
Deterministic K-Set Structure

Sumit Ganguly and Anirban Majumder
{sganguly,anirban}@cse.iitk.ac.in

IIT Kanpur, India

Abstract. A k-set structure over data streams is a bounded-space data structure

that supports stream insertion and deletion operations and returns the set of (item,

frequency) pairs in the stream, provided, the number of distinct items in the stream

does not exceed k; and returns nil otherwise. This is a fundamental problem with

applications in data streaming [24], data reconciliation in distributed systems [22]

and mobile computing [28], etc. In this paper, we study the problem of obtaining

deterministic algorithms for the k-set problem.

1 Introduction

Consider scenarios where entities with identity arrive and depart in a critical zone, for ex-
ample, persons with RF-tags, TCP connections to a given site, etc. The problem is to very
efficiently answer the following query:“ Are there at most k distinct entities (e.g., persons or
items or IP-addresses) in the critical zone, and if so, what are their identities?” Clearly, if
there is enough memory to track all the entities, then, an O(n) space solution is the most
obvious one. The problem can be effectively solved using a k-set data structure, which is a
data structure that (a) supports insertions and deletions of items in a stream or a multi-set,
and, (b) supports a Retrieve operation that returns all the distinct items and their number of
occurrences in the multi-set, provided, the number of distinct items is at most k; and returns
nil otherwise.

Applications of k-set structure arise in diverse areas, ranging from, practical applications
in data streams and distributed computing [22, 28] to puzzles in recreational mathematics
[5, 24]. In a distributed computing scenario, a host and a PDA may proceed asynchronously
with their computations due to low (or non-existent) communication bandwidth between
them. Later a reconciliation mechanism is needed to synchronize a specific collection of bits
between the two hosts. Set reconciliation [22, 28] can be used as a mechanism that minimizes
the communication of bits between the two hosts. We discuss the set reconciliation problem in
Section 2—here, we note that the k-set structure can be used to give a space-optimal solution
to the set and multi-set reconciliation problems. In a distributed computing environment,
the k-set structure can be used for reconciling changes to shared structures, such as files,
transaction logs, etc., with the minimum communication necessary.

1.1 Data Streaming Model

We use data streaming as the model for specifying the k-set structure. A data stream S is
viewed as a sequence of records of the form (i, v), where, i is the identity of the data item that
is assumed to belong to the domain D = {1, 2, . . . , N} and v is the change in the frequency
of i. For simplicity, we assume that v is integral, where, a positive value of v corresponds to v

insertions of i, and a negative value of v corresponds to v deletions of i. The frequency fi of
an item i is defined as the sum of the changes in the frequencies of i, that is, fi =

∑
(i,v)∈S v.

At any given time, the multi-set corresponding to the stream is defined as {(i, fi) | fi 6= 0}.
Let M denote an upper bound on the absolute value of the frequency of an item in the
stream, that is, M ≥ fi, for each i ∈ S.

Data streams that allow insertions and deletions of items but allow item frequencies to
be both positive and negative are referred to as general update streams. A special case of
the model arises when item frequencies in the data stream are always constrained to be
non-negative. Such streams are referred to as strict update streams. In [24], Muthukrishnan
refers to the two models as the turnstile model and the strict turnstile model, respectively.
Computations over non-negative update streams are studied in [3, 6, 8, 12, 17, 18]. The general
update streaming model has been used to detect changes in streams [7, 27].

1.2 K-set structure

We now formally two variants of the k-set structure, called strong and weak k-sets, respec-
tively.

Definition 1. A strong k-set structure over a data stream is a structure that supports the
following three operations, (a) procedure Update, for updating the data structure correspond-
ing to stream insertion and deletion operations, (b) procedure Count, that returns the number
n of items with non-zero frequencies, given that n ≤ k, (c) procedure Retrieve, that returns
the multi-set S of (i, fi) pairs in the stream with fi 6= 0, provided, n ≤ k, and, (d) (c) proce-
dure IsCard (Is Cardinality at most k?), that returns true if the number of distinct items
in the stream (multi-set) is at most k and returns false otherwise. A weak k-set supports
all the above procedures, except, procedure IsCard. ut

K-set structures are readily designed by using classical dictionary structures including
heaps, binary search trees, red-black trees, AVL trees, hash tables, etc., that store the entire
set S of items, and therefore, require Ω(|S|) = Ω(N) bits in the worst case. However, unlike
the generality of dictionary structures, a k-set structure only needs to return the set of items
provided this set is of size at most k. Therefore, there is a possibility of solving this problem
in significantly lower space; as reinforced by the following lower bound argument. There are(
N
k

)
(2M−1)k possible multi-sets of of size k over the domain {1, 2, . . . , N} such that |fi| ≤ M

and fi 6= 0. Each such multi-set must map to a distinct memory pattern of a deterministic
algorithm (otherwise, the algorithm makes an error in at least one of the inputs). Therefore,
a deterministic k-set structure requires Ω(log(

(
N
k

)
(2M)k)) = Ω(k(log N

k + log M)) bits of
space. We are interested in obtaining designs that use space that is close to this lower bound.

1.3 Previous work on Randomized k-set structures

A randomized strong k-set structure is a structure that uses random bits in the execution
of the procedures Update, Retrieve and IsCard. Further, the Retrieve operation returns all
the n distinct items in the set when n ≤ k with high probability, and the IsCard operation
returns true or false correctly, with high probability. A randomized version of a weak
k-set structure can be specified similarly.

Several constructions of randomized k-set structures are known. The Countsketch al-
gorithm [4], extended by [7] to handle deletion operations, can be used to obtain a random-
ized strong k-set structure. This structure uses space O(k(log k

δ)(log M +log N)2 log(log M +
log N) log M) bits. An alternative strong k-set structure can be constructed using the Majority-
based data structure [8] and the Count-Min sketch algorithm [6, 24]. Such a construction
uses space O(k log k

δ (log M + log N) log M) bits. The randomized k-set structure [10] uses
O(k(log M + log N) log k

δ) bits and is currently the most efficient randomized k-set struc-
ture. The above three techniques are applicable to the general update streaming model (i.e.,
fi Q 0). Muthukrishnan [24] (Theorem 15) describes a deterministic algorithm from [11] with

space complexity O(k2 log2 N log M log2 k) for identifying all top-k items (i.e., fi >
P

j fj

k+1),
assuming that there are at most k items in the stream. Given that there are at most k

items in the stream, a weak k-set structure can be used to retrieve all the items and their
frequencies.

1.4 Contributions

We study the problem of designing k-set structures and present deterministic k-set struc-
tures for the variants of the problem. Our results are the following. For the strict up-
date streaming model, we present a near-optimal space construction for strong k-sets using
O(k(log M + log N)2) bits. The time complexity of procedures Retrieve, IsCard and Count
are O(k4(log M + log N)2), O(k3) and O(k3) respectively. For the general update model, we
present a weak k-set construction that uses O(k(log N + log M + log s)) bits to implement
procedure Count and O(k2(log M + log N)) bits to implement procedure Retrieve, where, s

is the sum of the absolute values of the updates to the stream, that is, s =
∑

(i,v)∈ stream |v|.
Alternatively, procedure Count can also be implemented using O(k2 log N + k log M) bits.
We show that procedure IsCard requires Ω(N) bits in the general update streaming model.

