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Abstract. We present novel algorithms for estimating the size of the natural join
of two data streams that have efficient update processing times and provide ex-
cellent quality of estimates.

1 Introduction

The problem of accurately estimating the size of the natural join of two database ta-
bles is a classical problem[15, 13, 1, 11, 12], with fundamental applications to database
query optimization and approximate query answering. Prior work in the '80s through
the mid '90s largely focussed on tetored datanodel, where, the joining relations are
either disk or memory-residerfbamplingemerged as a popular solution technique in
this model [14, 15, 13].

The streaming data modég6, 5, 7, 4] was proposed in the late '90’s as a model for
a class of monitoring applications, such as network management, RF-id based appli-
cations, sensor networks, etc. These applications are characterized by high volumes of
rapidly and continuously arriving records. The monitoring applications can often tol-
erate approximate answers, provided, (a) the error probability and the approximation
ratio are both guaranteed to be low, (b) the rate of processing is able to keep pace with
the fast arrival rates without significantly degrading the quality of answers, and, (c) the
space consumed is significantly smaller than that needed for exact computation. Ex-
isting streaming algorithms satisfy a majority of the above properties, and in addition,
process the stream in an online fashion, (i.e., look once only).

Data Stream Model and NotatioA.data stream is viewed as a sequence of updates
of the form (i, v), where,i takes values from the domailh = {0,1,...,N — 1},
andv is the change in the frequency of the itemsv If> 0, then we can think of the
tuple (i, v) as representing insertions ofi; correspondingly, iy < 0, then,(i,v) can
be thought of as representingdeletions ofi. The frequency of, denoted byf;, is
the SpsN of the changes to the frequency since the inception of the stream, that is,
fi="(i.) appears in streal 4V€ denote byn r the sum of the frequencies of the items in
astreamR, thatis,mr = ,5p fi. In this paper, we consider the insert-only model of
data streams (i.ev, > 0 for all updates) and the general update model of data streams
(i.,e.,v >00rv <0).
p The self-join [2, 3, 1] of a strean? is denoted bySJ R) and is defined aSJ R) =

op f2.Forr =1,2,..., N, letranKr) be a (ranking) function that returns an item

whose frequency is the'" largest frequency iry (ties are broken arbitrarily). The
residual self-joir[8] of a streamR, denoted by5J (R, k) is defined as the self-join of



P
R after the topk ranked frequencies are removed, thaSi37* (R, k) = = ., [n)-

It is easily shown thaBJ“*(R, k) < ’Z—z*.

In this paper, we consider two data streafhand.S, and denote the frequencies of
an item: in streamsk andsS by f; anqg,i respectively. The sizé of the natural join of
RandSisdefinedag = |[Rx S| = ,5p fi-g:. Following standard convention, we
let0 < e < 1and0 < ¢ < 1 denote user-specified accuracy and confidence parameters
respectively. When referring to the join &fand.S, we usemn to denoteny + mg, SJ
to denoteSJr + SJg, andSJI*(k) to denoteSI“* (R, k) + ST“°(S, k).

Previous workThe seminal work in [1-3] presents the product of sketches tech-
nique that estimates the join size using spéxe - (log(m.N)) - log §) bits with ad-

ditive error ofO(%%%s)i/z). The work in [1] also presents a space lower bound
of s = Q(m72) for approximating the join sizd to within a constant confidence over
general data streams. The product of sketches algorithm does not match the space lower
bound for the problem, and, the time taken to process each stream update can be large
(O(s-log %)). TheFast-AGMSalgorithm[10] is a time-efficient variant of the product

of sketches technique, processing stream updates irQiflg %), while providing the

same space versus accuracy guarantees of the product of sketches algorithm.

CouNT-MIN sketches[9] presents an elegant technique for estimating the join
size using spacé(s(log N + logm)log 1) bits, time O(log %) for processing each
stream update and with additive estimation erroﬂjj&j). The cross-sampling al-
gorithm [1] has similar properties; however, it is not applicable to streams with dele-
tion operations and is known to be generally outperformed by sketch-based methods
in practice. The skimmed-sketches algorithm [12] estimates the join size using space
O(s(log N)log(m - N) - log %) bits, timeO(log 1) for processing each stream
update and with additive error OT(T—;). TheCouNT-MIN sketch and skimmed-sketch
technigues match the worst-case lower bound for the problem. Their main drawback is
that they often perform poorly in comparison with the simple product of sketches al-
gorithm, since, the complexity termn? of [12] is in practice, much larger than the
self-join sizes.

