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Abstract. We present novel algorithms for estimating the size of the natural join
of two data streams that have efficient update processing times and provide ex-
cellent quality of estimates.

1 Introduction

The problem of accurately estimating the size of the natural join of two database ta-
bles is a classical problem[15, 13, 1, 11, 12], with fundamental applications to database
query optimization and approximate query answering. Prior work in the ’80s through
the mid ’90s largely focussed on thestored datamodel, where, the joining relations are
either disk or memory-resident.Samplingemerged as a popular solution technique in
this model [14, 15, 13].

Thestreaming data model[6, 5, 7, 4] was proposed in the late ’90’s as a model for
a class of monitoring applications, such as network management, RF-id based appli-
cations, sensor networks, etc. These applications are characterized by high volumes of
rapidly and continuously arriving records. The monitoring applications can often tol-
erate approximate answers, provided, (a) the error probability and the approximation
ratio are both guaranteed to be low, (b) the rate of processing is able to keep pace with
the fast arrival rates without significantly degrading the quality of answers, and, (c) the
space consumed is significantly smaller than that needed for exact computation. Ex-
isting streaming algorithms satisfy a majority of the above properties, and in addition,
process the stream in an online fashion, (i.e., look once only).

Data Stream Model and Notation.A data stream is viewed as a sequence of updates
of the form (i, v), where,i takes values from the domainD = {0, 1, . . . , N − 1},
andv is the change in the frequency of the items. Ifv > 0, then we can think of the
tuple(i, v) as representingv insertions ofi; correspondingly, ifv < 0, then,(i, v) can
be thought of as representingv deletions ofi. The frequency ofi, denoted byfi, is
the sum of the changes to the frequency ofi since the inception of the stream, that is,
fi =

P
(i,v) appears in streamv. We denote bymR the sum of the frequencies of the items in

a streamR, that is,mR =
P

i2D fi. In this paper, we consider the insert-only model of
data streams (i.e.,v > 0 for all updates) and the general update model of data streams
(i.e.,v > 0 or v < 0).

The self-join [2, 3, 1] of a streamR is denoted bySJ(R) and is defined asSJ(R) =P
i2D f2

i . Forr = 1, 2, . . . , N , let rank(r) be a (ranking) function that returns an item
whose frequency is therth largest frequency inf (ties are broken arbitrarily). The
residual self-join[8] of a streamR, denoted bySJres(R, k) is defined as the self-join of



R after the top-k ranked frequencies are removed, that is,SJres(R, k) =
P

r>k f2
rank(r).

It is easily shown thatSJres(R, k) ≤ m2
R

4k .

In this paper, we consider two data streamsR andS, and denote the frequencies of
an itemi in streamsR andS by fi andgi respectively. The sizeJ of the natural join of
R andS is defined asJ = |R ./ S| = P

i2D fi ·gi. Following standard convention, we
let 0 < ε ≤ 1 and0 < δ < 1 denote user-specified accuracy and confidence parameters
respectively. When referring to the join ofR andS, we usem to denotemR + mS , SJ
to denoteSJR + SJS , andSJres(k) to denoteSJres(R, k) + SJres(S, k).

Previous work.The seminal work in [1–3] presents the product of sketches tech-
nique that estimates the join size using spaceO(s · (log(mN)) · log 1

δ ) bits with ad-

ditive error ofO( (SJ(R)SJ(S))1/2

ε
p

s
). The work in [1] also presents a space lower bound

of s = Ω(m2

J ) for approximating the join sizeJ to within a constant confidence over
general data streams. The product of sketches algorithm does not match the space lower
bound for the problem, and, the time taken to process each stream update can be large
( O(s · log 1

δ )). TheFast-AGMSalgorithm[10] is a time-efficient variant of the product
of sketches technique, processing stream updates in timeO(log 1

δ ), while providing the
same space versus accuracy guarantees of the product of sketches algorithm.

COUNT-M IN sketches[9] presents an elegant technique for estimating the join
size using spaceO(s(log N + log m) log 1

δ ) bits, timeO(log 1
δ ) for processing each

stream update and with additive estimation error ofO(m2

s ). The cross-sampling al-
gorithm [1] has similar properties; however, it is not applicable to streams with dele-
tion operations and is known to be generally outperformed by sketch-based methods
in practice. The skimmed-sketches algorithm [12] estimates the join size using space
O(s(log N) log(m ·N) · log (m log N)

δ ) bits, timeO(log 1
δ ) for processing each stream

update and with additive error ofO(m2

εs ). TheCOUNT-M IN sketch and skimmed-sketch
techniques match the worst-case lower bound for the problem. Their main drawback is
that they often perform poorly in comparison with the simple product of sketches al-
gorithm, since, the complexity termm2 of [12] is in practice, much larger than the
self-join sizes.

