efficiently computed



and the inverse permutation is also very efficiently computed as follows. Given
a number x expressed using 2m bits, let L denote the top-order m bits and R
denote the low order m bits; thus x = (L,R). A single round Fiestel permutation
is a map π : (L,R) = (R,L ⊕ f(R)), where, f is a t-wise independent hash
function f : [0, 2m − 1] → [0, 2m − 1] and ⊕ denotes the bit-wise exclusive or
operation. The inverse of a single-round Fiestel permutation is the map (L, R) →
(f(L) ⊕ R,L) and is thus easily computed. Luby and Rackoff show that four
rounds of Fiestel permutations suffice to generate very nearly t-wise independent
permutations such that the distance between the uniform distribution over 2m
bits and the distribution of the Luby-Rackoff permutations is at most t2·2−m. We
note that for t = 3, there are known constructions for exactly 3-wise independent
permutation families. However, for t > 3, constructions for exact independent
random permutations are not known [7].

Let π1, . . . , πs be very nearly 4-wise independent permutations that are ob-
tained in the manner explained above. For each πj and each level l = 0, . . . , lmax,
a Countsketch structure of height ck′ and width w, where, k′ = d 1

φe and the
parameters c, w and lmax will be fixed in the analysis. For each j = 1, 2, . . . , s,
let ξj,x ∈ {−1,+1} denote a four-wise random mapping for each x ∈ [1, n]
(i.e., an ams sketch [1]). This family is independent of the sketches used by
the Countsketch structures themselves. The processing of each stream record
(pos, x, v) is as follows, for each j = 1, 2, . . . , s and l = 0, 1, . . . , lmax, the update
(pos, bπj(x)/2lc, v · ξj,x) is propagated to the Countsketch structure at level l
corresponding to permutation πj .

The retrieval of the frequent items is done as described in Section 2.2 with
minor differences. The following procedure is repeated for each permutation
index j = 1, 2, . . . , s. The retrieval procedure starts from level lmax and scans
all the dyadic intervals at this level and keeps those intervals whose estimated
frequency is at least the threshold ((ε− φ

2 )F2)1/2. The children of such intervals
are considered in turn–these are the candidate intervals at level lmax−1. Among
these intervals, those whose estimated frequency crosses the threshold ((ε −
φ
2 )F2)1/2 are retained, and the rest are discarded. The process continues to the
next lower level in this manner until level 0 has been processed. The candidate
intervals or items at a level are are those whose absolute value of the estimated
frequency crosses the threshold ((ε − φ

2 )F2)1/2. An estimate F̂2 of F2 that is
correct to within a relative accuracy of 1 ± 1

4 and probability 1 − δ
2 is used

and can obtained using the Fast-AMS algorithm of [12] that requires space
O((log 1

δ )(log F1)) bits and time O(log 1
δ ) for processing a stream update.

3.1 Analysis

The residual second moment [2] denoted by F res
2 (k) is the sum of the squares

of the frequencies of all items in the stream, except for the top-k frequencies in
terms of absolute value. More formally, if rank is a permutation of the items such
that |frank(j)| ≥ |frank(j+1)|, for 1 ≤ j ≤ n− 1, then, F res

2 (k) =
∑n

j=k+1 f2
rank(j),

defined for k ∈ [0, n− 1].



For a permutation πj , j ∈ [1, s], i ∈ [1, n] and level l ∈ [0, lmax], let gj,l,i

be the frequency of the unique dyadic interval I to which πj(i) maps at level l.
Let ĝj,i,l denote the estimate obtained from the Countsketch structure for
the unique dyadic interval at level l containing πj(i) at level l. Define the event
NoCollisionl(i) if the dyadic interval to which πj(i) maps at level l does not
contain any of the top-k frequencies (except perhaps itself). Define

NoCollision(i, lmax) = NoCollision1(i) and NoCollision2(i) . . . and NoCollisionlmax(i) .

Lemma 1. For 1 ≤ j ≤ s and i ∈ [1, n],

Pr

{
|ĝj,i,l − fiξj,i| ≤

(
32F res

2 (k′)
k′

)1/2

,∀l : 0 ≤ l ≤ lmax

}
≥ 5

8
.