1.5 Organization

The remainder of the paper is organized as follows. We discuss related problems in Section 2.
Section 3 presents space lower bounds for strong k-sets. We present our k-set structure in
Section 4 and discuss an implementation using finite fields. In Section 5, we discuss an im-
plementation using real arithmetic with finite precision. Section 6 presents our experimental
results. Finally, we conclude in Section 7.

2 Related Problems

The k-set problem has been posed and used earlier in different forms and in different ap-
plications. We present two such examples, one from mobile communications (PDA synchro-
nization) [22, 28] and another from recreational mathematics [24].

2.1 Set Reconciliation Problem

Set reconciliation [22, 28] is motivated by distributed systems where multiple hosts com-
pute asynchronously in the face of unavailable and/or low-bandwidth network connectivity
by temporarily sacrificing consistency. These problems arise in mobile computing [28], dis-
tributed databases and distributed file systems [26, 9], etc.. Such systems typically require
some mechanism for repairing whatever inconsistencies are introduced and set reconciliation
is one of the mechanisms proposed for this problem. The problem is formalized as follows:
given a pair of hosts A and B, each with a set of items SA and SB respectively from the
domain D = {1, 2, . . . , N − 1}, what is the minimal amount of communication (in terms
of numbers of bits exchanged and the numbers of rounds of messages) such that both A

and B are able to determine the union of their sets. The problem is to design solutions
that require a communication complexity close to O(k log N), where, k is a known upper
bound on the size of the symmetric difference between the sets of the two hosts, that is,
k ≥ |SA − SB |+ |SB − SA|).

The set reconciliation problem can be easily solved using a weak k-set structure. The host
A inserts all its items with frequency 1 into the k-set structure and sends it to B. B deletes
all its items from the k-set, and invokes the Retrieve function of the k-set to retrieve the
identity of the items. Since, the space complexity of a k-set structure is O(k log N) (in this
case, M = 1), this gives an optimal communication complexity for the problem.

The work in [22] presents the following elegant technique to solve this problem. For sim-
plicity, assume that SB ⊂ SA. First, A and B locally construct their respective characteristic
polynomials.

fA(z) =
∏

u∈SA

(z − u) and fB(z) =
∏

u∈SB

(z − u)

Then,

fA(z)
fB(z)

=
fA−B(z)
fB−A(z)

(1)

Next, the polynomial fA is evaluated at k points (the authors [22] use the points a1 =
−1, a2 = −2, . . . , ak = −k), not belonging to the domain D to obtain a vector (or a transform)
FA = [fA(−1), . . . , fA(−k)]. The transform FA is then transmitted to B. In an analogous
way, B computes its characteristic polynomial and evaluates the polynomial at the same k

distinct points, a1, a2, . . . , ak. By equation (1) (recall that for simplicity, we have assumed
that B ⊂ A), we can calculate the transform FA−B as follows.

FA−B =
[
fA(a1)
fB(a1)

, · · · ,
fA(ak)
fB(ak)

]

Since, |A−B| is given to be of size at most k, the polynomial fA−B(z) is of degree at most k.
The problem is now to invert the transform FA−B to obtain the polynomial fA−B , which can
be easily done using standard interpolation techniques. Since, fA−B(z) =

∏
u∈SA−SB

(z−u),
the factors of fA−B give the items in A−B. A single pass over the domain (field) is sufficient
to retrieve all the factors. For a more efficient algorithm for this problem, see Section 4.2.

The authors [22] note that it is sufficient to perform the polynomial computations over a
finite field of size q ≥ N (for simplicity, assume that N is a power of 2 and the finite field
used is GF (N) of characteristic 2). Therefore, each member of the transform FA, namely,
fA(uj), requires log N bits to be represented exactly. The total number of bits transmitted
is the size of FA, which is bounded by k log N bits.

2.2 Multi-Set Reconciliation Problem

From the discussion above, it might appear that a k-set structure can be designed based
on the solution to the set reconciliation problem presented in [22]. However, the polynomial
interpolation technique presented above does not present an efficient solution to the following
multi-set reconciliation problem. In the multi-set reconciliation problem, there are two hosts
A and B, each having two multi-sets TA and TB , where, the items are from the domain
{0, 1, . . . , N−1} and the frequency of any item is at most M and is non-negative. The problem
is to use the minimum number of communication bits and/or rounds of communication so
that each host knows the other’s multi-set.

We first show that the above problem is easily solved using a k-set structure. Suppose
that we have an upper bound k on the number of distinct items that do not have the same
frequencies in the two multi-sets. Host A inserts its multi-set (i.e., (item, frequency) pairs)
into a weak k-set and then transmits the k-set to B. B deletes its multi-set from the k-set
and then retrieves the items and their frequencies by invoking procedure Retrieve. Items with

positive (resp. negative frequencies) have a higher frequency in the multi-set for B (resp. A)
than in A (resp. B). This approach requires O(k(log M +log N)) bits of communication from
A to B.

The characteristic polynomial interpolation method can be adapted to solve the multi-set
reconciliation problem as follows. Let fi and gi denote the frequency of item i (number of
occurrences) in MA and MB , respectively. Then, the characteristic polynomials corresponding
to the multi-sets MA and MB are as follows.

hA(z) =
∏

i∈MA

(z − i)fi , hB(z) =
∏

j∈MB

(z − j)gj

Therefore,

hA(z)
hB(z)

=

∏
i:fi>gi

(z − i)fi−gi

∏
j:gj>fj

(z − j)gj−fj

For simplicity, assume that MB = φ and there are at most k distinct items in MA. The
corresponding polynomial hA(z) = hA(z)

hB(z) can have degree kM . In general, in order to find
the coefficients of a degree m polynomial, it is necessary to maintain its value at m distinct
points. The transform (or interpolation)-based procedure therefore has a space complexity
of O(kM log N) bits.

2.3 Missing Numbers Puzzle

Muthukrishnan [24] presents the “Missing numbers puzzle” as a simple abstraction of a
problem over data streams. In the missing numbers puzzle, there are two parties, namely,
Paul and Carole. Paul sends an arbitrary permutation of numbers from 1 to N , except at
most k of these numbers, to Carole. Carole is unaware of the permutation used by Paul. The
problem for Carole is to find the missing numbers. Clearly, if Carole has N bits of memory,
then she can trivially solve the problem by using it to remember all the numbers presented
to her. Therefore, the problem for Carole really is to find the missing numbers using as few
bits as possible. As pointed out by [24], this problem is an abstraction of problems in data
streaming.

[24] presents simple solutions for the case when there are one or two numbers are missing.
A weak k-set structure easily solves the missing numbers problem, when there are at most
k items that are missing. Initially, Carole inserts all numbers 1 to N into a k-set, each
with frequency 1. Next, for every number i that is supplied by Paul, Carole decrements the
frequency of i by 1, effectively, deleting i from the current set. The remaining set of items is
exactly the set of missing numbers.

3 Lower Bounds

In this section, we discuss space lower bounds for k-set structure. As outlined in the intro-
duction, a space lower bound of Ω(k(log N + log M − log k)) can be easily shown for the
k-set structure. The argument is effective both for the streaming model where items have
non-negative item frequencies, and for the model where item frequencies can be both positive
or negative. We now consider space lower bounds for procedure IsCard, namely, the problem
of testing deterministically whether there are k or less distinct items in the stream.

