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Abstract

We present an algorithm for computing F},, the pth moment of an n-dimensional frequency
vector of a data stream, for p > 2, to within 1 & € factors, ¢ € (0,1] with high constant
probability. The space used is O(p?e~2n' =2/ E(p,n)log(n) log(nmM)/ min(log(n), e*/P~2))
bits, where, E(p,n) = (1—2/p)~ (1 —n*®=2)) and is O(1) for p = 2+ Q(1) and O(logn) for
p =2+0(1/log(n). This improves upon the space required by current algorithms [10, 5, 2, 6]
by a factor of at least O(e~*/? min(log(n), €*/?~2)). The update time is O((logn)(loglogn)?).
We use a new technique for designing estimators for functions of the form (E [X]), where,
X is a random variable and 1 is a smooth function, based on a low-degree Taylor polynomial
expansion of ¥ (E [X]) around an estimate of E [X].

1 Introduction

Massive and continuous data is generated by varied sources, such as data network switches,
satellite imagery, sensor networks, web-click and transaction data, and require efficient, on-the
fly analysis for early warning of critical or significant behavior. The data stream model is one
of well-known computational models for massive data analysis. In this model an algorithm is
typically given a relatively small amount of memory to summarize a large and (often rapidly
arriving) dataset and is usually allowed a single pass (or at most a few passes) over the data.
The algorithm must answer queries on the dataset for which it may only use the data summary.
The model has been used in earlier work by Morris [14], Munro and Patterson [15] and Flajolet
and Martin [9]. The streaming model became popular due to the seminal works of Alon, Matias
and Szegedy [1] and a simultaneous growth in applications for monitoring massive data from
various quarters, including networking and sensor networks. For a survey, see the book by
Muthukrishnan [32].

A data stream is viewed as a sequence of records of the form (i, v), where, i € {1,2,...,n} =
[n] and v € [-M, ..., M] and integral. The record (i,v) changes the frequency f; as f; < fi+v.
The vector f = [f1, fo,..., fa]T is called the frequency vector of the stream. Let m be the
number of records appearing in the stream. Given a function of the frequency vector of the
stream, the problem is to compute the function using space that is sub-linear in n and m. The
space used is one of the measures used for comparing randomized algorithm streaming algorithm.
The time taken to process each stream update (i,v) is another measure of a streaming algorithm
and is called update time. Finally, the time taken to report the query is the reporting time and
is also a measure that has been used [12].

The pth moment of the frequency vector f is defined as F), = Zie[n]| filP. In this work,
we consider the following problem. Given p > 2 and e¢ € (0,1], design an algorithm that



F, Algorithm Space O(words) Update time O(-)
AMS [1] nl=1/pe=2 ni=1/Pe=2
IW([10] n1=2/pe1210g0M p, (1og®D n) (log(mM))
Hss® [5] n'=2/Pe=2=4/p(log n)(log(mM))p? (logn)(log(mM))
MW [13] n'=2/P(e~Tlog(n))°M n'=2/Ppoly(e~logn)
AKO? [2] n1=2/Pe=2=6/P(logn)p? E(p, n) logn
BO [6] nl=2/Pe=2=4/Plog(n)p?g(p,n) logn
—2/p_—2 2
this paper z mi;(lo;;(zi()quf/pE%% n) (log n)(log log n)?(log log log n)

Word size is O(log(pnmM)) bits. E(p,n) = (1 — 2/p)~'(1 — n=*1=2/P)). g¢(p,n) =
mine constant ge(n), where, g1(n) = logn, g.(n) = log(ge—1(n))/(1 —2/p).

“ Hss uses a slightly modified level mapping function, see Appendix A.
> The dependence on ¢ is improved to e~2=%/? [3].

Figure 1: Space requirement of algorithms for e-approximation of Fj,, p > 2.

outputs F}, such that Pr[|f7p — Fp| < €F,] > 0.6. We will only consider single-pass streaming
algorithms. Alon, Matias and Szegedy in [1] first defined this problem and presented a sub-
linear space algorithm that used O(n!~1/Pe=2log(nmM)) bits. The same work also showed that
deterministic approximation algorithms require 2(n) space. On the space lower bound front,
Alon et.al. in [1] first showed an Q(n'~%P) bound. This was significantly improved in the
elegant works of Bar-Yossef et.al. and Chakrabarti, Khot and Sun in [4, 8] to Q(n!~2/Pe=2/P)
bits. Woodruff in [18] showed a bound of Q(¢~2) bits for all F,,p > 0. Recently, Jayram and
Woodruff in [11] present an improved bound of Q(n'~2/?logn) bits. The current lower bound
for space is Q(e=2 + n'~2/Pe=2/P 4 n1=2/Plogn) bits.