Proof. Fix a permutation πj and abbreviate it by π and the corresponding sketch
family as {ξi}i∈[1,n]. Similarly, abbreviate gj,i,l by gi,l, etc.. Fix a top-k element
j, j 6= i. Let l ∈ [0, lmax]. Due to t-wise independence of πj , t ≥ 2, the probability
that i and j map to the same dyadic interval at level l is(

n−2
2l−2

)(
n−1
2l−1

) =
2l − 1
n− 1

<
2l

n
.

Therefore, Pr {NoCollisionl(i)} ≥ 1− k2l

n , by union bound. Since, NoCollisionl(i)
implies NoCollisionl′(i), for l′ < l, Pr {NoCollision(i, lmax)} ≥ 1 − k2lmax

n . Let
k′ = 8d 1

φe. Fix an item i. For j ∈ [1, n] and j 6= i, the indicator variable ul,j is
defined as follows: it is 1 if j maps to the same dyadic interval at level l as i and
is 0 otherwise. Thus,

gl,i = fiξi +
∑
j 6=i

fjξjul,j .

Assuming NoCollisionl(i), we have by direct calculation

E
[
(gl,i − fiξi)2

]
< F res

2 (k′)
2l

n
.

This repeats the arguments of Alon, Matias and Szegedy [1]. By Markov’s in-
equality,

Pr

{
(gl,i − fiξi)2 < tF res

2 (k′)
2l

n

}
≥ 1− 1

t

or, equivalently,

|gl,i − fiξi| <
(

tF res
2 (k′)2l

n

)1/2

with prob. 1− 1
t

.



The expression 2l

n is largest for l = lmax. Therefore, letting lmax = dlog n
4k′te

ensures that
(

tF res
2 (k)2l

n

)1/2

≤
(

F res
2 (k′)
4k′

)1/2

. Therefore, with this choice of lmax,
we have

|gl,i − fiξi| <
(

F res
2 (k′)
4k′

)1/2

with prob. 1− 1
t

. (1)

Define F2,l to be the sum of the squares of the frequencies of the dyadic intervals
at level l. For i ∈ [1, n] and r ∈ [1, n

2l ], let vl,i,r = vi,r denote the indicator variable
that is 1 if i is mapped to the dyadic interval [r2l + 1, (r + 1)2l]. Therefore,

F2,l =
( n/2l−1∑

r=0

n∑
i=1

fivi,rξi

)2

.

By direct calculation, E
[
F2,l

]
= F2 and Var

[
F2,l

]
≤ 5F2. Repeating the argument

of Countsketch algorithm [2], with height 32k′ and width w at each level,

|ĝl,i − gl,i| ≤
(

F res
2 (32k′)

4k′

)1/2

with prob. 1− 2−Ω(w) .

Combining with (1), we have,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝi,l − fiξi| ≤

(
F res

2 (k′)
k′

)1/2
)}

≥ 1− lmax

(
2−Ω(w) +

1
t

)
.

Choosing lmax = blog φn
32 log(φn)c, t = 8lmax and w = O(log log lmax), the error

probability in the above expression is 2
8 . Since, the probability of NoCollision(i, lmax)

is 7
8 , combining, we obtain the lemma. ut

Theorem 1 summarizes the space, accuracy and time properties.
Theorem 1. The algorithm Countsketch Dyadic with height ck′ = 32d 1

φe,
width w = O(log log(φn)), maximum dyadic level lmax = blog φn

32 log(φn)c and
number of permutations s = O(log 1

φδ ) solves the problem ApproxFreq2(ε, φ)
with probability 1− δ with the following characteristics.

Space O

(
1
φ

(
log φn

log(φn)

)(
log 1

φδ

)
(log log(nφ))(log F1)

)
Update Time O

((
log φn

log(φn)

)
(log log n)(log 1

φδ ))
)

Retrieval Time O
(

log(φn)
φ (log log(nφ))(log 1

φδ )))
)

.

ut
The proposed algorithm improves the space requirement for solving the ApproxFreq2(ε, φ)
problem as compared to the variational deltoids algorithm [4] by reducing the
dominant term in the space complexity expression from O( 1

φ2 ) to O( 1
φ ).



4 Algorithm Countsketch Linear

An improvement of the variational deltoids algorithm of [4] for the problem
ApproxFreq2(ε, φ) that reduces the dominant term in the space complexity
expression from O( 1

φ2 ) to O( 1
φ ) can be designed although it appears to have

higher constant factors than the Countsketch Dyadic algorithm discussed
above. We briefly present the design and analysis of such an algorithm which we
term as Countsketch Linear.