Lemma 1. Consider a streaming model where item frequencies can be both positive or neg-
ative. Then, for any 1 ≤ k ≤ N

4 , a deterministic algorithm for testing whether the number of
distinct items in the stream is at most k requires Ω(N) bits.

Proof. Let S be a family of sets of size N
2 such that the distance between any pair of sets

in the family is at least N
4 . Using simple counting techniques, it is easy to show that there

exists such families with size 2Ω(N).
Let S and T be two such sets from the family. Construct two streams from S and T

respectively where the item frequency is 1 for each element in the corresponding set. Consider
the memory patterns of a k-set structure after processing the streams independently. We
claim that the two memory patterns must be different for the following reason. Consider a
sequence of deletions of N

2 − k items from S that leaves S with k items. Since, S and T have
at most N

4 items in common, the same sequence of deletions applied to T leaves T with at
least N

2 −k distinct items (in which at least N
4 −k have negative frequencies). It follows that

the space required by the k-set structure is at least Ω(log|S|) = Ω(N). ut

Lemma 1 justifies the terminology of weak and strong k-sets.

4 K-set structure

In this section, we present our design of a k-set structure. We keep s = 2k + 2 counters,
denoted by l0, l1, . . ., l2k+1 that track the following quantities.

lr =
∑

xi∈ stream

fix
r
i , r = 0, 1, . . . , 2k + 1 (2)

The counters can be easily updated in the face of insertions and deletions occurring in the
stream. For every update (xi, v) occurring in the stream, we update the rth counter as follows:

lr := lr + v · xr
i , for r = 0, 1, . . . , 2k + 1 .

We use the following notation in this section. Given n distinct items x1, x2, . . . , xn, each of
which lies in the interval 1 ≤ xi ≤ N , we let X = X(n) denote the n × n diagonal matrix

that has xi in its ith diagonal entry and zeros elsewhere. Given a set of n frequency values,
f1, f2, . . . , fn, we let F denote the diagonal matrix whose ith diagonal entry is fi and is zero
elsewhere. Let f be the column vector [f1, f2, . . . , fn]T . That is,

X =




x1

x2

. . .

xn




F =




f1

f2

. . .

fn




and f =




f1

f2

...
fn




.

For 1 ≤ n ≤ k and 0 ≤ r ≤ 2k − n, let V (r, n) denote the n× n matrix shown below. For a
given set of values x1, x2, . . . , xn, for brevity, we refer to V (0, n) as V , as follows.

V (r, n) =




xr
1 xr

2 · · · xr
n

xr+1
1 xr+1

2 · · · xr+1
n

...
...

xr+n−1
1 xr+n−1

2 · · · xr+n−1
n




V =




1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

xn−1
1 xn−1

2 · · · xn−1
n




The following identity is a direct consequence of the definition.

V (r, n) = V Xr (3)

Let w(s, r), Br and Cr denote the following r × 1 column matrix and r × r square matrices
respectively.

w(s, r) =




ls

ls+1

. . .

lr+s−1


 Br =




l0 l1 . . . lr−1

l1 l2 . . . lr
...

...
...

...
lr−1 lr . . . l2r−2




, and Cr =




l1 l2 . . . lr

l2 l3 . . . lr+1

...
...

...
...

lr lr+1 . . . l2r−1




. (4)

4.1 Basic Properties

The main property of this structure is summarized in Lemmas 2 and 3. Lemmas 2 holds for
streaming models in which item frequencies could be both positive and negative.

Lemma 2. Suppose that there are n ≤ k distinct items in the stream. Then, (a) rank(Bk+1) =
n, (b) the items x1, x2, . . . , xn are the eigenvalues of the matrix B−1

n Cn and, (c) the frequency
vector is given by f = V −1w(0, n).

Proof. Suppose there are n ≤ k distinct items x1, x2, . . . , xn in the stream, where, each
xi ∈ {0, 1, 2, . . . , N − 1}, for i = 1, 2, . . . , n. Let V (r) = V (r, n) and w(r) = w(r, n), for
r = 0, 1, 2, . . . , 2k + 1− n. Thus, equation (2) can be rewritten as follows.

V (r)f = V Xrf = w(r), r = 0, . . . , 2k + 1− n .

Since, the xi’s are non-zero and distinct, V (r) = V Xr is invertible for each value of 0 ≤ r ≤
2k + 1− n. Therefore,

V XV −1w(r) = V Xr+1((V Xr)−1w(r)) = V Xr+1f = w(r + 1), 0 ≤ r ≤ 2k + 1 .

Let A denote the matrix V XV −1. The above set of equations can be expressed as

ABn = Cn (5)

Since A is in the eigen-decomposition form, X is the diagonal eigenvalue matrix of A. In
other words, the distinct items x1, . . . , xn are the eigenvalues of the matrix A′. Further,

Bn = [w(0) w(1) . . . w(n− 1)] = [V f, V Xf, V X2f, . . . , V Xn−1f],

= V [f, Xf, X2f, . . . , Xn−1f] = V FV T (6)

Since, V is invertible and none of the fi’s are 0, Bn is invertible, and therefore has rank n.
Since Bn is the left n×n sub-matrix of Bk+1, rank(Bk+1) ≥ rank(Bn) = n. Let U denote

the (k + 1) × n matrix V (0, k + 1) and let U(j) be the (k + 1) × n matrix V (j, k + 1), for
0 ≤ j ≤ k. Therefore, (2) can be equivalently written as: U(j)f = UXj = w(j, k + 1), for
j = 0, . . . , k. Thus,

Bk+1 = [w(0, k + 1), w(1, k + 1), . . . , w(k, k + 1)] = U [f,Xf, . . . ,Xkf] = UFUT .

Since, U and F each have rank n, it follows that rank(Bk+1) ≤ n. As shown earlier,
rank(Bk+1) ≥ n. Therefore, rank(Bk+1) = n. ut

Lemma 2 can be used to design procedures Retrieve and Count for strong and potent k-sets
respectively, provided it is known that the number of distinct elements in the stream is at
most k. Lemma 2(a) and Lemma 3 provides the basis for testing whether a stream has k

or less distinct items. Notably, however, Lemma 3 is applicable only for streams where item
frequencies are all non-negative (or, analogously, all non-positive).

Lemma 3. For strict update data streams (i.e., fi ≥ 0, for all i) there are n > k distinct
items in the stream with positive frequencies if and only if rank(Bk+1) = k + 1.

Proof. The if part is the statement of Lemma 2(a). Suppose there are n > k distinct items
with positive frequencies. Let G denote the diagonal matrix with Gi,i set to the positive
square root of fi. Therefore,

Bn = V FV T = V G2V T = (V G)(V G)T .