Contributions.In this paper, we present two novel, space-time efficient algorithms
called REDSKETCH and REDSKETCHA for estimating the size of the natural join

of two data streams. ThHREDSKETCH algorithm estimates the join size usifys -

log(mN)-log %) bits , with additive erroe= O(M). TheREDSKETCHA al-
gorithm estimates th_ie_ join size using spal@-log(mN )-log %) bits and with additive

. . 2/3 1/6 res 1/6 .
estimation error oy £33 H8IZN T Both algorithms process each stream

update in timeO(log %) and match the space lower bound of [1] (up to logarithmic
factors). Our algorithms are practically effective, since, the bounds are in terBi$ of
andSJ**, which are significantly less than? andm;, respectively, in practice.

Organization.The rest of the paper is organized as follows. In Section 2, we re-
view basic data stream algorithms that we use later. Sections 3 and 4 present the
REDSKETCH and theREDSKETCHA algorithms respectively. We conclude in Sec-
tion 5.




2 Review

In this section, we review sketches [2, 3], the algoritBountSketch [8] for approxi-
mately finding the top: frequent items oveR and theFAST-AGMS algorithm [10] for
estimating binary join sizes.

Sketches and estimatirig self-join sizéssketch[2, 3]1X of the streamR is a random
integer defined aX = ,p fi - zi, Where, for eacli € D, z; is chosen randomly
from the set{—1,+1} such that the family of random variablés;};>p are four-
wise independent. The familfx; },2p is called thesketch basisCorresponding to a
stream update of the forrfi, v), the %e?h is updated i@ti?(l) as follows: X
'= X + a; - v. It can be shown that EX> = SJand VarX? = O(SJF). An ¢-
accurate estimate of the self-join is obtained by taking the avera@(aéblj independent
sketches. The confidence of the estimate is boosteld-tod by using the standard
technique of returning the median ©flog %) independently computed averages.

Algorithm CountSketcH8]. Sketches are used in [8] to design tBeuntSketch al-
gorithm for finding the topk frequent items in a data stream. The data structure called
Csk consists of a collection of hash tablesI'[1], . .., T[s], each consisting oft buck-

ets. A pair-wise independent hash function D — {0,1,..., A— 1} and a pair-wise
independent sketch basfs; ;}>p are assoqi_c;\ted with each hash tableg ¢t < s.

Each bucket{'[t,b] keeps the sketcK,;, = e (4)=b fi - 4, of the sub-stream of

the items that map to this bucket. In addition, an array capable of stdrpeajrs of the

form (i, ;) is kept and organized as a classical min-heap data structure. Corresponding
to a stream updatg, v), the structureCsk is updated in time(s) as follows.

UPDATEcsk(i,v) : for ¢ := 110 s do X, , (i) := Xy p,(s) + v - 21, endfor

Once all the hash tables are updated, the frequénisyestimated as

fi = mediarjlet’ht(i) " Tt - (1)

If f; exceeds the lowest value estimate in the h€athen, the latter value is evicted and

replaced by the paif, f;). The estimation guarantees of tBeuntSketch algorithm are

stated as a functior of the residual self-join and is summarized below.

SJ‘ES (S) 1-[1/2
A

A(s, A) =8 )

Theorem 1 ([8]).Lets = O(log §), A > 8-k, and letA = A(4, A). Then, for every
itemi, Pr |f; — f;i| <A >1—-2.The space complexityds(k-log %-(log(m-N))

2tm
bits, and the time taken to process a stream updat¥(lsg 5 ). O

The FAST-AMS [16] and FAST-AGMS algorithms[10]. The FAST-AGMS al-
gorithm is a time-efficient variant of the product of sketches technique for estimating
join sizes. TheCountSketch based second moment estimator presented in [16] applies a



similar optimization for reducing the processing time for estimating self-joins. The al-
gorithm uses a pair of set of hash tabl€s, 15, ..., T, andU, U,, ..., U, for streams