Contributions.In this paper, we present two novel, space-time efficient algorithms
called REDSKETCH and REDSKETCH-A for estimating the size of the natural join
of two data streams. TheREDSKETCH algorithm estimates the join size usingO(s ·
log(mN)·log m

δ ) bits , with additive error= O(m¢(SJres(s))1/2
p

s
). TheREDSKETCH-A al-

gorithm estimates the join size using spaceO(s·log(mN)·log m
δ ) bits and with additive

estimation error ofO
‡

J2/3¢(SJ)1/6¢(SJres(s))1/6

s1/6

·
. Both algorithms process each stream

update in timeO(log m
δ ) and match the space lower bound of [1] (up to logarithmic

factors). Our algorithms are practically effective, since, the bounds are in terms ofSJ
andSJres

s , which are significantly less thanm2 and m2

s , respectively, in practice.

Organization.The rest of the paper is organized as follows. In Section 2, we re-
view basic data stream algorithms that we use later. Sections 3 and 4 present the
REDSKETCH and theREDSKETCH-A algorithms respectively. We conclude in Sec-
tion 5.



2 Review

In this section, we review sketches [2, 3], the algorithmCountSketch [8] for approxi-
mately finding the top-k frequent items overR and theFAST-AGMS algorithm [10] for
estimating binary join sizes.

Sketches and estimating self-join sizes.A sketch[2, 3]X of the streamR is a random
integer defined asX =

P
i2D fi · xi, where, for eachi ∈ D, xi is chosen randomly

from the set{−1, +1} such that the family of random variables{xi}i2D are four-
wise independent. The family{xi}i2D is called thesketch basis. Corresponding to a
stream update of the form(i, v), the sketch is updated in timeO(1) as follows:X
:= X + xi · v. It can be shown that E

£
X2

⁄
= SJ and Var

£
X2

⁄
= O(SJ2). An ε-

accurate estimate of the self-join is obtained by taking the average ofO( 1
ε2 ) independent

sketches. The confidence of the estimate is boosted to1 − δ by using the standard
technique of returning the median ofO(log 1

δ ) independently computed averages.

Algorithm CountSketch[8]. Sketches are used in [8] to design theCountSketch al-
gorithm for finding the top-k frequent items in a data stream. The data structure called
CSK consists of a collection ofs hash tables,T [1], . . . , T [s], each consisting ofA buck-
ets. A pair-wise independent hash functionht : D → {0, 1, . . . , A− 1} and a pair-wise
independent sketch basis{xt,i}i2D are associated with each hash table,1 ≤ t ≤ s.
Each bucket,T [t, b] keeps the sketchXt,b =

P
ht(i)=b fi · xt,i, of the sub-stream of

the items that map to this bucket. In addition, an array capable of storingA pairs of the
form (i, f̂i) is kept and organized as a classical min-heap data structure. Corresponding
to a stream update(i, v), the structureCSK is updated in timeO(s) as follows.

UPDATECSK(i, v) : for t := 1 to s do Xt,ht(i) := Xt,ht(i) + v · xt,i endfor

Once all the hash tables are updated, the frequencyfi is estimated as

f̂i = medianst=1Xt,ht(i) · xt,i . (1)

If f̂i exceeds the lowest value estimate in the heapH, then, the latter value is evicted and
replaced by the pair(i, f̂i). The estimation guarantees of theCountSketch algorithm are
stated as a function∆ of the residual self-join and is summarized below.

∆(s,A) = 8
µ

SJres(s)
A

¶1/2

(2)

Theorem 1 ([8]).Lets = O(log m
δ ), A ≥ 8 · k, and let∆ = ∆(A

8 , A). Then, for every

itemi, Pr
n
|f̂i − fi| ≤ ∆

o
≥ 1− δ

2¢m . The space complexity isO(k·log m
δ ·(log(m·N))

bits, and the time taken to process a stream update isO(log m
δ ). ut

The FAST-AMS [16] and FAST-AGMS algorithms [10]. The FAST-AGMS al-
gorithm is a time-efficient variant of the product of sketches technique for estimating
join sizes. TheCountSketch based second moment estimator presented in [16] applies a



similar optimization for reducing the processing time for estimating self-joins. The al-
gorithm uses a pair of set of hash tables,T1, T2, . . . , Ts andU1, U2, . . . , Us for streams
R andS respectively, such that, each hash table consists ofA buckets. TheT andU
hash tables areparallel in the sense that for1 ≤ t ≤ s, the tablesTt andUt use the same
random pair-wise independent hash functionht : D → {0, 1, . . . , A− 1} and the same
four-wise independent sketch basis{xt,i}. The random bits used for different hash table
indices are independent of each other. For1 ≤ t ≤ s and0 ≤ b ≤ A − 1, each bucket
Tt[b] (resp.Ut[b]), contains a single sketchXt,b (resp.Yt,b) of the sub-stream of items
that hash to this bucket, that is,Xt,b =

P
ht(i)=b fi ·xt,i (resp.Yt,b =

P
ht(i)=b gi ·xt,i).