It follows that Bn is a positive definite matrix, and hence, all left most determinants of Bn are
positive. Since, n > k, in particular, det(Bk+1) > 0, and therefore, rank(Bk+1) = k + 1. ut

4.2 Implementing k-sets

In this section, we present a space efficient implementation of k-sets.
Lemma 2 holds for any finite field of characteristic at least 2M and having N distinct

values. The number 2M is chosen to account for positive frequencies 1, . . . , M and negative
frequencies, −M, . . . ,−1. Choose an appropriate prime number p larger than 2M and let d

be the smallest integer ≥ 1, such that pr > N . Let F be the field GF (pr+1). The elements of
F can be naturally represented using O(log M + log N) bits. The counters, l0, . . . , l2k+1 are
each maintained as elements over F ; the total space requirement is O(k(log M + log N) bits.

Suppose it is given that the number of items in the stream n ≤ k (i.e., weak k-set), then,
n can be found as rank(Bk+1). By Lemma 2, this property holds in general for data streams
where item frequencies are both positive or negative. The identities of the items with non-zero
frequencies can be found as the eigenvalues of A. Since, iteratively convergent methods cannot
be used over finite fields, computing the eigenvalues of A over finite fields in general requires
the computation of the roots of the characteristic polynomial F (z) = det(A− zI) = 0, which
is computationally expensive. For data streams where item frequencies can be both positive
and negative, the method of finding eigenvalues over R given in Section 5 can be applied. If
item frequencies cannot be negative, then the following algorithm (based on an application
of dyadic intervals) can be used for finding the roots of the characteristic polynomial.

Finding roots of the characteristic polynomial. We now assume that item frequencies cannot
assume negative values. Since there are n eigenvalues, the characteristic polynomial F (z) is
of the form F (z) = α

∏
a∈S(z − a), where, S is the set of items in the stream with non-zero

frequency and α is a constant. Let F be a field with characteristic larger than kM .
Instead of maintaining a single set of 2k + 2 counters, we maintain a collection of L =

dlog|F |e − blog kc + 1 sets of counters, where each set consists of 2k + 2 counters. The sth

counter set is denoted as {lsr}r=0,1,...,2k+1, for 0 ≤ s ≤ L − 1. For 0 ≤ s ≤ L − 1, define a
family of functions hs : {0, 1, . . . , 2d − 1} → {0, 1, . . . , 2d−l − 1} as follows.

h0(a) = a and hs(a) = a÷ 2s

where, a÷2s is the quotient when the integer a is divided by the integer 2s. It follows directly
that, for any s ≥ 0 and given value of c = hs(a), there are exactly two distinct values of b

such that b = hs−1(a′). Corresponding to each stream update of the form (x, v), we update
each of the s counter sets as follows.

lsr = lsr + (h(x))rv, 0 ≤ r ≤ 2k + 1, 0 ≤ s ≤ L− 1 .

Let f
(s)
a denote the frequency of item a at level s. Then, f

(s)
a =

∑
b:hs(b)=a fb. If a has positive

frequency fa > 0, then, f
(s)
hs(a) > 0 has positive frequency at level s, for 1 ≤ s ≤ L− 1 (vice-

versa may not be true). Let ns denote the number of distinct items with positive frequencies

at level s. Let A
(s)
ns , B

(s)
ns and C

(s)
ns respectively denote the corresponding matrices obtained

from the counters at level s, for s = 0, 1, . . . , L − 1. Let Fs(z) denote the characteristic
polynomial of A

(s)
n , that is, Fs(z) = det(A(s)

ns − zI). By construction, we have the following
property

F (a) = 0 only if Fs(hs(a)) = 0 .

For each value of s starting from L and counting down to 0, we obtain a set of items of size at
most 2k that are potentially roots of Fs(z). At level L, there are at most k distinct items that
are then checked to see if Fs(as) = 0 (or equivalently, if A

(s)
n − asI is singular). Therefore, at

each level, there cannot be more than k candidates that pass the above test. Each candidate
item a at level s corresponds to exactly 2 candidates at level s− 1; therefore, the number of
potential candidates at any level is no more than 2k. Proceeding in this manner, we obtain
the set of items with positive frequencies at level 0.

The data structure maintains (2k + 2) counters for at most log|F | levels. Therefore, its
space complexity is O(k(log N +log M)2) bits. Testing whether an item x is an eigenvalue can
be done by calculating the rank of A−xI, which can be done in time O(k3). Since there are at
most 2k candidate items at each level and there are log|F |− log k +1 = log M +log N − log k

levels, the time complexity of retrieval is O(k4(log M+log N)) field operations. We summarize
this discussion in the following lemma.

Lemma 4. A strong k-set structure can be designed for strict update data streams using
O(k(log M + log N)2) bits and operations over a finite field of size O(kM + N). The time
complexity for procedure Retrieve is O(k4(log M +log N)) field operations and the time com-
plexity for procedure IsCard is O(k3). For general update data streams, a weak k-set structure
can be designed with the space and time complexity mentioned above. ut

5 K-set structure using real arithmetic

Lemma 2 translates the problem of retrieving the elements to that of retrieving the eigen-
values of a certain matrix. Today, optimized procedures for computing eigenvalues of real
and complex matrices are widely available via packages such as LAPACK [1], MATLAB [21],
MATHEMATICA [2], etc.. This makes it interesting and relevant to analyze the space and
time complexity of the procedure for retrieving the elements. In particular, we analyze the
space complexity and the number of bits of precision needed to count the number of items
with non-zero frequency, and to retrieve the identity and frequency of those items without er-
ror. We introduce a new parameter, called s, that is an upper bound on the number of updates
to the streams, that is, s =

∑
(i,v)∈ stream |v|. The results in this section can be summarized

as follows. A strong k-set structure can be maintained using space O(k2 log N + k log M)
bits. Procedure Count can also be implemented using space O(k(log M + log N + log s))

bits. Except for procedure IsCard, the other procedures are applicable to the general update
streaming model (i.e., fi Q 0).

For r = 0, . . . , 2k + 1, the counter lr =
∑

i fix
r
i can have a value as large as MNr+1 and

can be maintained using (r+1)dlog Ne+dlog Me bits of storage. The space required to store
the counters l0, . . . , l2k+1 can be accounted as follows.

2k+1∑
r=0

(rdlog Ne+ dlog Me) = Θ(k2 log N + k log M) bits.

Notation. The norm ‖M‖ of a matrix M denotes the 2-norm of M and is defined as the
largest eigenvalue of MT M in absolute value. The condition number [13, 29] of a matrix M

is denoted as κ(M) = ‖M‖‖M−1‖.

5.1 Precision for computing rank using Gaussian elimination.

The procedure Count can be implemented by determining the rank of the matrix Bk+1. If
this is done using the standard method of Gaussian elimination, then, the word size must
be extended by the logarithm of the condition number of Bk+1 [13]. The condition number
of Bk+1 can be shown to be κ(Bk+1) = O(N4kMk222k). This implies that it is sufficient to
extend the word size by log κ(Bk+1) = O(k log N + log m) bits.

5.2 Precision for computing A

The second matrix computation involves calculating A = CnB−1
n , where, n ≤ k is the

number of items with non-zero frequencies in the stream. We use a simple variant of the
QR-decomposition followed by back-substitution to obtain Ã.

Consider the matrix computation A = CnB−1
n , where n ≤ k. For simplicity, we drop the

suffix n from the n× n matrices Cn and Bn. Note that A has the following form.