R and S respectively, such that, each hash table consist$ béickets. Thel' andU
hash tables angarallel in the sense that far < ¢ < s, the tableg’; andU, use the same
random pair-wise independent hash functten D — {0,1,..., A — 1} and the same
four-wise independent sketch basis ; }. The random bits used for different hash table
indices are independent of each other. Faf ¢t < s and0 < b < A — 1, each bucket
T3[b] (resp.Uy[b]), contains a single gketcki; , (resp.Y: ;) of the syh-stream of items
that hash to this bucket, that &, ;, = he ()=b fi-xe i (respYiy = e (4) b GiTt,i)-
Updates to the streai® or S are propagated to the corresponding data strudiuel/
appropriately, similar to th&JPDATEcs« sub-routine given in Sectlgp 2 For each hash
table indext, 1 < t < s, an estimate/, is obtained as follows7i, = Xt b Yipe
Finally, the median of these estimates is returned as the estimate of the join size, that is,
J= mediarj_ Jt Lemma 1 summarizes the basic property of this algonthm

Lemmal ([10, 16]).E J =J andVar J < & SJ(R) SJS) + J2 . In particu-
. £ ./t é/ 2(SJ(R))2
lar, if R =5, thenE J, = SJR)andVar J < == O

3 Algorithm REDSKETCH for join size estimation

In this section, we present the algoritHREDSKETCH for estimating the size of the
join of data stream$? and .S for the insert-only stream model. The algorithm can be
extended to insert-delete streams by using a variant dEthumtSketch algorithm that
can handle deletions.

The data structure used by the algorithm is a paiparfallel CountSketch struc-
tures denoted b¥’sky and CsKg, for streamsR and .S respectively. The structures
Cskpr andCskg use a pair ofparallel hash table setg[1],...,T[s] for Cskg and
Ul1],...,U][s] for Cskg, respectively, each consisting.dfbuckets. The hash table sets
in the sense thdf;, andU, use the same random pair-wise independent hash function
h: and the same four-wise independent sketch basjsThe updates to the structure
are done as in th€ountSketch algorithm.

A join valuei from streamR (resp.S) is said to bdrequentin R (resp.S) provided
its estimatef; obtained using the frequency estimation procedu@afntSketch(resp.
gi) is among the tog: estimated frequencies in the stre#hfresp.S).

Let F' denote the set of join values that are frequent in either S. We decompose
the join sizeJ into two components as follows.

P P
JO: iZFfi'giv and ‘]1: lQFflg?

A o P A
The estimate), is obtained as/y = 5 fi - §;- Next, wereducethe hash tables
by deleting the estimated contribution of each frequent item F' from the sketches
contained in those buckets to which the itétrashes to.

Xino(i) = Xehe(s) — fi-xess Yin i) = Yeh ) — i~ wei forie F,1 <t <s



We then multiply the corresponding buckets of the reduced hash tabl&;paid U,
and obtain an estimate fol as the median of averages.

B2 G .
= Xip-Yiy, fort=1,2,...,s, andJ, = mediarf_,J; .

b=0
The join size is estimated a6 = J, + J;. Theorem 2 presents the accuracy versus
space guarantees of the algorithm.
Theorem 2. For any0 < § < 1, A = 64k, ands = O(log ), Pr{|J — J| < E} >
1 — 4, where,E = #-(mg - (ST®(S,k))"/? +ms - (ST (R, k))'/* + .. O
If A = 64k, then, the space used by the algorithnig: - log m log 5 ) bits. The time
taken to process each stream update(il®g %' ) operations. We now prove Theorem 2.

i ¢ t esip Ay 1/2 esia A
Analysis.LetAR:Ang,A =8 % andAg = 8 %

Let I" = (mp(ST(S, k)12 + ms(ST(S, k))1/2).
Lemma 2. Let A > 64k. Then,(i) (mgpAs +msAg) < %%,

(i) (ST(R,k))Y/2(ST(S,k)/? < B and (i) kArAs < B

2

Proof. We use the property th&J“*(R, k) < 7&

SmR(SJ’“(RA))l/z < mR(Sfes(R k))/2

"1/2

(i) mrAr <
mgAg < M) Adding, we obtaln part (i).