The data structure consists of s tables T1, . . . , Ts1 , each consisting of ck′

buckets, where, k′ = d 1
φe, where, c = 8 and s1 = O(log k′ log(1/δ)

δ ). Each bucket
Tj [r] has an array of sketches U [v][k][s2][s3], where, v ∈ {0, 1} denotes a bit
value, k ∈ [1, log n] denotes a bit position, s2 = O(1) (to be fixed later) and
s3 = O(log log n). Corresponding to each table Tj , we keep s2 · s3 independent
families of AMS sketches denoted by ξx,j,u,w, where, x ∈ [1, n], j ∈ [1, s1], u ∈
[1, s2] and w ∈ [1, s3]. Each stream update of the form (pos, x,∆) is processed
as follows. Let x = xlog nxlog n−1 . . . x2x1 denote the binary representation of x.

Tj [hj(x)].U [xk][k][u][w] = ∆ · ξx,j,u,w,

j ∈ [1, s1], k ∈ [1, log n], u ∈ [1, s2], v ∈ [1, s3] .

The time taken to process each stream update is therefore O(s1s2s3 log n) =
O((log log(1/δ)

φδ )(log n)(log log n)). A set of candidate frequent items is obtained
by calling procedure Retrieve(j, r), for j ∈ [1, s1] and r ∈ [1, h] as presented in
Figure 1. A second verification step is then performed wherein the frequency
of each candidate frequent item x is estimated as f̂x by treating the structure
as a standard Countsketch structure. The pair (x, f̂x) is returned provided
|f̂x| ≥ ((ε − φ

2 )F̂2)1/2. An estimate F̂2 such that |F̂2 − F2| ≤ F2
4 is obtained

using the Fast-AMS algorithm [12] using O(log 1
δ ) hash tables, each having

O(1) buckets.

Analysis of Countsketch Linear

Lemma 2. Suppose s2 ≥ 40ε
ε−φ/2 , h = ck′ ≥ 8d 1

φe. If |fx| > (εF res
2 (k′))1/2, then,

for any fixed j ∈ [1, s1], the probability that procedure Retrieve(j, hj(x)) returns
x is at least 5

8 .

Proof. Fix a table index j and let X(v, k, w) = Xj(v, k, w) = avgs2
u=1(Tj [hj(x)].U [v][k][u][w])2.

Let

Gj,k(x) =
∑

{f2
y | hj(y) = hj(x) and yk = xk} and

Hj,k(x) =
∑

{f2
y | hj(y) = hj(x) and yk = x̄k} .



procedure Retrieve(j, r)
Retrieves a potential candidate frequent item from Tj [r]
x := 0;
for k := 1 to log n

c0 := 0; c1 := 0;
for w =1 to s3 do

Ū [0][k][w] := avgs2
u=1(Tj [r].U [0][k][u][w])2;

Ū [1][k][w] := avgs2
u=1(Tj [r].U [1][k][u][w])2;

if (Ū [0][k][w] > Ū [1][k][w]) c0 := c0 + 1;

else if (Ū [1][k][w] > Ū [0][k][w]) c1 := c1 + 1;

endfor

if (c1 > s3/2) x := x + 2k elseif (c0 < s3/2) return nil ;
endfor
return x;

Fig. 1. Finding frequent items: Algorithm Countsketch Linear

By arguments of [1],

E
[
X(xk, k, w)−X(x̄k, k, w

]
= Gj,k(x)−Hj,k(x),

Var
[
X(xk, k, w)−X(x̄k, k, w)

]
≤ 5

s2
(Gj,k(x) + Hj,k(x))2

By Chebychev’s inequality,

Pr {X(xk, k, w)−X(x̄k, k, w) ≤ 0} ≤
Var
[
X(xk, k, w)−X(x̄k, k, w)

]
(E
[
X(xk, k, w)−X(x̄k, k, w)

]
)2

≤ 5
s2

· Gj,k(x) + Hj,k(x)
Gj,k(x)−Hj,k(x)

(2)

Define the event NoCollisionj(x) as: none of the top-k′ items map to the same
bucket as x in table Tj (except perhaps x itself). Therefore,

Pr {NoCollisionj(x)} ≥ 1− k′

ck′
= 1− 1/c .