Updates to the streamR or S are propagated to the corresponding data structureT or U
appropriately, similar to theUPDATECSK sub-routine given in Section 2. For each hash
table indext, 1 ≤ t ≤ s, an estimatêJt is obtained as follows:̂Jt =

PA¡1
b=0 Xt,b · Yt,b.

Finally, the median of these estimates is returned as the estimate of the join size, that is,
Ĵ = medianst=1Ĵt. Lemma 1 summarizes the basic property of this algorithm.

Lemma 1 ([10, 16]).E
£
Ĵt

⁄
= J andVar

£
Ĵt

⁄ ≤ 1
A

¡
SJ(R) · SJ(S) + J2

¢
. In particu-

lar, if R = S, then,E
£
Ĵt

⁄
= SJ(R) andVar

£
Ĵ

⁄
< 2(SJ(R))2

A . ut

3 Algorithm REDSKETCH for join size estimation

In this section, we present the algorithmREDSKETCH for estimating the size of the
join of data streamsR andS for the insert-only stream model. The algorithm can be
extended to insert-delete streams by using a variant of theCountSketch algorithm that
can handle deletions.

The data structure used by the algorithm is a pair ofparallel CountSketch struc-
tures denoted byCSKR and CSKS , for streamsR andS respectively. The structures
CSKR andCSKS use a pair ofparallel hash table sets,T [1], . . . , T [s] for CSKR and
U [1], . . . , U [s] for CSKS , respectively, each consisting ofA buckets. The hash table sets
in the sense thatTt andUt use the same random pair-wise independent hash function
ht and the same four-wise independent sketch basisxt,i. The updates to the structure
are done as in theCountSketch algorithm.

A join valuei from streamR (resp.S) is said to befrequentin R (resp.S) provided
its estimatef̂i obtained using the frequency estimation procedure ofCountSketch(resp.
ĝi) is among the top-k estimated frequencies in the streamR (resp.S).

Let F denote the set of join values that are frequent in eitherR or S. We decompose
the join sizeJ into two components as follows.

J0 =
P

i2F fi · gi, and J1 =
P

i 62F fi · gi.

The estimateĴ0 is obtained asĴ0 =
P

i2F f̂i · ĝi. Next, wereducethe hash tables
by deleting the estimated contribution of each frequent itemi ∈ F from the sketches
contained in those buckets to which the itemi hashes to.

Xt,ht(i) := Xt,ht(i) − f̂i · xt,i ; Yt,ht(i) := Yt,ht(i) − ĝi · xt,i for i ∈ F , 1 ≤ t ≤ s



We then multiply the corresponding buckets of the reduced hash table pairTt andUt

and obtain an estimate forJ1 as the median of averages.

J 0
t =

A¡1X

b=0

Xt,b · Yt,b, for t = 1, 2, . . . , s, andĴ1 = medianst=1J
0
t .

The join size is estimated aŝJ = Ĵ0 + Ĵ1. Theorem 2 presents the accuracy versus
space guarantees of the algorithm.

Theorem 2. For any0 < δ < 1, A = 64k, ands = O(log m
δ ), Pr{|Ĵ − J | ≤ E} ≥

1− δ, where,E = 4p
k
(mR · (SJres(S, k))1/2 + mS · (SJres(R, k))1/2 + J

4
p

k
. ut

If A = 64k, then, the space used by the algorithm isO(k · log m log m
δ ) bits. The time

taken to process each stream update isO(log m
δ ) operations. We now prove Theorem 2.

Analysis. Let ∆R = ∆R

¡
A
8 , A

¢
= 8

‡
(SJres(R, A

8 )

A

·1/2

and∆S = 8
‡

SJres(S, A
8 )

A

·1/2

.

Let Γ = (mR(SJres(S, k)1/2 + mS(SJres(S, k))1/2).

Lemma 2. LetA ≥ 64k. Then,(i) (mR∆S + mS∆R) ≤ 2Γp
k
,

(ii) (SJres(R, k))1/2(SJres(S, k))1/2 ≤ Γ
8

p
2k

and (iii) k∆R∆S ≤ Γ
8

p
2k

.

Proof. We use the property thatSJres(R, k) ≤ m2
R

4k .

(i) mR∆R ≤ 8mR(SJres(R, A
8 ))1/2

p
A

≤ mR(SJres(R,k))1/2
p

k
, since,A ≥ 64k. Similarly

mS∆S ≤ mS SJres(S,k)p
k

). Adding, we obtain part (i).

