
Deterministic K-Set Structure

Sumit Ganguly and Anirban Majumder
{sganguly,anirban}@cse.iitk.ac.in

IIT Kanpur, India

Abstract. 1 A k-set structure is a sub-linear space data structure that supports multi-set

insertion and deletion operations and returns the multi-set, provided the number of distinct

items with non-zero frequency does not exceed k. This is a fundamental problem with appli-

cations in data streaming [16], distributed systems [15, 17], etc. In this paper, we present the

design of a deterministic k-set structure.

1 Introduction

Consider scenarios where entities with identity arrive and depart in a critical zone, for
example, persons with RF-tags, TCP connections to a given site, etc.. The problem is to
efficiently answer the following query:“ Are there at most k distinct entities in the critical
zone, and if so, what are their identities?” Clearly, if there is enough memory to track all the
entities, then, an O(n) space solution is obvious. The problem can be effectively solved using
a k-set data structure, which is a sub-linear space data structure that (a) supports insertions
and deletions of items in a multi-set, and, (b) supports a Retrieve operation that returns all
the distinct items and their number of occurrences in the multi-set, provided, the number of
distinct items is at most k. Applications of k-set structure arise in diverse areas, including
data stream applications and distributed computing [15, 17]. In a distributed computing
scenario, a host and a PDA may temporarily disconnect and proceed asynchronously with
their computations. Later a reconciliation mechanism is needed to synchronize a specific
collection of bits between the two hosts. A k-set structure can be used to give a solution
requiring low communication. Analogously, in a distributed computing environment, a k-set
structure can be used for reconciling changes to shared structures, such as files, transaction
logs, etc., with the minimum communication necessary.

We will define a k-set structure in the data stream model of computation. A data stream
σ is viewed as a sequence of records of the form (pos, i, v), where, i is the identity of the
data item that is assumed to belong to the domain {1, 2, . . . , n} and v is the change in the
frequency of i. We will abbreviate the set {1, 2, . . . , n} by [1, n]. For simplicity, we assume
that v is integral, where, a positive value of v corresponds to v insertions of i, and a negative
value of v corresponds to v deletions of i. The frequency fi(σ) of an item i is defined as
the sum of the changes in the frequencies of i, that is, fi(σ) =

∑
(pos,i,v)∈σ v. At any given

time, the multi-set corresponding to the stream is defined as {(i, fi(σ)) | fi(σ) 6= 0}. When
the data stream σ is understood, then, we will refer to the frequency of an item i in the
1 Preliminary version [12] of this paper appeared with the same title in the Proceedings of the ACM SIGACT-
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stream simply as fi. Data streams that allow insertions and deletions of items and allow item
frequencies to be either positive or negative are referred to as general streams. Strict streams
refer to the sub-class of general streams where deletions and insertions are allowed, although,
item frequencies are constrained to be non-negative. Both models are popular abstractions
of diverse families of computations and are well-studied in the research literature. The size
of a stream σ is defined as

|σ| = max
prefixes σ′ of σ

n
max
i=1

|fi(σ′)| = max
prefixes σ′ of σ

‖f(σ′)‖∞ .

The expressions for space and time requirement of the algorithms use the parameters m

and n, where, m is an upper bound on |σ| and n is the size of the domain of the items. We
now define the k-set structure in two variants, respectively called strong and weak k-sets.

Definition 1. A strong k-set structure over a data stream is a data structure that supports
the following three operations, (a) procedure Update, for updating the data structure corre-
sponding to stream insertion and deletion operations, (b) procedure Retrieve, that returns
the multi-set S = {(i, fi) | i ∈ [1, n] and fi 6= 0}, provided, |S| ≤ k, and, (c) procedure
IsCard (Is Cardinality at most k?), that returns true if |S| ≤ k and returns false oth-
erwise. A weak k-set structure only supports the procedures Update and Retrieve. ut

A space lower bound argument for a k-set is obtained as follows. There are
(
n
k

)
(2m)k possible

multi-sets of size k over the domain {1, 2, . . . , n} such that |fi| ≤ m and fi 6= 0. Each such
multi-set must map to a distinct memory pattern of a deterministic algorithm (otherwise,
the algorithm makes an error in at least one of the inputs). Therefore, a deterministic k-
set structure requires space Ω(log(

(
n
k

)
(2m)k)) = Ω(k(log n

k + log m)) bits of space. We are
interested in obtaining designs that approach this lower bound.