Indyk and Woodruff in [10] presented the first algorithm with space O(n'=2/P). Table 1 lists
the published algorithms for estimating Fj,, p > 2, in chronological order, along with their space
and update-time requirements, where, update time is the time required to process each arriving
stream record. The hierarchical sampling technique introduced by Indyk and Woodruff in [10]
is essentially used by all later algorithms. The Hss algorithm [5] improved the space of the
IW algorithm to O(n'~2/Pe=2=4/Plog(n)log(mM)) words. Monemizadeh and Woodruff in [13]
estimate F), via an Fy-sampler using space nl=2/ Ppoly(e~1logn); they also present multi-pass
algorithms. An elegant recursive optimization of the IW method, particularly, for p = 2 + (1),
was shown by Braverman and Ostrovsky in [6]. The technique reduces the space requirement of
the Hss method by replacing the log(mM) term by g(p,n), where,

g1(n) =logn, ge(n) = log(ge-1(n))/(1 = 2/p), and g(p,n) = min g(n)
Andoni, Krauthgamer and Onak in [2] present an elegant and novel simplification of the IW method.
The AKO technique flattens the O(log(mM)) level-wise sampling of the original IW algorithm
by replacing each update (i,v) by (i,wi1 /P v) where, w;’s are drawn from the distribution
fw(w) oc 1/w?, for w € [1,n*] and are pair-wise independent. Their analysis is based on Pre-



p=2+QQ1) | p=2+0(1/logn) | p=2+06(1/1log@ n)
E(p,n) O(1) O(logn) O(log® n)
g(p.n) | O(og®n) O(log n) O((log™ 1)?)

Figure 2: Comparison of E(p,n) with g(p,n). Let log(c)(n) denote the iterated logarithm of n
taken c times, c is a constant.

cision Sampling [2]. The space used is O(n'=2/Pe=2=4/Plog(n)E(p,n)) words '. Here E(p,n) =
(p/(p —2))(1 —n~*?=2) and is O(1) for p = 24 Q(1), O(log(n)) for p = 2 + O(1/log(n)) and
takes intermediate values in the remainder of the range of p (see Figure 2). A comparison of
E(p,n) and g(p,n) is given in Figure 2. The IW, Hss and BO algorithms can be viewed as using
a discretized version of the distribution fy = A/y®. These algorithms are “uniform” in that the
same sketch structure, using different sizes, can be used to estimate Fj, for different values of
p > 2.

In this paper, we present an algorithm for estimating F,, p > 2. The space used is
O(n'=2/Pe=21og(n)E(p,n)/ min(log(n), */?=2)) words with word size O(log(pnmM)) bits. The
update time is O((log n)(log log n)?(logloglogn)). Since E(p,n) = O(g(p,n)), this algorithm im-
proves on the space usage over previous algorithms by a factor of Q(e~*? min(logn, e*/ P=2)) >
Q(e=*/?). For ¢/P=2 = Q(log(n)), the space requirement is O(n'~2%/Pe=*/Plog(n)E(p,n)) words,
and for €*/P=2 = O(logn), the space requirement is O(n'~2/Pe=2E(p,n)) words.

Braverman and Ostrovsky in [6] state that a modification of their algorithm for the regime
logn = o(log(mM)) and constant e requires space O(n!=2/Pe=2=4/Plog(nlog(mM))) words.

Remark 1. For p = 240(1), a domain reduction technique of Kane et.al. [12] may be applied
to reduce space and time. Let N(n,e¢) = min(n, (n'~2/Pe2)!18) and £(n,e) = log(N(n,e)).
The modified space and time expressions for the Hss, AKO,BO and this paper’s algorithm are
obtained by modifying the corresponding space/time expressions in Figure 1 by (a) replacing
every occurrence of logn by £(n,€), (b) replacing n of E(p,n) and g(p,n) by N, and, (c) adding
an O(loglogn) term for space. For example, for p = 2 + O(1/log(n)) and applying domain
reduction to our algorithm gives a space bound of O(e~*?log?(1/e) + loglogn) and a time
bound of O((log(1/¢))(loglog(1/e€))?).

Overview. The Taylor polynomial estimator is designed for estimating 1 (E [X]) where X is
a random variable and ) is a function with certain smoothness properties. For suitably defined
heavy items, the estimator has low bias, controlled variance, and uses a small (logarithmic)
number of samples for many functions 1. We apply this technique for Fj, estimation by letting
Y(x) = aP. The algorithm uses a pair of variants of the COUNTSKETCH structures, denoted HH
and TPEst, respectively, for identifying the heavy-hitters, and for estimating their pth frequency
powers using the Taylor polynomial estimator. These structures have O(logn) hash tables, with
the tables having O(p?B) buckets. Corresponding to each stream update of the form (i,v), the
structures HH and TPEst are updated by scaling v to v - y;, so that the effective frequency is
gi = fiyi- The y;’s are pair-wise independent and are drawn from the distribution Y =},
with density fy(y) o< 1/yP*L, y € [1,n%]. A set H, of heavy items is identified as those whose

!The dependency on e is reduced to e 2~4/P [3].