, since,A > 64k. Similarly

(i) (ST (R, k))Y/2(ST (S, k))1/2 < BE(ST(S, k))V/2. Similarly,
(ST (R, k))Y/2(ST*(S,k))/? < (ST**(R, k))l/zzﬁszk). Therefore, adding,
we have2(SJ* (R, k))V/2(ST*(S,k))/? < B

(iii) Sincek < & < 4, ST (R, 4) < ST**(R, k) andST*(S, 4) < ST*(S, k).
Thus,kARAS < 6;§’€ (S.T‘"S(R, k)ST® (S, k)'* < B, by part(ii). O

Lemma 3. Let A = 64k. Then,|.Jy — Jo| < (2 + 1P3) B with probability 1 — §.

Proof. By Theorem 1, it follows thaitfi — fil < Ag, and|g; — g;| < Ag, with proba-
bility 1 — 2. Since,|F| < k + k = 2k, therefore,

. > . >
|[Jo — Jo| < |figi — figi| < ((fi + Ar)(9: + As) — fi9:)

2f i2F
= (filds + giAr + ArAs) < mpAs +msAr + |F|ArAsg
i2F T

2r r
<mpAs+mgAr +2kArAs < —+

VE 42V
by Lemma 2, parts (i) and (iii). By union bound, the error probability is bounded by
A g O
8m — 4°




Defining the reduced frequency vectfiras follows.

P fi A if i ¢ F (i.e.,iis not a frequent item)
‘ fi— f; otherwise.

3)

£~ _ y s
Lemma 4. Let A = 64k. Then|E J} — Ji| < Z'Jﬁ' with probability1 — §.

t-7 P
Proof. By Lemmal,EJ; = 5 fi¢l. Thus,

X X X
HEEJ{— J1H = H flgd — figiH < fi— fillgi — il <2kARAs < 1

2D l ieF B i2F 4 v 2k
by Lemma 2, part(iii). The total error probability is boundediségl1 < g. ad

We now present an upper bound on the self-join size of the reduced frequenciés. Let
denote the set of top-items of a stream (sait) in terms of estimated frequencies.

P + i ¢
m 2 es Ik 1/
Lemmas. Letss = O(log ). Then, 5, f7 < SJ®(k) 1432 %

with probability at leastl — 2.

2 e
+2565

Proof. Let P be the set of the tog-items in terms of their true frequencies. Sinée
and H are sets ok values each, thereforg? — H| = |H — P| and we can map each
valuei of P — H to a unique valug® of I — P (arbitrarily). For anyi ¢ P — H,
f; > fv andf; < f.. Therefore, forany € P — H,

0< fi—fi=fu—fi)+(fi—F)+(Fi = fi) < (for — fi) + (Fi = f1) -

Taking absolute valuesf; — fir| < |fir — fu|+|fi — fil < A+A = 2A, by Theorem 1
(with probability 1 — % each). We therefore have,

< < < < <
It = i+ fi < (fo +2-2)% + 1
i@ H 2P H i2(P[H i'2(Hj P i(PLH
2L (RED (HiP) (PLH)
= fl+4A fo+4-|H— P|- A
jer i'2(H i P)
= ST (k) +4A|H — P|Y/? f7+4kA?
iV'2H j P
< ST (k) + 4kY2A(ST (k)2 + 4'k:A2
ﬂ1/2 k -

<SIU() 1432 3 42567 O

P P
Lemma 6. LetA = 64k. Then, ,p f2 < 3IST*(R,k)and ,,p g% < 21ST°*(S,k)
with probability1 — .



Proof. Let Fir denote the tog:items inR in terms of estimated frequencies. Then,
P P . P
20 i = i2m, (fi = fi)? T4 iers ,J:C,Z
< kAR +ST(R k) 1+ %BE + 20k , by Lemmas

= 1ST°(R, k) + ST (R, k)(1 + B=L + ) = 3T1ST°(R, k) .O

Lemma 7. Let A = 64k. Then|J, — Ji| < 8= + -5 with probability 1 — §.