Previous work. A randomized strong k-set structure is a structure that uses random bits
in the execution of its procedures Update, Retrieve and IsCard, and whose answers are
correct with high probability. The Countsketch [3] and the Count-Min [5] algorithm
can both be used to design a randomized strong k-set for general streams using space
O(k(log(mn))(log n

δ )) bits, where, δ is the error probability of the Retrieve or IsCard op-
eration. For strict streams, the randomized k-set structure [10] uses O(k(log(mn))(log k

δ ))
bits. The work in [16] (Theorem 15) and [11] presents a deterministic weak k-set structure
using O(k2(log2 n)(log m)(log2 k)) space. A combinatorial group-testing based approach for
designing a weak k-set structure is presented in [6] that uses space O(k2(log2 n)(log m)) bits.
A special case of the weak k-set problem, where, item frequencies are ±1, has been studied
in distributed systems, where it is called set reconciliation, and a nearly-optimal O(k log n)
space solution is presented [15, 17]. The work in [9] presents a nearly optimal space solution
for the weak k-set problem when item frequencies are exactly 1 or 0. Compressed Sens-
ing. The works of [2, 8] together with the recent work of [14] presents a deterministic and
weak k-structure using space O(k2(log log n)E

(log m)) for general streams and is based on a
construction using extractor graphs.



For strict streams, a strong 1-set is presented in [10] using nearly optimal space. Strongly
selective sets [4, 7], together with a strong 1-set, can be used to construct strong k-sets
using space O(k2 · polylog(n) log(mn)). This line of work however cannot be used to obtain
significantly more space efficient k-sparsity tests, since, there is a space lower bound of
Ω(k2(log(n/k))/(log k)) for the size of (n, k)-strongly selective family [4].

Contributions. We present a near-optimal space construction for weak k-sets using O(k log(mn))
bits for streams over [1, n] and size at most m. We show that a strong k-set structure re-
quires Ω(n) bits, for any k ≥ 0. For strict streams over [1, n] and having size at most m,
we present a strong k-set structure that uses space O(k2 log n+ k log m) bits. These are the
most space-efficient weak and strong k-set structures respectively. Moreover, the structures
admit efficient update processing and retrieval operations.

Comparison with compressed sensing algorithms [2, 14]. For general streams, the com-
pressed method gives asymptotically more efficient retrieval of items as compared to the
method of this paper. However, our method is simpler and more elementary, is more space
efficient and requires less time for processing stream updates. Further, for strict streams, a
variant of our algorithm is significantly faster than the algorithm of [14].

2 K-set structure

In this section, we present our design of a k-set structure.

Let F = Fp be a prime field, where, p will be specified later, and using the arithmetic
over Fp, we maintain the following 2k + 2 counters, denoted by l0, l1, . . ., l2k+1.

lr =
∑

xi∈ stream

fix
r
i , r = 0, 1, . . . , 2k + 1 . (1)

The counters can be easily updated in the face of insertions and deletions occurring in the
stream as follows. Corresponding to a stream update (pos, xi, v), we update the rth counter
as follows, using the arithmetic of F.

lr := lr + v · xr
i , for r = 0, 1, . . . , 2k + 1 .