We have Gj,k(x) ≥ f2
x ≥ εF res

2 (k′). Assuming NoCollisionj(x),

E
[
Hj,k(x) | NoCollisionj(x)

]
≤ F res

2 (k′)
ck′

and therefore by Markov’s inequality,

Pr

{
Hj,k(x) ≤ 8F res

2 (k′)
ck′

∣∣NoCollisionj(x)
}
≥ 7

8
.



Let k′ = d 1
φe and c = 16. Then, 8F res

2 (k′)
ck′ ≤ φF res

2 (k′)
2 . Substituting in (2) and

assuming NoCollisionj(x),

Pr {X(xk, k, w)−X(x̄k, k, w) ≤ 0} ≤ 5ε

s2(ε− φ/2)
≤ 1

8
, if s2 ≥

40ε

ε− φ/2
. (3)

Note that the probability in (3) depends on (a) NoCollisionj(x), which holds
for all k if it holds for any one, and, (b) is derived for any Gj,k(x) and Hj,k(x)
satisfying Gj,k ≥ f2

x and Hj,k(x) ≤ F res
2 (k′)

k′ . Since, this is the worst case, the
property holds for all k, as stated below. Suppose s2 ≥ 40(ε+φ)

ε−φ . Then,

Pr {X(xk, k, w)−X(x̄k, k, w) > 0, ∀k ∈ [1, log n] | NoCollisionj(x)} ≥ 7
8

(4)

Let W (x, k) be the number of w’s in [1, s3] for which X(xk, k, w) > X(x̄k, k, w).
Then, E

[
W (x, k) | NoCollisionj(x)

]
≥ 7s3

8 and by Chernoff’s bounds,

Pr
{

W (x, k) <
s3

2
| NoCollisionj(x)

}
< e−9s3/56 <

1
8 log n

, if s3 ≥
56
9

ln(8 log n) .

Combining using union bounds,

Pr {W (x, k) ≥ 0.5s3,∀k ∈ [1, log n]} ≥ 1− log n

8 log n
=

7
8

. (5)

Combining the error probability using union bound, namely, 1
8 for NoCollision(x),

the total error probability is at most 2
8 . Therefore, the probability that x is re-

trieved as a frequent item by procedure Retrieve(j, r) is at least 6
8 . ut

Note that for φ < ε, 1 ≤ ε
ε−φ/2 ≤ 2. We therefore have the following theorem.

Theorem 2. Suppose |F̂2−F2| ≤ F2
4 with probability 1−δ/2, s1 = O(log log(1/φδ)

φδ ),
s2 = O(1), s3 = O(log log n) and the height of the hash tables is ck′ = O(d 1

φe).
Then the algorithm Countsketch Linear can be used to solve the ApproxFreq2(ε, φ)
problem with probability 1− δ. The characteristics are

Space O
(

1
φ · (log n)(log log n)

(
log log(1/φδ)

φδ

)
(log F1)

)
Update Time O

(
(log n)(log log n) log log(1/φδ)

φδ

)
Retrieval Time O

(
Space
log F1

)
. ut

A comparison of Theorems 1 and 2 shows that the properties of Countsketch
Linear and Countsketch Dyadic are similar although Countsketch Linear
has slightly worse constants. Both algorithms improve over the space require-
ment of O( 1

φ2 · poly-log) of the variational deltoids algorithm of [4].



5 Algorithm Count-Min Dyadic

In this section, we present an extension of the Count-Min algorithm for finding
F1-based frequent items for general streams by using the dyadic intervals tech-
nique. We use s random permutations π1, . . . , πs. Corresponding to πj , we keep
a dyadic intervals based data structure for levels 0 through lmax as described
in Section 2.2. Corresponding to each permutation πj and each dyadic level, we
keep a Count-Min sketch structure of height k′ and width w, where, h and
w are parameters that will be fixed later. Corresponding to a stream update
(pos, x,∆), the update (pos, πj(x),∆) is propagated to the jth dyadic intervals
structure. Finally, during inference of frequent items, we use the jth dyadic based
structure using the algorithm described in Section 2.2, to retrieve a set of can-
didate items Sj , then apply the inverse permutation π−1 to each candidate item
to obtain π−1(Sj). This step is done for each j = 1, 2, . . . , s. Finally, we return
those items x that occur in at least two-thirds (or a majority) of the π−1(Sj)’s
and return the median estimate of its estimated frequency.