(ii ) (SJres(R, k))1/2(SJres(S, k))1/2 ≤ mR

4
p

2k
(SJres(S, k))1/2. Similarly,

(SJres(R, k))1/2(SJres(S, k))1/2 ≤ (SJres(R, k))1/2 mS

4
p

2k
). Therefore, adding,

we have,2(SJres(R, k))1/2(SJres(S, k))1/2 ≤ Γ
4

p
2k

.

(iii ) Since,k ≤ A
64 < A

8 , SJres(R, A
8 ) ≤ SJres(R, k) andSJres(S, A

8 ) ≤ SJres(S, k).
Thus,k∆R∆S ≤ 64k

A (SJres(R, k)SJres(S, k))1/2 ≤ Γ
8

p
2k

, by part(ii). ut
Lemma 3. LetA = 64k. Then,|Ĵ0 − J0| ≤ (2 + 1

4
p

2
) Γp

k
with probability1− δ

4 .

Proof. By Theorem 1, it follows that|f̂i − fi| ≤ ∆R, and|ĝi − gi| ≤ ∆S , with proba-
bility 1− δ

8m . Since,|F | ≤ k + k = 2k, therefore,

|Ĵ0 − J0| ≤
X

i2F

|f̂iĝi − figi| ≤
X

i2F

((fi + ∆R)(gi + ∆S)− figi)

=
X

i2F

(fi∆S + gi∆R + ∆R∆S) ≤ mR∆S + mS∆R + |F |∆R∆S

≤ mR∆S + mS∆R + 2k∆R∆S ≤
µ

2Γ√
k

+
Γ

4
√

2
√

k

¶

by Lemma 2, parts (i) and (iii). By union bound, the error probability is bounded by
δjF j
8m ≤ δ

4 . ut



Defining the reduced frequency vectorf 0 as follows.

f 0
i =

(
fi if i 6∈ F (i.e., i is not a frequent item)

fi − f̂i otherwise.
(3)

Lemma 4. LetA = 64k. Then,|E£
J 0

t

⁄− J1| ≤ Γ
4

p
2k

, with probability1− δ
4 .

Proof. By Lemma 1, E
£
J 0

t

⁄
=

P
i2D f 0

ig
0
i. Thus,

flflE£
J 0

t

⁄− J1

flfl =
flflX

i2D
f 0

ig
0
i −

X

i 62F

figi

flfl ≤
X

i2F

|fi − f̂i||gi − ĝi| ≤ 2k∆R∆S ≤ Γ

4
√

2k

by Lemma 2, part(iii). The total error probability is bounded byδjF j
8m ≤ δ

4 . ut

We now present an upper bound on the self-join size of the reduced frequencies. LetH
denote the set of top-k items of a stream (sayR) in terms of estimated frequencies.

Lemma 5. Lets3 = O(log m
δ ). Then,

P
i 62H f2

i ≤ SJres(k)
‡
1 + 32

¡
k
A

¢1/2
+ 256 k

A

·
,

with probability at least1− δ
16 .

Proof. Let P be the set of the top-k items in terms of their true frequencies. SinceP
andH are sets ofk values each, therefore,|P −H| = |H − P | and we can map each
value i of P − H to a unique valuei0 of H − P (arbitrarily). For anyi ∈ P − H,
fi ≥ fi′ andf̂i ≤ f̂i′ . Therefore, for anyi ∈ P −H,

0 ≤ fi − fi′ = (f̂i′ − fi′) + (fi − f̂i) + (f̂i − f̂i′) ≤ (f̂i′ − fi′) + (f̂i − fi) .

Taking absolute values,|fi−fi′ | ≤ |f̂i′−fi′ |+ |f̂i−fi| ≤ ∆+∆ = 2∆, by Theorem 1
(with probability1− δ

8m each). We therefore have,

X

i 62H

f2
i =

X

i2P ¡H

f2
i +

X

i 62(P [H)

f2
i ≤

X

i′2(H¡P )

(fi′ + 2 ·∆)2 +
X

i 62(P [H)

f2
i

=
X

j 62P

f2
j + 4∆

X

i′2(H¡P )

fi′ + 4 · |H − P | ·∆2

= SJres(k) + 4∆|H − P |1/2
X

i′2H¡P

f2
i′ + 4k∆2

≤ SJres(k) + 4k1/2∆(SJres(k))1/2 + 4k∆2

< SJres(k)

ˆ
1 + 32

µ
k

A

¶1/2

+ 256
k

A

!
ut

Lemma 6. LetA = 64k. Then,
P

i2D f 02
i < 37

4 SJres(R, k) and
P

i2D g02
i < 37

4 SJres(S, k)
with probability1− δ

16 .