effective frequency crosses a certain threshold T,-their estimates g; for |g;| have error at most
T4/(10p). It is then observed that for each heavy item i, (a) fi = Gi/vi is on expectation | f;| with
error at most min(|f;|/(10p),Ty/(10p))), and, (b) assuming sufficient independence of the hash
functions, there are Q(logn) tables in TPEst where i does not collide with any other heavy item.
The AMS sketches in these non-collision buckets give us {2(logn) estimates for |f;|. The Taylor
polynomial is applied to this set of estimates to give an estimate ¥J; for |f;|P. Conditioning on
an event G that holds with sufficiently high constant probability, |E[d;] — |f;[F] < O(e'?|fi[P),
Var[v;] < O(|]‘}-|21"_2T92/(p2 log(n))). ¥; is scaled by the inverse of the probability that the item
qualifies as a heavy item and the sum is taken over the heavy items. The latter probability
cannot be obtained accurately enough due to estimation errors. This is resolved by introducing
a small rejection probability.

2 Taylor polynomial estimator

Let X be a random variable with E[X] = p and Var[X] = 02, The problem is to design an
estimator 6 for v (u) such that (1) [E[0] — ¢(u)| < O(ev(w)) and (2) Var[8] = O(e*¢?(w)),
particularly when v (u) is large. Singh in [16] proposed an unbiased estimator for ¢ (u) for an
analytic function 9, given an estimate A of . Let X, 7 > 0 be independent copies of X. Choose
N from the geometric distribution, that is, Pr[N = j] = 1/2/+! j € Z+ U {0} and define

6.\, {X;}) = 2V (@ () /N (X1 = A)(Xa = A)... (X — A) [16] .

Then E [0(y, \)] = ¥(E [X]) [16] and for n* =E [(X — N)?] = (u — )% + 02,

Var[6(, A, {X;1)] = [26200) — 02 ()] + 2500, (L020) 2% [7] .

However, the variance is still too large compared to e21)? ().

Taylor polynomial estimator. Let X;’s be identically and independently distributed with
E[X;] = p and Var[X;] = ¢?. Also let the first k + 1 derivatives of ¢ exist in the region [u, AJ.
Define the estimator 9 as follows.

k () J
I\ k) =9\ kAKX hejar) = v ]j,w [ -
j=0 Tol=1

Let n”? = E [(X; — N)?] =02 + (p— V)2
Lemma 1 Let the first k + 1 derivatives of ¢ exist in the region [u, A]. Then,

‘_‘wk—i-l )

W] - k+1)!

(=N N € (u,A), and Var[¥ Z ]
1<<k

Proof By independence of X;’s,

P
(k+1)!

(n— N

I
11~
=



for some X € (u, \), implying the first statement of the lemma.

kW) j @) A
Var[9] = E[(Z id ],‘(/\) H(Xl - )\))2} — ( Z 4 j.‘(/\) (o — )\)9)2
=0 1 0<j<k J:
PO A2 . LD U . g
:Jz;( j!( )> n23+21<j<zj:’<k j!( )' j’!( )UQJ(M_AV ]
() @)
— ( v '()‘)( )\)j>2 < ( Z ‘@b "()‘)‘ )2
1<5<k J: 1<5<k J:

where, in the second step, the 2k + 1 terms corresponding to j = 0 cancel and in the third step
we use 11 > | — Al |

For p > 0 and real and j non-negative integral, define (?) =pp—1p-2)...(p—75+1)/4.

? dad

proof is given in Appendix A.

Corollary 2 Let i(z) = 2P, p > 2, \fi = |fill < o, |fil > 9po, k > 4[log(1/€)] + 8 and
denote 9(aP, fi, k) by ¥;. Then, if p is integral and k + 1 > p then the bias is 0. Otherwise,
UE [9] — |fz|p’ < |filP1278€¢'2. Further, Var[ﬁi] < 3p?| fi|?P 202,

Then, 2 oP = (?) xP~J. Corollary 2 applies the Taylor polynomial estimator to 1 (z) = xP. The

Averaged Taylor polynomial estimator. Let {X;}; , be a family of independent and
identical estimators with expectation p and variance o2 and let A be an estimate of 1. Let s > 16k

and 7 = O(s). Choose independently r random permutations over [s|, denoted 1, ..., 7,. For
each permutation 7;, choose a random permutation 7 of the set 7;([k]) = {m;(1),...,m;(k)}.
Let 7; denote 7} o 7;. Order the elements of 7;([k]) in increasing order of the indices, that is,
let 7;([k]) = {aj1,aj2,..., a5} where aj1 < ajo < ... < aj,. The averaged Taylor polynomial
estimator ¥ is defined as follows:
o0 1 3 s s
ﬂj = z(:) o ;rI(Xajl - )‘)a 19(1% A ks, {Xl}lzl) = (1/’/’) z;ﬂj :
v= =1 Jj=

The averaged polynomial estimator is also abbreviated as 9(i, A, k, 7, 5).