Analysis. Fix a permutation index j and abbreviate π = πj . We will use the
notation in the statement of Theorem 3. Let k = d 1

ε e. Here top-k frequencies
are determined in terms of the absolute value of fj ’s. For a dyadic interval I at
level l, define the random variable

gI =
∑

π(x)∈I

fx .

Let gl(i) denote the frequency of the node I at level l to which the item i maps.

Lemma 3. Let t = 8dlog(φn)e, lmax = blog φn
4t c and w = log log lmax. Then,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝl(i)− fi| ≤

φF1

2

)}
≥ 5

8
.

Proof. Let gl(i) denote the frequency of the dyadic interval I at level l to which
the item i maps. Assume NoCollisionl(i) holds. Then, E

[
|gl(i) − fi|

]
≤ F1(k)2l

n .
By Markov’s inequality,

Pr

{
|gl(i)− fi| ≤

tF1(k)2l

n

}
≤ 1

t
.

Define Fl,1 as the sum of the absolute values of the frequencies of the family of
dyadic intervals at level l. Then, Fl,1 ≤ F1. If k′ ≥ 8d 1

φe, by Count-Min struc-

ture guarantees, |ĝl(i)−gl(i)| ≤ φFl,1
4 ≤ φF1

4 , with probability 1−2−Ω(w), for each
l. By triangle inequality, and using union bound to add the error probabilities,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝl(i)− fi| ≤

φF1

4
+

tF12l

n

)}
≥ 1− lmax

(
2−Ω(w) +

1
t

)
.



Substituting t = 8dlog(φn)e, lmax = blog φn
4t c and w = log log lmax, we have

lmax
t ≤ 1

8 and t2l

n ≤ t2lmax

n ≤ φ
4 . ut

The property of the algorithm is summarized in the following theorem.

Theorem 3. The algorithm Count-Min Dyadic with height k′ = 8d 1
φe, width

w = O(log log(φn)), maximum dyadic level lmax = blog φn
32 log(φn)c and number

of permutations s = O(log 1
φδ ) solves the problem ApproxFreq(ε, φ) with prob-

ability 1− δ with the following characteristics.

Space O

(
1
φ

(
log φn

log(φn)

)(
log 1

φδ

)
(log log(nφ))(log F1)

)
Update Time O

((
log φn

log(φn)

)
(log log n)(log 1

φδ ))
)

Retrieval Time O
(

log(φn)
φ (log log(nφ))(log 1

φδ )))
)

.

ut

6 Experimental Comparison

In this section, we present an experimental comparison of our algorithms with
the relevant algorithms in the literature. For the problem of finding F1-based fre-
quent items, we compare our Count-Min Dyadic algorithm with the reversible
hash method of [11] and the absolute deltoids based group testing technique of
[4]. For the problem of finding F2-based frequent items, we compare our algo-
rithms Countsketch Dyadic and Countsketch Linear with the variational
deltoids group testing technique of [4].

Experimental testbed. Our experiments were run on Intel Pentium dual core
2.80 Ghz processor with 2Gb of main memory running Fedore Core version 6.
We tested the algorithms against zipfian distributions. The algorithms under
comparison were given the same space (in number of bytes) and run against
the same input data. In fact, since our hash function code works for table sizes
in powers of 2, we give additional advantage by rounding up the space to the
nearest power of 2, for algorithms in the literature that we are comparing with.

The zipdiff(z1, z2) distribution. The input data was generated to simulate
general streams, with positive and negative frequencies, as follows. Two random
frequency vectors distributed as per normalized zipfian distribution zipf with
parameters z1 and z2 are generated and their difference is taken. Varying z1 and
z2 gives us the various test data. Such distributions are denoted as zipfdiff(z1, z2).
Such distributions typically have a set of relatively high positive values as the top
frequencies of zipf(z1) and a set of relatively high (in absolute value) negative
values distributed as the top frequencies of zipf(z2). The item frequencies are



chosen in a manner that the top frequencies in terms of absolute value of either
distributions do not conflict 2.

We compare the algorithms on the standard measures of precision and recall.
Recall is the percentage of the frequent items that are detected as frequent by
the algorithm; thus 1− recall is the fraction of false negatives. Precision is the
fraction of frequent items among the set of frequent items; thus 1− precision is
the fraction of false positives.