Proof. Let FR denote the top-k items inR in terms of estimated frequencies. Then,
P

i2D f 02
i =

P
i2FR

(fi − f̂i)2 +
P

i 62FR
f2

i

≤ k∆2
R + SJres(R, k)

‡
1 + 32

p
kp

A
+ 256k

A

·
, by Lemma 5

= 1
4 SJres(R, k) + SJres(R, k)(1 + 32

p
kp

64k
+ 256k

64k ) = 37
4 SJres(R, k) .ut

Lemma 7. LetA = 64k. Then,|Ĵ1 − J1| ≤ Γp
k

+ J1

4
p

k
with probability1− δ

4 .

Proof. By Lemma 1, Var
£
J 0

t

⁄ ≤ 1
A

¡
(
P

i2D f 02
i )(

P
i2D g02

i ) + 1
A (E

£
J 0

t

⁄
)2

¢
. Substitut-

ing from Lemma 6, we obtain that

Var
£
J 0

t

⁄ ≤ (37)2

16A SJres(R, k)SJres(S, k) + 1
A (E

£
J 0

t

⁄
)2) ≤ (37)2Γ 2

(16)(64)(128)k +
(E

£
J′t

⁄
)2

64k

by Lemma 2, part(ii) and substitutingA = 64k. Therefore,(Var
£
J 0

t

⁄
)1/2 ≤ 37Γ

256
p

2k
+

E
£
J ′t

⁄
8

p
k

. By Lemma 4, E
£
J 0

t

⁄ ≤ J1 + Γ
4

p
2k

. Adding, we have,(Var
£
J 0

t

⁄
)1/2 < 37Γ

256
p

2k
+

Γ
32k

p
2

+ J1

8
p

k
. By Chebychev’s inequality Pr

'|J 0
t − E

£
J 0

t

⁄| ≤ 2(Var
£
J 0

t

⁄
)1/2

“ ≥ 3
4 ,

or that Pr{|J 0
t − J1|} ≤ 2(Var

£
J 0

t

⁄
)1/2 + Γ

4
p

2k
, with probability 3

4 . By a standard
argument of boosting the confidence of taking medians, we obtain the statement of the
lemma. ut
Proof ( Of Theorem 2.).Adding the errors given by Lemmas 3 and 7 and the error
probabilities , we obtain that|Ĵ − J | ≤ (2 + 1

4
p

2
) Γp

k
+ Γp

k
+ J1

4
p

k
< 4Γp

k
+ J

4
p

k
with

probability1− δ
2 . ut

4 Algorithm REDSKETCH-A

In this section, we present a variant of theREDSKETCH algorithm for estimating join
sizes. The data structure used by theREDSKETCH-A algorithm is identical to that of
the REDSKETCH algorithm; hence the space and the time complexity of algorithm
REDSKETCH-A is the same as that of theREDSKETCH algorithm. Additionally, the
REDSKETCH-A algorithm uses an estimator for the residual self-join sizeSJres(R, k)
for any streamR which is presented below.

4.1 EstimatingSJres(k)

The estimator forSJres(k) = SJres(R, k) uses aCountSketch data structureCSK con-
sisting ofs3 = O(log m

δ ) independent hash tables,T [1], . . . , T [s3], each consisting of
A = O( k

ε2 ) buckets, as explained in Section 2. LetH denote the set of the top-k items
in terms of the estimated frequencies. First, the contributions of the top-k estimated
frequencies are removed from the corresponding sketches contained in the hash tables,
that is,Xt,ht(i):=Xt,ht(i) − f̂i · xt,i, for every i ∈ H and 1 ≤ t ≤ s3. Next, we

obtain an estimateZt from each hash table indext as follows:Zt =
PA¡1

b=0 X2
t,b. Fi-

nally, we return the estimatêSJ
res

(k) as the median of theZt’s, that is,ŜJ
res

(k) =



medians3
t=1Zt. The accuracy guarantees are given by Theorem 3. The algorithm uses

spaceO
¡

k
ε2 · log m

δ · log m
¢

bits and processes each stream update in timeO(log m
δ ).

Theorem 3. If ε ≤ 1
8 , A ≥ 1600k

ε2 ands3 = O(log m
δ ) then,|ŜJ

res
(R, k)−SJres(k)| ≤

εSJres(k), with probability1− δ.

Proof. Let f 0
i = (fi − f̂i), if i ∈ H, andf 0

i = fi, for i 6∈ H. DefineSJsuffix(k) =P
i f 02

i . Note that the estimator̂SJ
res

returns an approximation ofSJsuffix(k) using the
FAST-AMS algorithm. Let∆ = ∆R. By property ofCountSketch algorithm,|f̂i −
fi| ≤ ∆, with probability1− δ

8m .

SJsuffix(k) =
P

i2H(fi − f̂i)2 +
P

i 62H f2
i ≤ k ·∆2 +

P
i 62H f2

i

≤ SJres(k)
¡
1 + 32

p
kp

A
+ 320k

A

¢
, by Lemma 5.