Lemma 3 E[ﬁ(wv)‘akarvs)] - E[ﬁ(wa/\vk)] For 1/1(90) =P\ = fimu = |f2|7’fl - ’f’LH <
o,|fil > 9o, k=144, s = 16k and r = 12s. Then,

Var[d(a”, fir k1. s)] < (L5p?/s) /i 20

The proof of Lemma 3 is given in Appendix A.

3 Algorithm

The algorithm uses HH(C, s) and TPEst(C, s) structures, where, s = 32 max(4[logn] + 4, 144),
1000n=2/PEy [3?]

2 min(log(n), e4/P2)

p(1 — R~—2))
(p—2)(1-R7P)’

, C =121p’B, R =n, Ey[gf] =




where, the distribution ) is defined below. The HH(C,s) structure is a COUNTSKETCH(C, s)
structure, that is, there are s hash tables T, ..., T, each consisting of C' buckets. The TPEst(C, s)
structure is a COUNTSKETCH(C, s) structure except that, (a) the hash functions h;’s used for
the hash tables T;’s are 4(logn)/(loglogn)-wise independent, and, (b) the Rademacher family
{&1(7) }igpn) 18 4-wise independent for each I and is independent across the I’s. Corresponding
to each stream update (7,v), the HH and TPEst structures are maintained as if the update was
(i,v-y;). The y;’s are pair-wise independent random variables that are chosen from a (discretized
version of the) distribution ) whose density function is given by fy(z) = 2= ®*1) z € [1, R],
where, A = A, = p(1 — R7?)~! is the normalization constant. Since |f% ()| € [R~(P*2) 1] and
R = n°W it suffices to have a precision of O(log(pn)) bits each before and after the binary
point. The resulting word size of each entry of HH and TPEst is O(log(pnmM)) bits. The
effective frequency of an item is given by ¢; = f;y;. HH is used to obtain an approximate
heavy-hitter set (Hy, {9:,5¢0(g:) }icn,) with threshold T and error A, where, H, C [n], §; and
sgn(g;) are estimates for |g;| and sgn(g;) respectively, such that with probability 63/64, all the
following conditions hold: (1) if |g;| > Ty then ¢ € Hy, (2) if |g;| < Ty — Ay, then, i ¢ Hgy, (3)
|Gi — | fil] < Ay, and (4) sgn(g;) = sgn(g;). The parameters are:

A(l — R~(P=2))
p—2

T (16Ey [V?| F»

1/2 )
g = 7 ) Ay =Ty/(11p) andEy[y]:

(1)
For i € H,, define the estimate f; of |fi| as gi/yi. Let I(fi) = [2log(2T,/f;)], where, T, €
[T,,65T,/64]. Let H = {i € Hy,:y; >2/2},

Define NC(H,) to hold if for every i € Hy, there is a set of at least s/2 distinct table indices

Q(7) C [s] such that i does not collide with any other item of Hj in the buckets to which ¢ maps
for the table indices in (7). That is,

NC(H,) =Vi € Hy,3Q(i) C [s], |Q(i)| > s/2[Vj € Hy\ {i}, ¥t € Q0), hu(i) # hu(j)] -

The estimator © is as follows. If NC(Hg) does not hold then © = 0 (i.e., it fails). Otherwise,
let k = max(4[logn] +4,144) and r = 12s. Let I, € (1 + &;)Fb.

vip = Ti[l(i)] - &(3) - sgn(gi) /vi, 1 € Q(i), Ai = {vit}icqq)s
qgi = 5(.1.;0, fi7 k,r, 8/27 Ai)v

) . 25
0= Z{Pry [y ;912“]31_)/2} | i€ H and f; > (64§2>1/2} .

Analysis

We will assume that ¢ = Q(n~1/2), otherwise, from the lower bound Q(e~2), Q(n) space would
become necessary. Let Gy = Zie[n] gZ-Q. Since, E[Gg] = FKhEy [yf], we have, Go < 16FZEy [yf]
with probability 15/16. The analysis will be conditioned on the following events whose conjunc-
tion is denoted by G.

(1) Ga,(B) = G2 < 16FsEy [y?],(2) Gu = Hyis a (Ty, Ay) approximate
heavy set, and (3) NC(H,) .



From properties of COUNTSKETCH, Gg holds with probability 63/64. Since the hash functions
of the TPEst structure are O((logn)/(loglog(n)))-wise independent and, conditional on Gp,
|Hy| < B(1 — B/C)™!, hence, NC(H,) holds with probability 1 —n~1%. (see Appendix A.)
Hence G holds with probablhty at least 1 —1/64 — 1/16 — n=10 > 58 / 64.

Let £ denote the Rademacher random variables in the TPEst structure and let (g and (g
denote the random bits used by the HH and TPEst structures respectively (so that (g includes
the random seed for £ and the hash functions of TPEst) and let ( refer jointly to all these random
bits. Then,

Belv | 0.Ca] =Eei (gl + Y auleuisEnan)] = 21
i b= () v

= |fil .

Lemma 4 shows that as a consequence of NC(H,), for any 4,j from H, and distinct, the
expectation of the product of any subset of v;;’s for I € Q(i) and any subset of vj;’s for I € Q;
is the product of their expectations.