We use the following notation in this section. Given t distinct items x1, x2, . . . , xt, each of
which lies in the interval 1 ≤ xi ≤ t, we let X = X(t) denote the t × t diagonal matrix
that has xi in its ith diagonal entry and zeros elsewhere. Given a set of t frequency values,
f1, f2, . . . , ft, we let F denote the diagonal matrix whose ith diagonal entry is fi and is zero
elsewhere. Let f be the column vector [f1, f2, . . . , ft]T . That is,

X =


x1

x2

. . .

xn

 F =


f1

f2

. . .

ft

 and f =


f1

f2

...
ft

 .



For 1 ≤ t ≤ k and 0 ≤ r ≤ 2k − t, let V (r, t) denote the t × t matrix shown below. For a
given set of values x1, x2, . . . , xt, for brevity, we refer to V (0, t) as V , as follows.

V (r, t) =


xr

1 xr
2 · · · xr

t

xr+1
1 xr+1

2 · · · xr+1
t

...
...

xr+t−1
1 xr+t−1

2 · · · xr+t−1
t

 V =



1 1 · · · 1
x1 x2 · · · xt

x2
1 x2

2 · · · x2
t

...
...

xt−1
1 xt−1

2 · · · xt−1
t


The following identity is a direct consequence of the definition.

V (r, n) = V Xr (2)

Let w(s, r), Br and Cr denote the following r× 1 column matrix and r× r square matrices
respectively.

w(s, r) =


ls

ls+1

. . .

lr+s−1

 , Br =


l0 l1 . . . lr−1

l1 l2 . . . lr
...

...
...

...
lr−1 lr . . . l2r−2

 , and Cr =


l1 l2 . . . lr

l2 l3 . . . lr+1

...
...

...
...

lr lr+1 . . . l2r−1

 . (3)

Lemma 1. Suppose that there are t ≤ k items in the stream with non-zero frequency and
the arithmetic in (1) is performed over Fp, where p > 2mn + 1. Then, (a) rank(Bk+1) = t,
(b) the items x1, x2, . . . , xt are the eigenvalues of the matrix B−1

t Ct and, (c) the frequency
vector is given by f = V −1w(0, t).

Proof. Suppose there are t ≤ k distinct items x1, x2, . . . , xt in the stream, xi ∈ [1, n]. Let
V (r) = V (r, t) and w(r) = w(r, t), for r = 0, 1, 2, . . . , 2k + 1− t. Thus, equation (1) can be
rewritten as follows.

V (r)f = V Xrf = w(r), r = 0, . . . , 2k + 1− t .

Since, the xi’s are non-zero and distinct, V (r) = V Xr is invertible for each value of 0 ≤ r ≤
2k + 1− t. Therefore,

V XV −1w(r) = V Xr+1((V Xr)−1w(r)) = V Xr+1f = w(r + 1), 0 ≤ r ≤ 2k + 1− t .

Let A denote the matrix V XV −1. The above set of equations can be expressed as

ABt = Ct (4)

Since A is in the eigen-decomposition form, X is the diagonal eigenvalue matrix of A. In
other words, the distinct items x1, . . . , xt are the eigenvalues of the matrix A′. Further,

Bt = [w(0), w(1), . . . , w(t− 1)] = [V f, V Xf, V X2f, . . . , V Xt−1f ]

= V [f, Xf, X2f, . . . ,Xt−1f ] = V FV T (5)



Since, V is invertible and none of the fi’s are 0, Bt is invertible, and therefore has rank t.
Since Bt is the left t× t sub-matrix of Bk+1, rank(Bk+1) ≥ rank(Bt) = t. Let U denote

the (k + 1) × t matrix V (0, k + 1) and let U(j) be the (k + 1) × t matrix V (j, k + 1), for
0 ≤ j ≤ k. Therefore, (1) can be equivalently written as: U(j)f = UXj = w(j, k + 1), for
j = 0, . . . , k. Thus,

Bk+1 = [w(0, k + 1), w(1, k + 1), . . . , w(k, k + 1)] = U [f,Xf, . . . ,Xkf ] = UFUT .