£t~ i P P £t ~7¢
Proof. By Lemma 1, Var? < L'(" 0 f2)( oo g) + L(E JT)2. Substitut-
ing from Lemma 6, we obtain that

£t~

£ / £ / 2 1 \2
(37 es es 37)°r (E Ji )
Var J§ < CO2s7e%(R, k)ST* (S, k) + L(E 7T )?) < (16)(62)(128) +

£ /
bg }mma 2, part(ii) and substituting = 64k. Therefore,(Var Jt 2 < ﬁ% +

£~
§ 0 1/2 3%
.ByLemma 4,EJ] < J,+ B Adding, we hav/e(Var T 25 P+

iP3 + Pr By ChebychevE @quallty PiJ) —E J} | <2(Var J) )V/? > 3,

or that Pr{\J0 Jil} < 2(Var Jj )'/? + B, with probability 3. By a standard
argument of boosting the confidence of taking medians, we obtain the statement of the
lemma. O

8

Proof ( Of Theorem 2.)Adding the errors given by Lemmas 3 and 7 and the error
probabilities , we obtain that/ — J| < (2 + ;b5) #- + B2 + B < £ + A with
probability 1 — $. i

4 Algorithm REDSKETCHA

In this section, we present a variant of REDSKETCH algorithm for estimating join
sizes. The data structure used by REDSKETCHA algorithm is identical to that of
the REDSKETCH algorithm; hence the space and the time complexity of algorithm
REDSKETCHA is the same as that of tHREDSKETCH algorithm. Additionally, the
REDSKETCHA algorithm uses an estimator for the residual self-join §2&°(R, k)

for any stream? which is presented below.

4.1 Estimating SJ*® (k)

The estimator fo8J“**(k) = SJ“*(R, k) uses &ountSketch data structu@sk con-

sisting of s3 = O(log %) independent hash tables[1], ..., T'[s3], each consisting of

A= O(E%) buckets, as explained in Section 2. Li¢tdenote the set of the tapitems

in terms of the estimated frequencies. First, the contributions of thé tgtimated
frequencies are removed from the corresponding sketches contained in the hash tables,
that is, X 5, (iy'=X¢ n, (i — fi x4, for everyi € H and1l < ¢ < s3. Next, we

obtain an estimate, from each hash table indexas follows:Z; = ,f:iol X7, Fi-

nally, we return the estimalﬁfcs(k) as the median of the,’s, that is,éfcs(k) =



medlarjf’I Z;. The accuragy guarantees are given by Theorem 3. The algorithm uses
spaceD % -log % -logm bits and processes each stream update in @leg ).

Theorem 3. If e < L, A > 1600k ands = O(log ™) then,|ST (R, k) - ST (k)| <

eSJ*(k), with probabllltyl -

Pgoof. Let = (fi—fi),ific H andf = f;, fori ¢ H. DefineSF"™(k) =
; 2. Note that the estimata®J " returns an approximation & (k) using the

FAST-AMS algorithm. LetA = Ag. By property ofCountSketch algorithm|fi —
fil < A, with probability1 — 2.

. = ., P P
SPM™(k) =" oplfi = f)?+ auf? <k-A%+" g f?
i P ¢
gSIes(k)'1+§%Z—’“+3%TO’“ , by Lemma 5.

P P
Further,SJ™ > epd’ > epl? 2SIk

By Lemma 1, EZ, = S3™(k) and VarZ, < 3(S3'™(k))2. Therefore,
Chebychev's inequality,Z, — SF™ (k)| < £ S3"™(k) occurs with probability at
Ieast%. Therefore, by boosting the confidence by returni&g the m_eSAiﬁis(k) of

the Z,'s, we have SJ (k) € (1 £ £ )SI'™(k). Therefore, 1 — B ST(k) <

s res . 1 P-—- . ) )
ST (k) < ST (k)1 + p=E 4 3205 (14 $5)ST (k). Substitutingd > 9% and
e < Lgives(l —¢)ST* (k) <Sf (k) < (14 €)ST (k). 0

4.2 Estimating join size using algorithmREDSKETCHA
TheREDSKETCHA algorithm first estimateSJ“*(R, k) andSJ“* (S, k) aséfes( k)

2 es . . . 1 . e
andSJ (S, k) respectively, to within factors of iilfg with prop?%lltyl 32, each
~ S jes A
using the algorithm given above. Letr denote8 % and Ag denote

"1/2

L ges A
m . The algorithm uses the following notion of frequent items.