The reversible hash algorithm [11] performs well only for a limited range
of the input when there are very few frequent items in the data. Otherwise, we
found that the reversible hashing algorithm generates a very large number of false
positive frequent items to the tune of about two to three orders of magnitude
(or more) larger than the actual number of frequent items and then attempts to
eliminate them in a verification phase. In summary, for the range of tests that
we performed and report below, the time required to find frequent items by the
reversible hashing method was found to be higher than the other methods by at
least factors of 1000 to 10000 (order of ms versus order of minutes). We therefore
do not report specific experimental observations relating to the reversible hashing
method.

Experiment 1: Count-Min Dyadic vs. Absolute deltoids. Figure 2 presents
the experimental evaluation of the Count-Min Dyadic method and the ab-
solute deltoids method of [4]. We consider frequency distribution over items
with frequency distributed as the difference of zipfian distributions zipf(z) with
parameters z1 and z2 respectively. We report results for the following three
distributions. Distribution A: zipfdiff (0.1,0.9), distribution B: zipfdiff (0.4,0.5),
distirbution C: zipfdiff (0.3,0.7). The number of distinct items was fixed at 2.1
million items (221). The total space used by the algorithms is given in the tables.
For Count-Min dyadic, either 6 or 7 tables were used for each permutation,
the number of permutations was set to 1 (which was surprisingly sufficient), the
height of the tables was varied from 212 to 214 (in powers of 2) and the number
of levels was set to between 19 and 21 (lmax = 32− log(height)+1). The param-
eters of the absolute deltoids algorithm was set so that the total space used is
no less than the Dyadic algorithm–this translates to table height ranging from
211 to 213 (in powers of 2) and the number of tables being set to one more than
that for the instance of Count-Min Dyadic being compared with.

Results and Conclusions for Experiment 1. The precision of both algorithms
is close to 100% in the sense that the items reported as frequent are truly frequent
(almost always). We therefore do not report precision in the tables. The two al-
gorithms are distinguishable by their recall; the Count-Min dyadic method is
2 This can be done in multiple ways, namely, randomized, where, the ranking of the

items in terms of each of zipf(z1) and zipf(z2) is randomized, leading to very low
probability of conflict of the few top-k items in each distribution. We perform this in
a deterministic manner, where the the ranking of the items in terms of frequencies for
the first distribution zipf(z1) is the standard order 1, 2, . . . , n whereas, the ranking
of the items for the second distribution is s, s + 1, . . . , n, 1, 2 . . . , s− 1, where, s is a
shift parameter much larger than k.



consistently superior to the absolute deltoids algorithm. The results are pre-
sented in Figure 2.

Experiment 2. In this experiment, we evaluate the Countsketch Dyadic,
Countsketch Linear and the variational deltoids algorithm. We consider data
whose frequency is distributed as zipfian difference zipfdiff(z, z), for parameters
z = 0.3, 0.4 and 0.5. The number of distinct items was fixed at 4 million items.
The total space used by the algorithms is given in Figure 3 and varies between
2.5— 10% of the space required to actually store the data. In comparison, in
experiment 1, it was varied between 10 — 40% of the size of the data. Thus, the
experiments in this category use significantly less space (percentage wise) than
the first experiment and significantly stresses the retrieval capabilities of the
algorithms. The parameter choices are as follows. For Countsketch Dyadic,
the settings are the same as those of Count-Min Dyadic wherever possible.
That is, the number of random permutations used is 1, the number of levels is
kept between 19 and 21 and the number of tables is kept between 5 and 7. Recall
that for the Countsketch Linear algorithm, s2 is the number of sketches in
each group whose average (of the squares) is taken, and s3 is the number of such
groups; for each bit value 0 or 1, for each bit position 1 through log n and each
bucket of each table. In our experimentation, s2 is set to 1 and s3 to 5. These
settings are significantly smaller than the theoretical bounds. For the variational
deltoids algorithm, the number of tables were kept between 5 and 7. Since the
space provided to the algorithms is the same, the main parameter that varies is
the height of each of the tables, subject to the above settings.

Results of Experiment 2. The results of the experiments are summarized in
Figure 3. Corresponding to each of the three algorithms tested, the precision
and recall are shown in the same column (except when recall is 0). The nature
of the results are both surprising and conclusive. It appears that Countsketch
Dyadic is significantly superior in terms of both precision and recall to the
Countsketch Linear algorithm, whereas the performance of the variational
deltoids algorithm is quite poor. The recall is not 100%, given that the space
provided to the algorithms is very small. Further, as expected, both precision
and recall improve with increased space. It is an unexpected observation that
Countsketch Dyadic is substantially superior to the other two algorithms.