A = CB−1 =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
0 0 0 0 · · · 1
α1 α2 α3 α4 · · · αn




. (7)

where, the last row is denoted as the row vector αT = [α1, α2, . . . , αn]. Let cT
n denote the nth

row of the matrix C. Equivalently,
cT
nB−1 = αT

or that, αT B = cT
n . Taking transposes, we obtain the equivalent equation, BT α = cn. Since,

B is a symmetric invertible matrix, therefore, α is the unique solution to the equation

Bα = cn

where, cn is the nth column of C (since, C is symmetric). We now decompose B as B =
QR using the classical QR decomposition algorithm [13, 29]. In this decomposition, Q is an
orthonormal matrix and R is an upper triangular matrix satisfying ‖R‖ = ‖A‖. Therefore,
Bα = cn is equivalent to QRα = cn, or, equivalently, Rα = QT cn. Since, R is an upper
triangular matrix, α is obtained using back substitution. Due to limited precision, the matrix
R is calculated as R + ∆R. If floating point calculation is used up to s2 bits of precision,
then, ‖∆R‖ ≤ 2−Ω(s2)‖R‖. Therefore, the possible error ∆α in the calculation of α is given
by

‖∆α‖ ≤ κ(R)
‖∆R‖
‖R‖ ‖α + ∆α‖ ≤ 2−Ω(s2)κ(B)‖α + ∆α‖ (8)

It follows that the error term ‖∆α‖ is negligible compared to α if s2 is O(log(κ(B))).
By Lemma 2, we have B = V FV T . By Gershgorin circle theorem, ‖V ‖ = O(N2n+1) and

‖V T ‖ = O(N2n+1). Clearly, ‖F‖ ≤ M . Therefore, ‖B‖ = O(N2n+1M). Further, ‖V −1‖ ≤
O(Nn+1) and ‖(V −1)T ‖ = O(Nn+1) (see Appendix B). Therefore, κ(B) = O(N4n+2M).
Since n ≤ k, it follows that if s2 = O(k log N + log M), then, from equation (8), the error
term ∆α is negligible. Let ∆A denote the error matrix for A, then, by construction (see
equation (7))

∆A = en(∆α)T

where, en is the n× 1 unit column vector with 1 in row n and 0 elsewhere. Therefore,

‖∆A‖ ≤ ‖∆α‖ ≤ 2−Ω(s2)κ(B)‖α‖ . (9)

Since, ‖A‖F ≤ √
n‖A‖, it follows that,

‖A‖F = n− 1 + ‖a‖ ≤ √
n‖A‖, or that, ‖a‖ ≤ √

n‖A‖ .

Substituting in (9), we have,

‖∆A‖ ≤ 2−Ω(s2)
√

nκ(B)‖A‖

Therefore, A is computed to sufficient precision given the following condition.

if s2 = O(log n + log κ(B)) = O(k log N + log M)

then ‖∆A‖ ≤ N−Ω(k)M−Ω(1)‖A‖ .

We summarize the above discussions in the following lemma.

Lemma 5. There exists a weak k-set structure for the general update streaming model (i.e.,
fi Q 0) using real arithmetic with finite precision that uses O(k2 log N +k log M) bits of space
for maintaining the counters. The procedures Count and Retrieve can be implemented using
O(k log N + log M) bits of floating point precision. ut

5.3 Space optimization for strict update streams

In this section, we present a simple space reduction technique for procedures Count and
IsCard for strict update streams, that is, streams where item frequencies are non-negative.

Instead of working with the actual item identifiers, namely, xi, we use yi = x
1/N
i truncated

to s2 bits after the binary point, where, s2 is a parameter. Thus, we track the counters

l′r =
∑

x
r/N
i fi, for r = 0, . . . , 2k + 1.

Stream updates of the form (i, v) are processed as follows:

l′r:=l′r + x
r/N
i v, for r = 0, . . . , 2k + 1.

Let yi denote x
1/N
i and let A′, B′, C ′, V ′ etc., denote the matrices corresponding to A,

B, C, V etc., that use the counters l′r instead of lr and the values yj
i = x

j/N
i instead of xj

i ,
for 0 ≤ r, j ≤ 2k + 1. For example, the matrices V ′ and B′ are shown below; other matrices
are similarly constructed.

V ′ =




1 1 . . . 1
y1 y2 . . . yn

y2
1 y2

2 . . . y2
n

...
...

...
...

yn−1
1 yn−1

2

... yn−1
n




and B′
r =




l′0 l′1 . . . l′r−1

l′1 l′2 . . . l′r
l′2 l′3 . . . l′r+1

...
...

...
...

l′r−1 l′r . . . l′2r−2




.

The test for determining whether there are k or less distinct items is given by whether the
rank n of B′

k+1 is at most k and is analogous to the test of the rank of Bk+1 as proved in
Theorem 2.

Consider the computation of the rank of B′
k+1. Prior to the rank computation, we nor-

malize the counters l′r by dividing them by 2l0, provided, l0 > 0. If l0 = 0, then, there are
no items in the stream with positive frequency. Hence, we assume without loss of generality
that l0 > 0. Suppose that k + 1 ≤ N

2 log N .

l̃r =
l′r
2l0

=
1

2
∑

i fi

∑

i

x
r/N
i fi ≤ Nr/N

2
∑

i fi

∑

i

fi ≤ Nr/N

2
≤ 1

since, Nr/N ≤ N (2k+1)/N ≤ 2(2k+1) log N/N ≤ 2, by assumption that k + 1 ≤ N
2 log N . Further,

l̃r =
1

2
∑

i fi

∑

i

x
r/N
i fi ≥ 1

2
∑

i fi

∑

i

fi =
1
2

.

Thus, 1
2 ≤ l̃r ≤ 1. The family of the matrices obtained from B′ and C ′, using, l̃r in place of

l′r is denoted by B̃, C̃ respectively.

Clearly, with infinite precision, both techniques, namely, working with the matrices B, C

etc., and working with the matrices B′, C ′ etc. are equivalent. However, we show that by
using fixed point arithmetic using word size of O(log m + log N + log s) bits, the problem of
determining the rank of B′ can be solved exactly for data streams with at most s updates.

We use the QR-decomposition algorithm on the columns of B̃k+1 for computing its rank
[15] using standard fixed point arithmetic, that is, by truncating underflows to 0 and ignoring
overflows. Lemma 6 follows from the standard properties of the QR-decomposition procedure
and is presented in Appendix A.

Lemma 6. Suppose that the rank of B̃ is computed using fixed point arithmetic using word
size of s2 = 32(log N +log M +log s) bits before and after the binary point. Further, any value
that is smaller (in absolute value) than 1

2m2N16 is deemed to be 0. Then, the QR procedure
exactly computes the rank of B̃.

Proof. See Appendix A. ut

The main consequence of Lemma 6 is Lemma 7, which states that a k-set structure can be
designed for strict update streams using real arithmetic that requires space O(k(log M +
log N +log s)) bits for implementing procedures Count and IsCard. However, in this method,
procedure Retrieve still requires O(k2 log N + log M) bits of space for computing the eigen-
values.