Further,SJsuffix ≥ P
i62H f2

i ≥
P

i62P f2
i ≥ SJres(k).

By Lemma 1, E
£
Zt

⁄
= SJsuffix(k) and Var

£
Zt

⁄ ≤ 2
A (SJsuffix(k))2. Therefore,

Chebychev’s inequality,|Zt − SJsuffix(k)| ≤ 2p
A

SJsuffix(k) occurs with probability at

least 3
4 . Therefore, by boosting the confidence by returning the medianŜJ

res
(k) of

theZt’s, we have,ŜJ
res

(k) ∈ (1 ± 2p
A

)SJsuffix(k). Therefore,
‡
1− 2p

A

·
SJres(k) ≤

ŜJ
res

(k) ≤ SJres(k)
¡
1+ 32

p
kp

A
+ 320k

A

¢
(1+ 2p

A
)SJres(k). SubstitutingA ≥ 1600

ε2 and

ε ≤ 1
8 gives(1− ε)SJres(k) ≤ ŜJ

res
(k) ≤ (1 + ε)SJres(k). ut

4.2 Estimating join size using algorithmREDSKETCH-A

TheREDSKETCH-A algorithm first estimatesSJres(R, k) andSJres(S, k) asŜJ
res

(R, k)
andŜJ

res
(S, k) respectively, to within factors of1 ± 1

8 with probability1 − δ
32 , each,

using the algorithm given above. Let̂∆R denote8
‡

ŜJ
res

(R, A
8 )

A

·1/2

and ∆̂S denote

8
‡

ŜJ
res

(S, A
8 )

A

·1/2

. The algorithm uses the following notion of frequent items.

Definition 1. A join valuei from the streamR (resp.S) is said to be frequent inR
(resp.S), provided, (a)f̂i ≥ γ∆̂R (resp. ĝi ≥ γ∆̂S), and, (b)̂fi is among the top-k
estimated frequencies in the streamR (resp.S), where,γ = 6

5

¡
1 + 2

ε

¢
. ut

The value ofε used in Definition 1 is a parameter. LetFR (resp.FS) denote the set
of join values that are frequent inR (resp.S) and letF denoteFR ∪ FS . Follow-
ing the paradigm of the bifocal method [13], we decompose the join sizeJ into four
components, namely,J = Jd,d + Jd,s + Js,d + Js,s, where,Jd,d =

P
i2FR\FS

figi,
Js,s =

P
i 62(FR[FS) figi, Jd,s =

P
i2FR¡FS

figi andJs,d =
P

i2FS¡FR
figi. The es-

timateĴd,d for Jd,d is obtained as usual:̂Jd,d =
P

i2FR\FS
f̂i · ĝi. Next, wereducethe

hash table structure as follows. For every hash table indext, 1 ≤ t ≤ s3, we perform
the following operations.

Xt,ht(i) :=Xt,ht(i) − f̂i · xt,i, for eachi ∈ FR, and
Yt,ht(i) :=Yt,ht(i) − ĝi · xt,i, for eachi ∈ FS



We then obtain the estimateŝJd,s,t andĴs,d,t from each hash table indext, 1 ≤ t ≤ s3,
as follows.

Ĵd,s,t =
A¡1X

b=0

Yt,b ·
¡ X

i2FR:ht(i)=b

f̂i · xt,i

¢
, Ĵs,d,t =

A¡1X

b=0

Xt,b ·
¡ X

i2FS :ht(i)=b

ĝi · xt,i

¢

The estimateŝJd,s andĴs,d are obtained as the medians of the estimatesĴd,s,t andĴs,d,t

respectively. That is,

Ĵd,s = medians3
t=1Ĵd,s,t, and Ĵs,d = medians3

t=1Ĵs,d,t .

The estimateŝJs,s,t, 1 ≤ t ≤ s3 and the median estimatêJs,s is obtained in a manner
identical toJ 0

t andĴ1 in theREDSKETCH algorithm, as follows.

Ĵs,s,t =
A¡1X

b=0

Xt,b · Yt,b, 1 ≤ t ≤ s3, and Ĵs,s = medians3
t=1Ĵs,s,t

Finally, the estimatêJ for the join size is obtained as the sum of the estimates, that
is, Ĵ = Ĵd,d + Ĵd,s + Ĵs,d + Ĵs,s. The space versus accuracy properties of the al-
gorithm is stated in Theorem 4 and proved below.Λ = (SJ(R)SJres(S, k))1/2 +
(SJres(R, k)SJ(S))1/2.