8
Definition 1. A join value: from the stream? (resp..S) is said to be frequent i
(resp.S), provided, (a)fz > 7AR (resp.g; > ~vAg), and, (|b)f1 |S@mong the topk
estimated frequencies in the stredir{resp.S), where,y = 2 '1 + 2

The value ofe used in Definition 1 is a parameter. LEL (resp.Fs) denote the set
of join values that are frequent iR (resp..S) and let F' denoteFr U Fs. Follow-
ing the paradigm of the bifocal method [13], we decompose theFB)in£itE0 four
compopents, namely], = Jg 4 +|:Jd,s + Jsa + JIs,s where,'ﬁ,d = 2Fp\Fs fiGis
Jss = i@(Fr[Fs) fi9i, Jas = i2FR i Fs fi%andjs,d =  i2FgiFr figi. The es-
timate.J 4 for Jy 4 is obtained as usualyy = ;5 p,\p, fi - §i- Next, wereducethe
hash table structure as follows. For every hash table index< ¢ < sz, we perform
the following operations.

Xihe (i) =Xt he(s) — fl - x4, foreachi € Fr, and
Yin,) =Yen i) — i vei, foreachi € Fg



We then obtain the estimatsfg,s7t andjs@t from each hash table indeéx1 < ¢ < s3,
as follows.

R A i X ¢ A i X R ¢
Jd7s,t = Yt,b : fi *Ttyi o Js,d7t = Xt7b : 9i* Tt
b=0 i2FR:h:(i)=b b=0 i2Fs:h(i)=b

The estimated,; , and.J, 4 are obtained as the medians of the estimajas;, and.J 4,
respectively. That is,

Jus =median?, Jg.;, and  J,q=median?, J, ., .

The estimatesfsys_,t, 1 <t < s3 and the median estima@s is obtained in a manner
identical toJ? and./; in the REDSKETCH algorithm, as follows.

Jos6 = Xt,b : Yrt,ln 1<t < s3, and js,s = mediarjiljs,s,t
b=0

Finally, the estimate/ for the join size is obtained as the sum of the estimates, that
is, J = Jd d+ Jd s+ Js d+ Js s. The space versus accuracy properties of the al-
gorithm is stated in Theorem 4 and proved below.= (SJR)SJ**(S,k))'/? +

(ST (R, k)SJIS9))"/2.

n o
Theorem 4. LetA > 64k ThenPr |J—J|<E >1-6,whereE =min iéLJr
¢
246, 2.72/31 Bl b3 0
Analysis. Let’y = 9 % (as given by Definition 1)71 5y andag = 2. Since,

Sfes(R k) > (R k), with probability 1 — > therefore'3 1/2 A(R k) <
AR, k) < '4 1/ ® A(R, k), which implies thawlA(R k) < AR, k) < 72A(R k).

Similarly, 'ylA(S k) < A(S, k) < y2A(S, k), each with probabilityl — %.

Lemma 8. Supposé is a frequent item irk. Then,f; > (v, — 1)Ag and|f; — f;] <
ef;, with probabilityl — 2. Otherwise f; < (v2+1)A(R, k), with probabilityl — 2.

Proof. By Definition 1 fl > 1 Ag. Therefore, with probability — % fiz(n-

1)Ag. Further, Jf“fl < An g e. i & Fg, then,fi < A(R, k) < 12 AR, k).

Y1l

Therefore, with probablht)l va fi <(v2+1)A(R,k). O

Lemma 9. Lete < 1. Then,|J

Ja,a| < 2J 4,4, with probability1 — .

N P . P
Proof. |Jaa — Jadl < oppelfiGi = figil < sapors Jigi(1+5)* = 1)
5 Ju,qa. Since|Fr N Fs| < k, the total error probability, is at mogt- < 2.

O IA

The reduced frequencies are defined as before, nanfeky: f; if i ¢ Fr, and f?
fi f,, otherwise; and analogously f6t ¢ = g, if i ¢ Fs, andg! = g; — g;, otherwise.



Lemma 10. "E£jd757t/7 desH < %Jd7s + %Jd,d andHE£JAS,d7t/— JS7dH < %Js_,d +
9¢ J4,4, €ach with probabilityl — 2.