Lemma 7. There exists a design of a k-set structure for the strict update streaming model
based on real arithmetic that uses space O(k (log M + log N + log s)) bits for implementing
procedures Count and IsCard. The time complexity of these procedures is O(k3) operations
over fixed point numbers with O(k(log M + log N + log s)) bits before and after the binary
point. ut

5.4 A Las Vegas type optimization

The worst-case space complexity of the k-set structure was analyzed in Theorem 5 as
O(k2 log N +k log m+k log s) bits. The worst-case occurs when the k-items are N−k,N−k+
2, . . . , N − 1, respectively. This “lack of separation” among the items leads to the worst-case
precision requirement of the algorithm. In this section, we present a simple Las Vegas type of
optimization to increase the gap between the items, thereby, reducing the space requirement
in practice.

Consider a family of permutations Π over the domain {1, 2, . . . , N} that are approxi-
mately k-wise independent with relative error ε. Constructions of permutation families can
be found in [20, 25, 14, 16, 19]. A brief overview of work in approximately k-wise independent
permutations is presented in Appendix C.

Let π be a randomly chosen permutation from Π. Each item xi over the stream is first
transformed into π(xi), and then inserted into the k-set structure. The Retrieve operation
retrieves the hash values, π(x1), . . . , π(xk), that are then inverted to retrieve the original
items x1, . . . , xk. The choice of the random hash function increases the average gap between
the items and prevents an adversary from consistently choosing the worst-case input for
the algorithm. The expected number of bits of precision and therefore, the expected space
complexity of the Las Vegas variant is lower than the original algorithm. It is called the Las
Vegas type of optimization, since, the space and time required by the algorithm is a random
variable, although, the algorithm deterministically gives the correct answer [23]. Lemma 8
presents upper bounds on the expected space complexity of implementing a k-set structure
using this method and is the counterpart to Lemma 5. It quantifies the expected economy
in space complexity obtained by using this method over the deterministic method (viz.,
O(k2 + k log M + k log s) bits versus O(k2 log N + k log M) bits).

Lemma 8. The Las Vegas technique implements a weak k-set structure for the general up-
date streaming model using O(k2 + k log M + k log s) bits on expectation.

Proof. See Appendix B. ut

6 Experimental Study

In this section we present the results of preliminary experiments that we performed to com-
pare the space required by the k-set structure implemented using finite precision arithmetic
over reals against its theoretical complexity. Our experiments were performed on Sun E250
Server having Eultra Sparc II, 400 MHz Dual processor with 1GB RAM and 18GB Hard
disk with the Solaris 8 operating system using the Matlab software version 6.0.0.88.

The first set of experiments test the worst-case of the k-set solution, (i.e, xi = N − k + i,
for i = 0, 1, 2, . . . k − 1), for N = 232 and varying k from 8 to 256. The frequencies of items
are taken as 1 in this case. The space requirement (= bits of precision × k log N) for the
original and the Las Vegas variant of the k-set solution is measured and plotted as a function
of k, as shown in Figure 1. The experimental results indicate that the space complexity of the
basic k-set structure is sub-quadratic, thereby, showing that in practice, the k-set structure
method works significantly better than predicted. Figure 1 also shows the space required by
the Las Vegas variant (measured as the average over 10 runs, for each value of k), that is, as
expected, consistently superior to the original solution.

Our second set of experiments evaluate the accuracy of the frequency estimation by
choosing 32-bit frequency values at random and associating each frequency value to a number
between N − k + 1, . . . , N (the worst case input, without initial randomization). Figure 2
presents a graph that measures the accuracy of frequency estimation as function of the

number of bits of precision used. The x-axis is normalized as the number of bits of precision
used × 16

k . We start with the number of bits of precision that were needed to retrieve the
items accurately, and increase the precision until the frequencies are retrieved without error.
The graph shows that the frequencies are estimated up to 1.2% without using any extra
bits. In all cases, the extra bits of precision that were required to retrieve the frequencies
accurately is at most 15% of the number of bits to retrieve the items themselves.

 0

 50

 100

 150

 200

 50 100 150 200

T
ot

al
 s

pa
ce

(in
 K

B
)

k-set size

Space vs Set size for 32-bit data

Las Vegas method

Fig. 1. k-set using eigenvalue computation and Las Vegas method: Space vs k-set size, N = 232.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 120 125 130 135 140 145 150re
la

tiv
e

er
ro

r(
%

)
in

 fr
eq

ue
nc

y
es

tim
at

io
n

Normalized precision scale

Error in frequency estimation vs Precision for 32-bit data

k=16
k=32
k=64

Fig. 2. Accuracy of frequency calculation. Normalized precision = Number of precision bits × 16
k

7 Conclusions

We present space and time-efficient, deterministic k-set structures that are nearly space-
optimal. The problem of designing more time-efficient k-set structures is open.

References

1. “LAPACK: The Linear Algebra Package”. Available from “www.netlib.org/LAPACK”.

2. “MATHEMATICA”. WolframResearch.

3. Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approximating frequency

moments”. Journal of Computer Systems and Sciences, 58(1):137–147, 1998.

4. M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data streams”. In

Proc. ICALP, 2002.

5. V. Chauhan and A. Trachtenberg. “Reconciliation puzzles”. In Proc. IEEE GLOBECOM, 2004.

6. G. Cormode and S. Muthukrishnan. “An improved data stream summary: The Count-Min

sketch and its applications”. In Proc. LATIN, pages 29–38, 2004.

7. G. Cormode and S. Muthukrishnan. “What’s New: Finding Significant Differences in Network

Data Streams”. In Proc. IEEE INFOCOM, 2004.

8. Graham Cormode and S. Muthukrishnan. “What’s Hot and What’s Not: Tracking Most Frequent

Items Dynamically”. In Proc. ACM PODS, pages 296–306, 2003.

9. A.J. Demers, D. H. Greene, C. Hause, W. Irish, and J. Larson. “Epidemic algorithms for

replicated database maintenance”. In Proc. ACM PODC, pages 1–12, August 1987.

10. S. Ganguly. “Counting distinct items over update streams”. In Proc. ISAAC, pages 505–514,

2005.

11. L. Gasieniec and S. Muthukrishnan. “Deterministic algorithm for estimating heavy-hitters on

Turnstile data streams”. Manuscript, 2005.

12. Anna Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin

Strauss. “Fast Small-space Algorithms for Approximate Histogram Maintenance”. In Proceed-

ings of the 34th ACM Symposium on Theory of Computing (STOC), 2002, Montreal, Canada,

May 2002.

13. Gene H. Golub and Charles F. Van Loan. “Matrix Computations”. J. Hopkins Univ. Press, 3rd

edition, 1996.

14. W. T. Gowers. “An almost m-wise independent random permutation of the cube”. Combina-

torics, Probability and Computing, 5(2):119–130, 1996.

15. K. M. Hoffman and R. Kunze. “Linear Algebra”. Prentice-Hall, 2nd Ed., 1971.

16. S. Hoory, A. Magen, S. Myers, and C. Rackoff. “Simple permutations mix well”. pages 770–781.

17. P. Indyk and D. Woodruff. “Optimal Approximations of the Frequency Moments”. 2005.

18. Piotr Indyk. “Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream

Computation”. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer

Science, pages 189–197, Redondo Beach, CA, November 2000.

19. E. Kaplan, M. Naor, and O. Reingold. “Derandomized Constructions of k-Wise (Almost) Inde-

pendent Permutations”. pages 354–365.