7 Conclusions

We present novel and practical space and time-efficient algorithms for finding
frequent items, absolute range sums and absolute quantiles over general streams.
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Distribution Space Threshold Actual No Recall Recall
(in size of) αF1 of frequent Absolute Deltoids Count-Min
(doubles) α items [4] Dyadic

210540 2−9 11 9 10
zipfdiff 2−10 20 14 16

(0.1, 0.9) 2−11 40 19 24
409600 2−9 11 10 11

2−10 20 17 17
2−11 40 24 29
2−12 86 37 52

778240 2−9 11 11 11
2−10 20 18 20
2−11 40 29 32
2−12 86 49 61
2−13 179 73 100

210540 2−9 0 0 0
zipfdiff 2−10 0 0 0

(0.4, 0.5) 2−11 0 0 0
409600 2−9 0 0 0

2−10 0 0 0
2−11 0 0 0
2−12 3 1 1

778240 2−9 0 0 0
2−10 0 0 0
2−11 0 0 0
2−12 3 1 2
2−13 8 6 11

210540 2−9 3 2 3
zipfdiff 2−10 7 4 4

(0.3, 0.7) 2−11 13 5 8
409600 2−9 3 3 3

2−10 7 4 4
2−11 13 8 9
2−12 26 11 16

778240 2−9 3 3 3
2−10 7 5 4
2−11 13 10 11
2−12 26 16 18
2−13 72 22 26

Fig. 2. F1-based frequent items: Comparing absolute deltoids method [4] with
Count-Min Dyadicmethod. Number of items = 221.



Distri- Space Threshold Actual No Recall, Recall, Recall,
bution Precision Precision Precision

(in size of) (αF2)
1/2 of frequent Variational Countsketch Countsketch

(doubles) α items Deltoids [4] Dyadic Linear

307240 2−9 2 0 0, 0 1,0
zipf 2−10 8 0 3, 3 2,1
diff(0.3, 0.3) 2−11 24 0 4, 4 3,1

2−12 76 0 10, 8 3,1
2−13 232 0 26, 19 3,1

573440 2−9 2 0 0, 0 0
2−10 8 0 4, 4 0
2−11 24 0 7, 7 0
2−12 76 0 18, 18 1,0
2−13 232 0 38, 37 1,0

1064960 2−9 2 0 0, 0 1,1
2−10 8 0 4, 4 1,1
2−11 24 0 10, 10 3,2
2−12 76 0 26, 26 3,2
2−13 232 0 54, 53 3,2

307240 2−9 17 0 8, 8 5,5
2−10 42 0 19, 19 7,7

zipf 2−11 99 0 39, 39 8,8
diff(0.4, 0.4) 2−12 232 0 60, 59 10,9

2−13 540 0 115, 96 10,9
573440 2−9 17 2,2 11, 11 6, 6

2−10 42 3,3 24, 24 6, 6
2−11 99 0 44, 44 6, 6
2−12 232 0 91, 91 7,7
2−13 540 0 154, 149 7,7

1064960 2−9 17 6 12, 12 16, 14
2−10 42 8 28, 28 21, 19
2−11 99 2 56, 56 21, 20
2−12 232 0 109, 109 22, 22
2−13 540 0 184, 184 24, 24

307240 2−9 42 10, 10 27, 27 8, 7
2−10 84 4, 4 50, 50 9, 8

zipf 2−11 167 0 77, 77 9, 9
diff(0.5, 0.5) 2−12 334 0 125, 122 9, 9

2−13 644 0 210, 183 10, 10
573440 2−9 42 14, 14 29, 29 25, 22

2−10 84 16, 16 56, 56 29, 28
2−11 167 3 , 3 95, 95 30, 30
2−12 334 0 162, 162 31,31
2−13 644 0 256, 256 31, 31

1064960 2−9 42 16,16 37, 37 31, 28
2−10 84 26,26 66, 66 41, 39
2−11 167 20,20 119, 119 44, 42
2−12 334 7, 7 208, 208 47, 44
2−13 644 1, 1 359, 359 48, 46

Fig. 3. F2-based frequent items: Comparing Countsketch Dyadic, Countsketch
Linear and variational deltoids
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