E. ~ P 5 )
Proof. Jg s = iZFRy&s figi.-ByLemmal EJys: = o5, fi9;- Therefore,

£ N X >x< ) .
|E Jast — Jas| = | fig; — figil = | fig; + (fi — fi)gil
i2Fp i2FpiFs i2Fp\Fs i2FpiFs

2 1
by Lemma 8. Adding| 5z, \r fidll < iapaas (1 +F2>)2 9 < EJd,d- If i €
E — Fs, then,|f; — fi| < <, by Lemma 8. Thereford, 55 ; p. (fi — f)gil <

If i € Frn Fs, thenf; — fi| < <&, by Lemma 8, andg?| < [g; — gi| < <&

i2Fp i Fs eg'gz = 5.Ja,s- Adding, we obtain the statement of the lemma. The proof
for Jg 4 is analogous/ a
Lemma 11 E Jost — Jss H < eQJd a+ €(Jas + Js,q), with probabilityl —
P

P . P . P .
< orerslfi = fillgi = Gl opgi el fi = filgi + 2k e filgi — Gl
< €2Jd,d + 6(Jd7s + Js,d)- O
P, P
Lemma 12. If A = 64k, then, 5, f? < §SJR)and 5, 97 < $SJS).
Proof. Using(a + b)? < 2(a? + b?), we have,
x| X X
ffs (fi+ar®<2 f242kA%

12FR i2FRr 12FR
1 e A
< 2SJR) + %’””SJ“(R, g) < gsa(R). o

Lemma 13. If A > 64k ande < %, then, i20
2:SJ°*(S, k), with high probability(1 — £).

Proof. Suppose thaltF'’z| = {. Consider the item whose ranklis+ 1. This item must
have frequency at mos/tAR + Ar < (’Yz + 1) AR, otherwise, its estimate would have
crossed the frequent item threshald ; (with probability 1 — 5 5.-), and it, along with
thel higher ranked items would all have been included in the frequent itefrisdihis
would make|Fr| > [ + 1. Thus,

SI(R,1) < (k—1)((y2 +1)Ag)? + ST (R, k)

wAZJFS\T“(R k) < 1+
E

(R, k) and 2D g? <

11

5(k B l) es

P P ., P P

P22D 2= iorg (fi = fi)2 + i2F 2 <1A% + FRFr f? < £SI(R, kl) +
f with probability at Ieasl—— ByLemmas, .. 2 <SI®(R,1) 1+

337+%?l . Adding,
Lo 5(k—1)¢ i 32v1  2561¢¢ 5

2 < Sy (R k) - 4 1 ST - 2 ST (R
iZDf (Bok) G+ It T gt 2 ST ER O



Recall thatd = (SXR)SJT** (S, k))"/2 + (S J‘eS( L k)SIS))V/2.

£ P P Lk
Proof (Of Theorem 4By Lemma 1, Var.J, % ( 2ry O o0 82 +5(E Jas )2
ByzLemmas 12 and £1&;1(/ P 0 [ Gy ) < 1B SJR) - ST(S,k) <
—29/‘6% By Lemma 10, By sy < (Jas+ 9¢ (Ja,a+ Ja,s))- By Chebychev's inequality,
|Jast — E Jase | |< 3(Var Jas. )*/? with probability at least. The median/y,
satisfies the same relation with probability- g. Therefore, using triangle inequality,

. £E. 7, £. 7
|Jas — Jas| <3(Var Jaer )2 +|E Josr — Jasl

34 3Jas 9
< +—=+— Jaa+ Jas
S/ svE 16 W J)

Analogously, it can be shown that

. 34 3J.4 O
Jog— Jogl < =22 4 + 1+
ot = Jodl /20 | 8VEk gt Sf

£, 7 P P £, 7
By Lemma 1, VarJ,;: < 4( ;o5 /%) ,2p9%) + 4(E Jss: )*. Using Lem-
mas 13 and 11 and following a similar reasoning as above, it can be shown that

3
(1+m

—=)(Ja,a+ Js,a) -

£E. ~ A2 (E Jaa )? .- o
Var Js st < gar t cin——» and therefore, the mediah ; satisfies
R A 3 2J
Jos — Jss| < + (EJga+ €(Jas + Joa)(1+ —=) + =2
s, | = Toan (€"Ja.a+ €(Ja, ) Sf) 5%

with probability 1 — £. By Lemma 9/ Ju.a — < 244 < 27, with probability
—g. Adding the errors and error probabilities, and using that2 , we have]j—J| <
4P~ + (4e + #-)J, with probability1 — 3.
The above property holds for all valueseok i. Therefore, we can find the value

“1/3
of e that minimizes the above function. Doing so, we obtaia U/Ib? and sub-
stituting this value yields the statement of the theorem. a

5 Conclusions

In this paper, we present novel, space and time efficient algorithms for estimating the
join size of two data streams consisting of general insertion and deletion operations.
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