Lemma 4 [E, [51-5]- | Q,CH] = E¢ [191- | g,CH]Eg [ﬁj | Q,CH], where, Cy is any choice of random
bits such that 1,7 € H.

Proof We first show that if 4,j € Hy, i # j, A; C Q(i) and A; C Q(4), then,
EE [HueAi,u’EAj ViuVju | Q,CH] = |fz|‘AZ||fj|‘AJ|

Viy and v,y are independent if u # u’ since the inference is made from different tables. Also
they are independent of (7. Hence,

u€EA; u'€A; u€A;NA;

If u e A; N Aj, then, due to NC(H,) and since i,j € H C Hy, hy(i) # hy(j). From 4-wise
independence of the &, family, it follows that E¢ [vi,vj, | G, Cu] = |fi|| f;]- The above expectation
becomes | fi AN f5[ AN (] £ f3) A0 = | £l £ 14,

Arguing in an identical manner, and noting that fZ, fj are dependent only on (g and are
independent of &, we have

Be[ [T (v~ £) T (u—55) 16.Cu] = |15 -

uEA; U/GA]'

}|A il (2)

Let i, € Hy and i # j. Denote P (X)/v! by ay(N). Then, for random permutations Ti, Tj
chosen by the averaged polynomial estimator,

Ee[9:9; | G, Ch]

= Z ay(fi)aw (f;)Ee [H(Vu — fi) H(le/ — i) 97CH}

0<v,w'<k l 1A
= Y alBav(F)IE - Bl - B
0<v,0’'<k
=Ee[0i | G, CuBe [0 | G, (] (3)



The variables [,I' run over the least v indices of 7;([k]) and the least v’ indices of 7;([k]), re-
spectively. The second step follows from (2). The values of fi, fj are dependent only on (g,
and therefore is the same in the corresponding expressions for E¢ [ﬁi | G, ¢ H} and E¢ [ﬁj | G, ¢ H]
Hence, by (3),

Ee[9:9; | G, Cul] = Z Ee [0i(Sit, Tit)9;(Sjer, Tjer) | G, Cr)

1<t B <r

=E¢ (Vi | G, Cu)Be [193' 1G.¢ua] - |
Lemma 5 shows that for i € H, f; is an accurate estimate for |f;.
Lemma 5 Given G and i € H, |f; —|fi|| < (1/(10p)|fil.
Proof Since i € H, |filyi = |gi| > Ty — Ag or, y; > max(1, (T, — Ay)/|fi]). Also,
Ng > |gi = gil = |fi = |fillye > 1fi = |Fill(Ty = Ag)/| fi

or, 1fi Ifll < 7ot I < 0= (B/0) ) (B/C)l/Qlfz|<’f”

since, Ag/T, < (B/C)Y2 =1/(11p). |

Lemma 6 Given (g such that i € H, Vare, [vy | G,Cu| < min(Ag, (léi)z)'

Proof Since i € H, y; > max(1, (T; — Ay)/|fi]). Since TPEst(C') is a COUNTSKETCH structure
and since G holds, G < TQQB = A?]C’, and sgn(g;) = sgn(g;). So
Varg, [va | G, Cr] = y; *Vare,, [Ti[h(i)] - &(i) - sgn(gi) | G, Cal

17 )Gz (a2 JEA ) 7
i) & (ot ) <t 1)
(T, — A 2) ¢ =™\ B (7, 24, 2) =™ B0 1o, i

Let z; denote the indicator variable that is 1 if 7+ € H and 0 otherwise. By Lemma 5,
conditional on G, if i € Hy and y; > 2l(f)/2 then, i € H. Equivalently, z; = w;(y;) = 1
and 1p is 1 if P is true and is 0 otherwise.

< min(l

inQl(fﬁ/Q

Lemma 7 Eq¢ [2;/Pryly > ZZ(fi)/2] | G] =1.

Proof We note that fl and y; depend only on ¢ \ ¢ and drop the suffix from the expectation.
Conditional on G, the predicate y; > 9Ufi)/2 is equivalent to ¢ € H. Actually, the condition for
i€ His(1)ie Hyand (2) y; > 2!(f)/2 However, conditional on G, the second condition implies
the first and hence the equivalence. Further, if i € H, then f; € |fil(1 £ ¢), where, ¢ = ﬁ by
Lemma 5.

Simple Case: [(s) is constant in the interval s € [|f;|(1 — ¢), | fi|(1 + ¢)]. Then,

Ty 1
E - =———Prijz; =1 -1
{Pry [y > 21072] g > ongna i =119



General Case: [(s) is not constant in the interval [| fi|(1 — ¢), |fi|(1 + ¢)]. Let ¢(s,y) denote the
probability density function that y; = y and f; = s, conditional on G. Such a function ¢ exists
since there is a non-trivial probability that i € H conditional on G for each ¢ € [n]. So

E[Pry [y > 2U70)/2] | g} B /S,y Pryly > 20072] 5 (4)

We have
I(s) = [log %1 € [log %1 € [log% —log(1£¢)| € [l lai] = {lis liv1}

since (a) ¢ < 1/20 and therefore, ly; = l3; + 1 and (b) [(s) is an integer.