Since, U and F each have rank t, it follows that rank(Bk+1) ≤ t. As shown earlier,
rank(Bk+1) ≥ t. Therefore, rank(Bk+1) = t. ut

Given that the number of items with non-zero frequency in the stream is t ≤ k, then, t can
be found as rank(Bk+1) and the items themselves are the eigenvalues of At = CtB

−1
t . The

rank computation can be done using O(k3) arithmetic operations over the field Fp, and the
eigenvalues can be found in time O(nk3), by iterating over x ∈ [1, n] and testing if At − xI

is singular. This is stated in Lemma 2.

Lemma 2 (Weak k-set for general data streams). For general streams over the do-
main [1, n] and size a-priori bounded by m, a weak k-set structure can be designed with the
following characteristics: (a) space O(k(log(mn)) bits, (b) time for update– O(k) operations
over a finite field Fp (p = O(mn)), and, (c) time for retrieving the elements– O(nk3) oper-
ations over Fp. ut

If item frequencies are non-negative, then, the standard dyadic intervals technique can be
utilized as follows to retrieve the items more efficiently and without requiring the explicit
computation of eigenvalues.

Finding roots of the characteristic polynomial. We now assume that item frequencies cannot
assume negative values. Since there are n eigenvalues, the characteristic polynomial F (z)
is of the form F (z) = α

∏
a∈S(z − a), where, S is the set of items in the stream with non-

zero frequency and α is a constant. Let F be a field with characteristic at least 2km and
containing at least n + 1 elements.

Instead of maintaining a single set of 2k + 2 counters, we maintain a collection of L =
dlog|Fp|/ke sets of counters, where each set consists of 2k + 2 counters. We set p to be
a prime greater than 2mn2 + 1, since, the maximum absolute frequency of any dyadic
interval can be at most mn, and, there are n distinct items. The sth counter set is denoted
as {lsr}r=0,1,...,2k+1, for 0 ≤ s ≤ L − 1. For 0 ≤ s ≤ L − 1, define a family of functions
hs : {0, 1, . . . , 2d − 1} → {0, 1, . . . , 2d−s − 1} as follows.

h0(a) = a and hs(a) = ba/2sc

It follows that, for any s ≥ 0 and given value of c = hs(a), there are exactly two distinct
values of b such that b = hs−1(a). Corresponding to each stream update of the form (x, v),
we update each of the s counter sets as follows.

lsr = lsr + (h(x))rv, 0 ≤ r ≤ 2k + 1, 0 ≤ s ≤ L− 1 .



Let f
(s)
a denote the frequency of item a at level s. Then, f

(s)
a =

∑
b:hs(b)=a fb. If a has positive

frequency fa > 0, then, f
(s)
hs(a) > 0 has positive frequency at level s, for 1 ≤ s ≤ L− 1 (vice-

versa may not be true). Let ns denote the number of distinct items with positive frequencies
at level s. Let A

(s)
ns , B

(s)
ns and C

(s)
ns respectively denote the corresponding matrices obtained

from the counters at level s, for s = 0, 1, . . . , L − 1. Let Fs(z) denote the characteristic
polynomial of A

(s)
n , that is, Fs(z) = det(A(s)

ns − zI). By construction, we have the following
property

F (a) = 0 only if Fs(hs(a)) = 0 .

For each value of s starting from L and counting down to 0, we obtain a set of items of size
at most 2 · k that are potentially roots of Fs(z). At level L, there are at most k distinct
items, each of which are then checked to see if Fs(as) = 0 (or equivalently, if A

(s)
n − asI

is singular). Therefore, at each level, there cannot be more than k candidates that pass
the above test. Each candidate item a at level s corresponds to exactly 2 candidates at
level s − 1; therefore, the number of potential candidates at any level is no more than 2k.
Proceeding in this manner, we obtain the set of items with positive frequencies at level 0.