20. M. Luby and C. Rackoff. “How to construct pseudorandom permutations and pseudorandom

functions”. SIAM J. Comp., 17(1):373–386, 1988.

21. The Mathworks, Natick, MA, USA. “MATLAB 7.1”.

22. Y. Minsky, A. Trachtenberg, and R. Zippel. “Set Reconciliation with Nearly Optimal Commu-

nication Complexity”. IEEE Trans. Inf. Theory, 49(9):2213–2218, 2003.

23. R. Motwani and P. Raghavan. “Randomized Algorithms”. Cambridge University Press, 1995.

24. S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations and Trends in

Theoretical Computer Science, Vol. 1, Issue 2, 2005.

25. M. Naor and O. Reingold. “On the Construction of Pseudorandom Permutations: Luby-Rackoff

Revisited”. J. Cryptology, 12(1):29–66, 1999.

26. M. Satyanarayanan. “Scalable, Secure, and Highly Available Distributed File Access”. IEEE

Computer, 23(5), May 1990.

27. R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M-Y. Kao, and G. Memik.

“Monitoring Flow-level High-speed Data Streams with Reversible Sketches”. In Proc. IEEE

INFOCOM, 2006.

28. D. Starobinski, A. Trachtenberg, and S. Agarwal. “Efficient PDA synchronization”. IEEE Trans.

on Mob. Comp., 2(1):40–51, 2003.

29. Gilbert Strang. “Introduction to Linear Algebra”. Wellesley-Cambridge Press, 2nd ed., 1998.

A Proof of Lemma 6

In this section, we present a proof of Lemma 6. In this proof, the dependence on the size of
the stream, namely, s =

∑
(i,v)∈ stream|v|, is omitted for simplicity. It is readily incorporated

into the statement of the lemma using the following observation. If the precision kept is s2

bits, then, after s stream updates operations, the error is at most s2−s2 . This implies that
after s operations, the precision decreases by effectively s2 − log s bits. We use this modified
value of s2 as the starting point.

Let B̃k+1 = [b0, b1, . . . , bk] denote the k + 1 columns of B̃. If b0 = 0, then, the rank is
0 and the stream is empty. Otherwise, none of the bi’s is the zero vector (since each of the
counters lr is positive). Let bT

j · bi denote the inner product of the vectors bj and bi. We
construct the following sequence of vectors (standard Graham-Schmidt ortho-normalization)
using fixed-point arithmetic (that truncates underflows to 0 and ignores overflows) using
s1 = 32(log m + log N) bits before and s2 = 32(log m + log N) bits after the binary point.

v0 =
b0

‖b0‖
v′i = bi − (vT

0 · bi)v0 − (vT
1 · bi)v1 − · · · − (vT

i−1 · bi)vi−1

i = 1, 2, . . . , k

vi =
v′i
‖v′i‖

, i = 1, 2, . . . , k (10)

A vector vi is deemed to be a non-zero vector if any of its coordinates has at least one bit
which is set to 1 among the bits before the binary point or among the first 1 + dlogDe bits
after the decimal point, where, D = (k + 1)m2N16. Otherwise, vi is deemed to be the zero
vector. The algorithm keeps a set of vectors vi which are deemed to be nonzero and returns
the size of the set(size of the orthogonal basis) as the rank of B̃k+1. The following analysis
shows that there are no errors caused by limited precision in the above algorithm.

Analysis of rank computation

For the vector vi, the algorithm finds the component of bi along each of the vectors b1, b2, . . . bi−1.

The component of bi along vj is calculated simply as vT
j bi

‖vj‖ vj which is equal to (vT
j ·bi)vj since

vj is normalized.By induction, the vectors, b0, . . . , bi−1 are all independent, otherwise, the
algorithm would have terminated earlier. Thus vi computes the residual component of bi after
subtracting the components along each of b0, b1, . . . , bi−1. Assuming infinite-precision, it is
clear that if bi is linearly dependent on the first i vectors, then, after removing its components
along those vectors, the residual vector vi would be zero. Equation (10) can be equivalently
written in scalar form (that is, an equation for each of the k +1 coordinates of vi) as follows.

(vi)j = l̃i+j −
j+i−1∑

r=j

l̃r l̃r−j + l̃r+1 l̃r−j+1 + · · ·+ l̃r+k l̃r−j+k

l2r−j + l2r−j+1 + . . . l2r−j+k

· l̃r, (11)

for j = 1, . . . , k + 1.

Let ŷi denote yi = x
1/N
i truncated to s2 bits after the binary point. Thus, |ŷi−yi| ≤ 2−s2 .

Hence |ŷr
i − yr

i | ≤ k ·N 2k
N · 2−s2 for r = 0, 1, . . ., 2k+1 . Let’s call this value as δ. Due to

truncation after s2 bits beyond the binary point, each of the counters l̃r has an error of at
most k ·δ. Each multiplication of two of the l̃r’s introduces an additive error of at most 3k3 ·δ.
Consider the numerator of any summand of (11). There are a total of k + 1 multiplications
and k additions; thus the total error introduced is at most 3 · k4 · δ. The denominator is at
most k and incurs truncation error that is bounded in absolute value by 3 ·k4 · δ (since, there
are k multiplications and k additions, each of which incurs an error of at most 3 ·k3 ·δ). Thus,
the total additive error in the calculation of the summand in equation (11) for a given value
of r is bounded by U+3·k4·δ

V−3·k4·δ − U
V , where, U and V are the correct values for the numerator

and the denominator for an index r. Since, 1
m ≤ U, V ≤ (k + 1), the above error can be

bounded in absolute value by 10k2 ·m2 · δ if s2 ≥ 6 + 5 log k + log m + 2k
N log N . There are

i ≤ k + 1 summands in the calculation of (vi)j ; the error due to truncation of (vi)j is at
most ε = 10k3 ·m2 · δ. By equation (11), the value of the fraction for each summand index
r is at least 1

m2 . Therefore, the minimum absolute value of (vi)j , if it is not zero, is at least
γ = 1

m − 1
m2 . Therefore, by choosing s2 ≥ 6 + 6 log k + 3 log m + 2k

N · log N gives γ > ε .

The maximum absolute value of (vi)j is at most m(k + 1)2 + k. With the given choice of
s2 = 32(log m + log N), there is no overflow error. Thus, non-zero vi’s are never deemed to
be zero vectors, and vice-versa.

B Proof of Lemma 8

By Lemma 9, it follows that ‖Ṽ ‖ = O(n2). We now calculate a bound on the expected value
of ‖V −1‖.
Lemma 9. E

[
‖Ṽ −1‖

]
≤ n28n.

Proof. Let zj = x
1/N
j . The (i, j)th entry of the matrix V ′ is given by zi

j , 0 ≤ i ≤ n − 1 and
1 ≤ j ≤ n. Denote V ′T by W . Clearly, by definition of Frobenius norms,

‖V ′−1‖F = ‖(V ′−1)T ‖F = ‖(V ′T)−1‖F = ‖W−1‖F .