If sy < 2Tg, then, y < 2Tg/s < 219)/2 and so ¢(y,s) = 0. Hence, the region of integration is
restricted to R = {(s,y) : sy > 2T,}. Sub-divide R into (1) Ry : (s,y) € R and I(s) = l;, and,
(2) Ry : (s,y) € R and I(s) = ly;. Let ¢1(s,y) denote the joint probability density of s,y given
that (s,y) € R, conditional on G. Likewise, define ¢2(s,y). Let p = Pr[(s,y) € Ry | G] and let
g=1—p. From (4), we have,

E[ Ti g} _ / ¢(3,y)wi(y)€lsdy
Pryly > 21f:/2] (sw)er Pry [y > 21(4)/2]
—p / Oi(s ywi)dsdy / o (s, y)wi(y)dsdy

(S,y)ERl Pry [y/ Z 2l1i/2:| (s,y)ERz Pry [y/ Z 2121‘/2]
CpePrlai=111(f) =]  q-Prlzi=1]1(f) =la]
a Pry [y, > 2l1i/2] Pry [y’ > 2121/2]

=p+q=1. 1

Let pl(ﬁ) = Pry [yi > 2l(fi)/2] .

Lemma 8 Fori,j € [n] and distinct, EC\ﬁ[izZ |G] =1.

Proof Suppose that [(s;) and I(s;) are respectively constant for s; € | f;|(1£c) and s; € |f;|(1£c)
(i.e., the simple case of the previous proof).

s Pr [ys > 2105D/2 y, > 91055D/2]
[Pi(fi)/oj(fj) } a pi(lfil)pi (1)
~ Pry > 21UAD] Prly; > 21052 (| £i])p (1)

=1

pi(lfil)psi (1£5]) il fil)es(15)

where step 2 follows by the pair-wise independence of y; and y;. The other cases proceed
analogously. |

Assume G and let 9(x) = zP. Suppose i € H holds for the given (. Then,

(1) Ee[va | G.Cu] = 11 € Q) (2) lgil > T, — Ay > T,(1 - 1/(11p))
(3) f — |fll < |£:1/(10p), and (4) Vare[va | . Cur] < min(AZ|fi[/(10p)%)



Hence, all the premises of Corollary 2 and Lemma 3 are satisfied, with o = Varg [Vil | G, ¢ H]
Hence, by Corollary 2, E¢[0; | G,(u] € |filP(1 £ 1278€'?). Also, i, pi(fi) depend only on ¢\ &
and the seed for (g is a substring of the seed for (7, \ €. Hence,

E[Oizi/pi | G] = Eeve[(2i/pi)Ee [0i | G, ¢\ €]]
€ filP(L £ 1273 Ep\ ¢ [wi/pi] € |filP(1 £127%€'2) (5)

since, E[z;/p; | G] =1 by Lemma 7.
Let

L={ieH|fi <(F)"?/(2n"?)}
Ly ={ie H||fi| < (&/PF)Y?/nl/?}.

By definition, © = Y~ {;/pi( fi)lie L}. Since i € H, fielfil(1+ (10p)) and Fy € (1+ ) Fo,
hence L C L;.

Lemma 9 For n > 2000, [E[6] — F, | G| < €F,/16.

Proof } ., |filP < n((e2/PFy)1/2 /nl/2)P < ¢F,/n, since, Fy < F}?/pan/p_ So,

E[0[G] - F| < [E[ Y. dimi/p)] — B[ < Y 12782+ Y I£P
i€[n]\L ze[n]\Ll i€l
< Fp(12*8612 +¢/n) < (¢/1000)F, (6)

where, the second step follows from (5) and triangle inequality for n > 2000. |

Let p™® be the smallest value of p;(fi) = Pry ly > 9l(f)/2 | i€ H|. Let ¢ =
/il = 65T,/(64(1 — ¢))}, @ = Y2UHUED qnq o — By [2].

107H1_{Z|

Lemma 10 Conditional on G, if i € Hy, then, pi™ min — 1 gnd x; = 1. Otherwise, 3 constant Ko
such that forn > Ko and i € [n]\ (Hy U Ly), pin > (1.01)(%)_:0

Proof pmm — 1 if 2Uf)/2 <1 orif, W <1, that is, if : € Hy. Sofori € Hy, pj=z; =1

(cond. on G). For i € [n]\ (Hy U Ll),

ol ) 2 S [ (55) -

For i € [n]\ L1, | fi| > (2F»)Y/?/(n'/?). Since, T, = (16wFy/B)'/? < (1&2(11(37%/?&)1/2, we have,

aTy\—r _ (F, Kn'72/P )p/z 12 \—p/2 . —4

: > K'n"l(1 p/ P 7
(]fz]) ( n  e2Fylogn 2 K'n~(log"n) > @
where, K, K’ are constants. So, 3 constant Ky such that for n > K, (%)_p —n P >
(0.999)($7#) " Also, A = p(1+3n~*) and so (4/p) < 1.001. Therefore, p™™ > (1.01) (ﬁ”,p
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We have for i # j,