The data structure maintains (2k+2) counters for at most dlog|F|/ke levels. Therefore, its
space requirement is O(k(log n

k ))(log(kmn))) bits. Testing whether an item x is an eigenvalue
can be done by calculating the rank of A−xI, which can be done in time O(k3). Since there
are at most 2k candidate items at each level the time complexity of retrieval is O(k4(log(m+
n
k ))) field operations. We summarize this discussion in the following lemma.

Lemma 3 (Improved weak k-set for strict data streams). For strict streams over
the domain [1, n] and size a-priori bounded by m, a weak k-set structure can be designed
with the following characteristics: (a) space O(k(log(n/k))(log(kmn))), (b) time required to
retrieve the items is O(k4(log(kmn))) operations over a prime field Fp of size O(kmn), and,
(c) time for processing each stream update is O(k(log(n/k)) operations over Fp. ut

3 Strong k-set structure

In this section, we present a design of a strong k-set structure. We first show that a strong
k-set structure over general streams requires Ω(n) bits, for any k ≥ 1.

Lemma 4. For general streams and 0 ≤ k ≤ n, a strong k-set structure requires Ω(n) bits.

Proof. Let k = 0. Let F be a family of sets from {1, 2, . . . , n} of size n
2 such that the size

of pair-wise intersection is at most n
8 . Using simple counting techniques, it is easy to show

that there exist such families of size 2Ω(n) [1]. Let S, T ∈ F . Construct two streams from S

and T respectively where the item frequency is 1 for each element in the corresponding set.
Consider the memory patterns of a k-set structure after processing the streams indepen-
dently. We claim that the two memory patterns must be different for the following reason.
Consider a sequence of deletions of all n

2 items from S. Since, S and T have at most n
8 items

in common, the same sequence of deletions applied to T leaves T with at least 7n
8 distinct

items with non-zero frequencies. If the memory patterns of the strong k-set structure are



the same after processing the streams corresponding to S and T , then, the k-set structure
must make a mistake in answering whether the cardinality of the set of items with non-zero
frequency is at most 0 or not. It follows that the space required by a strong k-set structure,
for k = 0 is at least Ω(log|F |) = Ω(n).

A strong k-set structure implies a strong k′-set structure, for any k′ < k, since, one can
test whether the number of items in the multi-set is at most k, retrieve the elements one by
one, checking and stopping if the number of items exceeds k′. Since, a strong 0-set structure
requires Ω(n) bits, for every k ≥ 0, a strong k-set structure requires Ω(n) bits. ut

Lemma 5 can be used to design a strong k-set for strict streams using real arithmetic.

Lemma 5. Suppose that real arithmetic is used to maintain the counters defined by (1).
Then, for strict data streams there are t > k distinct items in the stream with positive
frequencies if and only if rank(Bk+1) = k + 1.

Proof. The if part is the statement of Lemma 1(a). Suppose there are t > k distinct items
with positive frequencies. Let G denote the diagonal matrix with Gi,i set to the positive
square root of fi. Therefore,

Bt = VtFV T
t = VtG

2V T
t = (VtG)(VtG)T .

It follows that Bt is a positive definite matrix, and hence, all left most determinants of Bt

are positive. Since, t > k, in particular, det(Bk+1) > 0, and therefore, rank(Bk+1) = k + 1.
ut

Lemma 5 can be used to design a procedure to test whether the number of distinct items
with non-zero frequencies is at least k or not, by computing the rank of Bk+1. Standard
methods for finding the rank of Bk+1, such as Gaussian elimination and QR decomposition,
may require O(k log n+log m) bits of precision, since, the matrices B and C are derived from
van der Monde matrices and can therefore be shown to have condition number O(nkm) (a
well-known fact of numerical linear algebra). The counters lj , j = 1, 2, . . . , r are themselves
stored as large integers, with log|lj | ≤ log(njm) = j log n + log m. The total storage is
therefore O(k2 log n + k log m) bits. A more space-efficient strong k-set structure may be
found in a very recent work [13].
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