Theorem 4. LetA ≥ 64k . Then,Pr
n
|Ĵ − J | ≤ E

o
≥ 1−δ, where,E = min

¡
32Λp

k
+

J
2 + Jp

k
), 2J2/3

¡
2Λp

k

¢1/3¢
. ut

Analysis. Let γ = 6
5

¡
1 + 2

ε

¢
(as given by Definition 1),γ1 = 5

6γ andγ2 = 6
5γ. Since,

ŜJ
res

(R, k) ≥ 3
4 SJres(R, k), with probability 1 − δ

8m , therefore,
¡

3
4

¢1/2
∆(R, k) ≤

∆̂(R, k) ≤ ¡
4
3

¢1/2
∆(R, k), which implies that,γ1∆(R, k) ≤ ∆̂(R, k) ≤ γ2∆(R, k).

Similarly, γ1∆(S, k) ≤ ∆̂(S, k) ≤ γ2∆(S, k), each with probability1− δ
8m .

Lemma 8. Supposei is a frequent item inR. Then,fi ≥ (γ1 − 1)∆R and |f̂i − fi| ≤
εfi, with probability1− δ

8m . Otherwise,fi < (γ2+1)∆(R, k), with probability1− δ
8m .

Proof. By Definition 1, f̂i ≥ γ1∆R. Therefore, with probability1 − δ
8m , fi ≥ (γ1 −

1)∆R. Further, jf̂i¡fij
fi

≤ ∆R

γ1¡1 ≤ ε. If i 6∈ FR, then,f̂i < γ1∆̂(R, k) ≤ γ2∆(R, k).
Therefore, with probability1− δ

8m , fi < (γ2 + 1)∆(R, k). ut

Lemma 9. Let ε ≤ 1. Then,|Ĵd,d − Jd,d| ≤ 5ε
4 Jd,d, with probability1− δ

8 .

Proof. |Ĵd,d − Jd,d| ≤
P

i2FR\FS
|f̂iĝi − figi| ≤

P
i2FR\FS

figi((1 + ε
2 )2 − 1) ≤

5ε
4 Jd,d. Since,|FR ∩ FS | ≤ k, the total error probability, is at mostδk

8m ≤ δ
8 . ut

The reduced frequencies are defined as before, namely:f 0
i = fi if i 6∈ FR, andf 0

i =
fi−f̂i, otherwise; and analogously forS: g0

i = gi if i 6∈ FS , andg0
i = gi−ĝi, otherwise.



Lemma 10.
flflE£

Ĵd,s,t

⁄ − Jd,s

flfl ≤ ε
2Jd,s + 9ε

16Jd,d and
flflE£

Ĵs,d,t

⁄ − Js,d

flfl ≤ ε
2Js,d +

9ε
16Jd,d, each with probability1− δ

8 .

Proof. Jd,s =
P

i2FR¡FS
figi. By Lemma 1, E

£
Ĵd,s,t

⁄
=

P
i2FR

f̂ig
0
i. Therefore,

|E£
Ĵd,s,t

⁄− Jd,s| = |
X

i2FR

f̂ig
0
i −

X

i2FR¡FS

figi| = |
X

i2FR\FS

f̂ig
0
i +

X

i2FR¡FS

(f̂i − fi)gi|

If i ∈ FR ∩ FS , then, |f̂i − fi| ≤ εfi

2 , by Lemma 8, and|g0
i| ≤ |ĝi − gi| ≤ εgi

2 ,

by Lemma 8. Adding,|Pi2FR\FS
f̂ig

0
i| ≤

P
i2FR\FS

(1 + ε
2 ) ε

2figi ≤ 9ε
16Jd,d. If i ∈

FR − FS , then,|f̂i − fi| ≤ εfi

2 , by Lemma 8. Therefore,|Pi2FR¡FS
(f̂i − fi)gi| ≤P

i2FR¡FS

εfi

2 gi = ε
2Jd,s. Adding, we obtain the statement of the lemma. The proof

for Js,d is analogous. ut
Lemma 11.

flflE£
Ĵs,s,t

⁄− Js,s

flfl ≤ ε2Jd,d + ε(Jd,s + Js,d), with probability1− δ
4 .

Proof.
flflE£

Ĵs,s,t

⁄− Js,s

flfl =
flflP

i2D f 0
ig

0
i −

P
i 62(FR[FS) figi

flfl

≤ P
i2FR\FS

|fi − f̂i||gi − ĝi|+
P

i2FR¡FS
|fi − f̂i|gi +

P
i2FS¡FR

fi|gi − ĝi|

≤ ε2Jd,d + ε(Jd,s + Js,d). ut
Lemma 12. If A = 64k, then,

P
i2FR

f̂2
i ≤ 9

4 SJ(R) and
P

i2FS
ĝ2

i ≤ 9
4 SJ(S).

Proof. Using(a + b)2 ≤ 2(a2 + b2), we have,
X

i2FR

f̂2
i ≤

X

i2FR

(fi + ∆R)2 ≤ 2
X

i2FR

f2
i + 2k∆2

R

≤ 2SJ(R) +
16k

A
SJres(R,

A

8
) ≤ 5

2
SJ(R). ut

Lemma 13. If A ≥ 64k andε ≤ 1
4 , then,

P
i2D f 02

i ≤ 5
4ε2 SJres(R, k) and

P
i2D g02

i ≤
5

4ε2 SJres(S, k), with high probability(1− δ
8 ).