Ee [0:i9;zi25/ (pipj) | G] — Be[Vixi/pi | G Ee [ 25/p; | G|
= Y (B[99, | G.Cu) — B[ | G, Cur|Ee [T 1 6.Cu]| =0 .

iP5
by Lemma 4. Here (g is a choice of the value of the random string such that ¢, € H. Hence,
Varg[ Y diwi/pi| G) = Y Varg[diwi/pi | G] - (8)
i€[n]\ L2 i€[n]\Lz2

Let
Ly={i€H||fi] < (/PF)"?/(4n"/?)} .

Lemma 11 3 a constant ng such that for n > nyg, Pr“@ —F,| < er} > 0.8.

Proof Conditional on G, fz €1+ ) and I € 1+ 2L 51)F2, so, Ly C L.

Var[© | G] < Var[ Y diwi/pi | G] =

1€[n]\L2

Eqe[Vare[ > dixi/pi | G]] + Varae[Ee[ D> dixi/pi | G]] (9)

’iG[n]\LQ iG[n]\LQ

where, the first step follows by definition and since L; C L, the second step is an identity (law
of total variance). In the next equation, let ¢ run over [n] \ L.

Varg[ S Dii/pi 1G] = Y Vare[dixi/pi |G = Y %Varg[ﬁiﬁeH,g]

1€[n)\ L2 1€[n)\ L2 i€[n]\ L2
T — .
< Z —2(3p2/s)|fi|2p 2 mln(Ag, |£i]?/(10p)?), by Lemma 4.
1€[n]\ L2

where, Step 1 follows from (8). Hence,

Eg\g[Varg[ Z @zxz/pz ’ Q’]]

i€[n]\La
< > (PP TIBP /)| i1 min(AL, | £i]?/(10p)?)
i€[n]\ L2
< S UIHPPRAL (A210gn) + Y | filP(aTy)P/(4200log n)
i€H i€[n)\(H1ULs)
< Fyy oA} /(421ogn) + (oTy)PF,/ (4200 log n)
< F2((e/500)% + (¢/32)*/log(n)) - (10)

Step 1 follows since, Eq\¢[zi/p7] < (1/p™)E[zi/pi] = (l/pmm). Step 2 uses (a) Lemma 10
which holds for n > Ky, (b) s > 128logn, and, (c) p™® = 1 for i € Hy. Step 4 uses the
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following bounds. We have, Fy,_5 < F]?—Z/p since p > 2 and Fy < Fp2/pn1*2/p. From the latter,
we have, Ff/z < ED(711_2/1”)”/27 Since, B > 1000we_2n1_2/7’/ min(logn, 64/1’_2), we have,

Fy(aTy)P = Fy(16awF3/B)P/* < (64)"P/2F2 min(e? log?’?(n), €?) < (/8)*F?
and
Fopop® A2 < F272P(16p°wF) /((11p)°B) < (88) 2e2F2logn .

Proceeding analogously for the second summation term in (9),

Varc\g [ Z Eg [@zxz/pz]]

ie[n]\Ll
=Varae[ Y (xi/pi)Ee[V; | i € H]]
iE[n]\Ll
<Varge[ Y (wi/p)l fil(1+127%"2)]
1€[n]\L1
< > (1.001)|fi*PVare [(2i/pi)]
lG[TL]\Ll

< ) L00LfP (e

iE[n]\(HlL_JLl)
<> 1L001| fi[P(aT,)P < 1.001F,(aTy)?
< (¢/8)°F; (11)

Step 1 follows since z;, p; are independent of &, and since z; is boolean, Step 2 follows from
Corollary 2. Step 3 is inferred as follows.

Varee[ Y (@a/p)lfilP(1+127%)] = > (|fiP(1 4 127%"2)*Vare ¢ [/ pi]

iG[TL}\Ll iG[TL]\Ll
+ 23 | filP1f5 P (1412752 [Epe [zim /(ping)] — Eovelzi/ i By [/ pi]]
i#j
= > (AP +1273")Varp ¢ [2:/pi]
i€[n)\L1
i€[n]\L1

where, the cross term vanishes by Lemma 8. Step 4 in the sequence of steps leading to (11)
uses Vare¢ [ml/pz] <Ene [xz/pf] < p?inEC\é [ml/pl] = piin. Step 5 uses Lemma 10, and Step 6
is a direct simplification and the final step uses the calculation for Fj,(aTy)P done earlier in this
proof.

Adding (10) and (11), Var[®] < (eF,/7.5)2. Hence, for n > ng = max(Kp,2000), by
Chebychev’s inequality,

Pr[|© — E[0]| < (¢/1.01)F, | G] > 1/55 .