By direct calculation of the inverse of Vandermonde matrix,

(W−1)i,j = coefficient of ti in

∏n
s=1
s 6=j

(t− zs)
∏n

s=1
s 6=j

(zj − zs)

Consider the jth column of W−1. The sum of the absolute values of the entries in this column
can be obtained as follows.

n∑

i=1

|Wi,j | =
n∑

i=1

∏n
s=1
s 6=j

(1 + zs)
∏n

s=1
s 6=j

(|zj − zs|)

We now assume that the zi’s are random, independently chosen and distinct in the domain
{1, . . . , N}. Taking expectations and using linearity of expectation,

E

[
n∑

i=1

|Wi,j |
]

=
n∑

i=1

E




∏n
s=1
s 6=j

(1 + zs)
∏n

s=1
s6=j

(|zj − zs|)


 (12)

For a fixed value of xj , the value of each of xs, for s 6= j, is independent over the domain
{1, . . . , N} − {xj}. Therefore,

E




∏n
s=1
s 6=j

(1 + zs)
∏n

s=1
s 6=j

(|zj − zs|)


 =

n∏
s=1
s6=j

E
[

1 + zs

|zj − zs|
]

(13)

Since, 1
2 ≤ zs ≤ 1, 1 + zs ≤ 2. We therefore have,

E
[

1 + zs

|zj − zs|
]
≤ E

[
2

|zj − zs|
]

Recall that zj = x
1/N
j and zs = x

1/N
j , where, 1 ≤ xj , xs ≤ N , and xj 6= xs. For each

fixed value of xj , |xj − xs| takes values between 1 and N − 1 with probability at most 2
N−1 .

Therefore,

E
[

1
|zj − zs|

]
≤

N−1∑

|xj−xs|=1

2
N − 1

1
|zj − zs| .

For a fixed value of y = |xj − xs|, the smallest value of |zj − zs| occurs when xs = 1 and
xj = (y + 1)1/N . It follows that,

E
[

1
|zj − zs|

]
≤

N−1∑
y=1

2
(N − 1)

1
((y + 1)1/N − 1)

.

By simplifying the summation in the RHS, we obtain,

E
[

1
|zj − zs|

]
≤ 2

N − 1

(
1

21/N − 1
+

∫ N−1

y=2

dy

y1/N − 1

)
(14)

Note that

ln 21/N =
ln 2
N

≥ ln
(

1 +
ln 2
N

)
.

Therefore,

21/N ≥ 1 +
ln 2
N

or, that 21/N − 1 ≥ ln 2
N

. (15)

Substituting in (14), and replacing the variable of integration by t = y1/N , we have,

E
[

1
|zj − zs|

]
≤ 2N

(N − 1) ln 2
+

2
N − 1

∫ N1/N

t=21/N

tN−1dt

t− 1
. (16)

Simplifying the integral in the RHS

∫ N1/N

t=21/N

tN−1dt

t− 1
=

∫ N1/N

t=21/N

(1 + t + t2 + . . . + tN−2)dt +
∫ N1/N

t=21/N

dt

1− t

=
(

t +
t2

2
+

t3

3
+ · · ·+ tN−1

N − 1

)∣∣∣∣
N1/N

21/N

+ ln
N1/N − 1
21/N − 1

≤ HN−1 + ln
1

21/N − 1
≤ HN−1 + 2 .

where, HN−1 denotes the (N − 1)th harmonic number, namely, 1 + 1
2 + 1

3 + · · · + 1
N−1 .

Substituting in (16)

E
[

1
|zj − zs|

]
≤ 2N

(N − 1) ln 2
+

2(HN−1 + 1)
N − 1

≤ 8m .

Substituting in (13) and then in (12), we have,

E
[‖W−1‖F

]
= E




n∑

j=1

n∑

i=1

|Wi,j |

 ≤

n∑

j=1

n∑

i=1

8n ≤ n28n ut

Lemma 10. κ(B′) ≤ n882nM .

Proof. Recall that B = Ṽ F Ṽ T . ‖Ṽ ‖ ≤ ‖Ṽ ‖F ≤ n2, since, each of the entries is at most 1.
The same argument holds for ‖Ṽ T ‖F . Further,

‖F‖ ≤ M and ‖F−1‖ ≤ 1

Therefore,
‖B‖ ≤ ‖Ṽ ‖‖F‖‖Ṽ T ‖ ≤ n4M

By Lemma 9,
‖B−1‖ ≤ ‖Ṽ −1‖‖F−1‖‖(Ṽ T)−1‖ ≤ n882n .

Taking products,

κ(B) = ‖B‖‖B−1‖ ≤ n882nM ut

Proof (Of Lemma 8). The precision required for the eigenvalue computation and for comput-
ing the inverse is O(log κ(B)) = O(n + log M) = O(n + log M) = O(k + log M). Since there
are 2k + 1 counters, the total space complexity is (2k + 1)O(k + log M) = O(k2 + k log M)
bits. The Las Vegas method stores the counters l′r instead of lr. Therefore, after a total of
s updates, the loss in precision is log s bits, therefore, the total number of bits required is
O(k2 + k log M + k log s) bits. ut

C Review of approximate t-wise independent permutations

A family of permutations Π over F is said to be approximately t-wise independent with error
parameter δ, provided, for any Turing machine M that has access to a random permutation
π and makes at most t calls to π, M cannot distinguish whether π is chosen uniformly at
random from Π or uniformly at random from U , with probability more than δ. Here, U is
the set of all permutations over F . In other words, for any Turing machine M meeting the
criterion above, and for every input I, the following condition holds.

∣∣Prπ∈RΠ {M succeeds on I} −Prπ∈RU {M succeeds on I}
∣∣ ≤ δ

where, the notation π ∈R Π indicates that π is chosen uniformly at random from Π (re-
spectively, U). We are more interested in permutation families that are approximately t-wise

independent with relative error ε̄, where, ε̄ < 1. That is, for any Turing machine with access
to a random permutation π and that makes at most k calls to π, the following condition
holds for every input I.

∣∣Prπ∈RΠ {M succeeds on I}
∣∣ ∈ (1± ε̄)Prπ∈RU {M succeeds on I}

A simple calculation shows that if Π is approximately t-wise independent with relative error
ε̄, then its absolute error δ = O(ε̄ · 2−mt).

The Fiestel permutations based approaches, such as Luby and Rackoff, Naor and Reingold
[20, 25] have errors of the form of δ = t2

2m/2 , that are considerably large and inadequate. The
3-bit mixed permutations of Gowers [14] with improvements due to Hoory, Magen, Myers
and Rackoff [16] require space and time O((m3t2 + m2t log 1

ε̄) log m) bits and m-bit word
operations to evaluate π(x), respectively. The construction of Kaplan, Naor and Reingold
[19] results in ε̄-approximate t-wise independent permutation family requiring O(mt + log 1

ε̄)
bits. However, the time complexity of the Kaplan, Naor, Reingold construction is a very
high-degree of polynomial in m and t (also discussed by the authors in [19] Section 6.1).

In data stream processing, π has to be applied to each arriving record, and since, records
arrive at a rapid rate, π(·) must be very efficiently computable, which, unfortunately, is not
the case with Kaplan, Naor and Reingold’s construction. We therefore use the construction of
Hoory, Magen, Myers and Rackoff since its time-complexity is relatively better, but remark
that it is desirable to obtain constructions of approximate t-wise independent permutation
families that are more suited for high-speed data stream processing.