Proof. Suppose that|FR| = l. Consider the item whose rank isl + 1. This item must
have frequency at mostγ∆̂R + ∆R ≤ (γ2 + 1)∆R, otherwise, its estimate would have
crossed the frequent item thresholdγ∆̂R (with probability1− δ

8m ), and it, along with
thel higher ranked items would all have been included in the frequent item setFR. This
would make|FR| ≥ l + 1. Thus,

SJres(R, l) ≤ (k − l)((γ2 + 1)∆R)2 + SJres(R, k)

≤ 10(k − l)
ε2

∆2
R + SJres(R, k) ≤

µ
1 +

5(k − l)
4ε2k

¶
SJres(R, k)

P
i2D f 02

i =
P

i2FR
(fi − f̂i)2 +

P
i62FR

f2
i ≤ l∆2

R +
P

i 62FR
f2

i ≤ l
8k SJres(R, k) +P

i 62FR
f2

i , with probability at least1− lδ
8m . By Lemma 5,

P
i62FR

f2
i ≤ SJres(R, l)

¡
1+

32
p

lp
A

+ 256l
A

¢
. Adding,

X

i2D
f 02

i ≤ SJres(R, k)
¡ l

8k
+

¡
1 +

5(k − l)
4ε2k

¢¡
1 +

32
√

l√
A

+
256l

A

¢¢ ≤ 5
4ε2

SJres(R, k) .ut



Recall thatΛ = (SJ(R)SJres(S, k))1/2 + (SJres(R, k)SJ(S))1/2.

Proof (Of Theorem 4).By Lemma 1, Var
£
Ĵd,s,t

⁄ ≤ 1
A (

P
i2FR

f̂2
i )(

P
i2D g02

i )+ 1
A (E

£
Jd,s,t

⁄
)2.

By Lemmas 12 and 13,1A (
P

i2FR
f̂2

i )(
P

i2D g02
i ) ≤ 45

16ε2A SJ(R) · SJres(S, k) ≤
Λ2

20ε2k . By Lemma 10, E
£
Ĵd,s,t

⁄ ≤ (Jd,s + 9ε
16 (Jd,d +Jd,s)). By Chebychev’s inequality,

|Ĵd,s,t − E
£
Jd,s,t

⁄| |≤ 3(Var
£
Ĵd,s,t

⁄
)1/2 with probability at least89 . The medianĴd,s

satisfies the same relation with probability1− δ
4 . Therefore, using triangle inequality,

|Ĵd,s − Jd,s| ≤ 3(Var
£
Ĵd,s,t

⁄
)1/2 + |E£

Ĵd,s,t

⁄− Jd,s|
≤ 3Λ

ε
√

20
+

3Jd,s

8
√

k
+

9ε

16
(1 +

3
8
√

k
)(Jd,d + Jd,s)

Analogously, it can be shown that

|Ĵs,d − Js,d| ≤ 3Λ

ε
√

20
+

3Js,d

8
√

k
+

9ε

16
(1 +

3
8
√

k
)(Jd,d + Js,d) .

By Lemma 1, Var
£
Ĵs,s,t

⁄ ≤ 1
A (

P
i2D f 02)(

P
j2D g02) + 1

A (E
£
Ĵs,s,t

⁄
)2. Using Lem-

mas 13 and 11 and following a similar reasoning as above, it can be shown that

Var
£
Ĵs,s,t

⁄ ≤ Λ2

40ε4k +
(E

£
Ĵs,s,t

⁄
)2

64k , and therefore, the median̂Js,s satisfies

|Ĵs,s − Js,s| ≤ Λ√
40ε2k

+ (ε2Jd,d + ε(Jd,s + Js,d))(1 +
3

8
√

k
) +

2Js,s

8
√

k

with probability1 − δ
8 . By Lemma 9,|Ĵd,d − Jd,d| ≤ 5ε

4 Jd,d ≤ 5ε
4 J , with probability

1− δ
8 . Adding the errors and error probabilities, and using thatε ≤ 1

4 , we have,|Ĵ−J | ≤
Λ

2ε2
p

k
+ (4ε + 2p

k
)J , with probability1− δ

2 .

The above property holds for all values ofε ≤ 1
4 . Therefore, we can find the value

of ε that minimizes the above function. Doing so, we obtainε =
‡

Λ
4J

p
k

·1/3

and sub-

stituting this value yields the statement of the theorem. ut

5 Conclusions

In this paper, we present novel, space and time efficient algorithms for estimating the
join size of two data streams consisting of general insertion and deletion operations.
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