12



By (6), |[E[© | G] — F,| < (¢/1000)F, for n > 2000. Hence by triangle inequality,
|© — F,| < eF, with probability 1 —1/55,n > ng .

The above probabilities were conditioned on G, which holds with probability 57/64. So |©—F)| <
eF}, holds unconditionally with probability at least (54/55)(57/64) > 0.8. |}

The update time is dominated by s = O(logn) hash function evaluations, each being a poly-
nomial of degree d = O((logn)/(loglogn)) over a field of size O(n). Following the approach of
[12] of buffering up to d points and using fast multi-point evaluation of the degree d polynomial
defining a hash function, this can be reduced to O((logn)(loglogn)?). (See Appendix A for more
explanation.) The space requirement in bits is O(C's) = O((Ey [y*|p*B)(log n) log(pnmM)) or,

(1 —2/p)~1(1 — n=4P=2)p2n1=2/P(log n) log(pnmM)

S pu—
pace €2 min(log(n), e*/P—2)

(12)

Theorem 12 For each p > 2 and 0 < € < 1, there exists a sketch structure that can be updated
over data streams and on query can return F, satisfying | F,—F,| < eF), with probability 0.80. The
asymptotic expression for space is given by (12). The update time in time O((logn)(loglogn)?).
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A Proofs and Notes

A slightly modified level mapping function for Hss. The variant of Hss referred to in Figure 1 uses
the level mapping function, ¢ : [n] — [R], where R = 4[log(mM)]. Choose random /1,...,¢g,
each O(1)-wise independent hash functions [n] — {0,1}. Define ¢(i) = [ iff /1(i) = 1,...,4(i) =
1 and either [ = R or £;11(¢) = 0. This avoids the need for use of Nisan’s PRG.

Probability of NC(H,). Assume full independence of hash functions. For i € H, and [ € [s],
let w; = 11if i collides with some other item in Hj in the table indexed [. Then, ¢ = Pr[w; = 1] =
1— (1 —1/@80)Hsl=1 < |H,|/(8C) < 2/(100p?). Let W; = Y7, (1 — wy) be the number
of tables where 7 does not collide. Then, E[WZ] > s — 25/(100p?). By Chernoff’s bounds,
W; > s/2 with probability at least 1 — e~*/12. By union bound, the probability that W; > s/2
for each i € Hy is at least 1 — |Hyle™*/12 = 1 —2Bn~'2 > 1 — 2n~!1. Now, assuming t-wise
independence, denote ¢ = Pr; [wil = 1]. A standard inclusion-exclusion argument shows that
I —q] <2(})(g/n)! < 2(@)? If t = O(logn/(loglogn)), then |¢'—q| < (10n)~!!. The above
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argument can be repeated with additive error probability of B|¢’ — ¢| < (10n)~!%. Combining,
we have, NC(H,) holds with probability at least 1 — n~1°.

Reducing update time using fast multi-point polynomial evaluation. Each hash function eval-
uation corresponds to the evaluation of a polynomial of degree d = O((logn)/(loglogn)) over a
field of size O(n). [12] present the following approach and use the following theorem from [17].

There is an algorithm that computes the values of a degree-d polynomial q over a ring R at
distinct points 1, s, ..., xq € R using O(dlog? dloglogd) operations.

Let d = O((logn)/(loglogn)). As in [12], inputs are buffered until there are d distinct
items. The multi-point evaluation is then used to obtain the hash buckets for each of the d
items hashed. The total evaluation time for hashing the d items for each of the s hash functions
is O(sd(log®d)(loglogd))). This evaluation time is equally spread out over the processing of
the next d items so as to not increase the worst case update time. Thus, the time required
to process each update is O((logn)(loglogn)?(logloglogn)) since d = O(logn/loglogn) and
s = O(logn). If during this delayed update process, a query for estimating F), is made, then,
all pending updates are directly evaluated (at a cost of O(sd(log? d)(loglogd))) and then F), is
estimated, whose cost dominates the time for processing O(d) pending updates, which can be
absorbed into the F), estimation time.

Proof of Corollary 2: Claim about bias. Since, f; € |f;| £ 0, fi € |f;|(1£1/(9p). Further,
(zpk)!(k) = (g) 2P~k This function is analytic in R if p > k and otherwise is analytic in neighbor-
hoods that do not contain 0. Since, |f;| > 1 and f; € |fi|(1 £ 1/(9p), the function 27 is analytic

in the interval [|f;], f;]. Using Lemma 1, part (1), for some X € (|fi], f;), we have,

B0~ 1P = (2 )l - A

< |fil?

(2| oy (13

where the plus sign is chosen if p > k + 1 and otherwise the minus sign is chosen.
Case 1: k+ 1 > p. Then, (kil) = 0 if p is integral. Otherwise,

‘( P )‘: L 1) (= )] (o) + 1= p)(Lp) + 2~ p) - (k — )]

k+1)|” (k1)
_ 1 < I'(p+1) )( F'k+1-p) )
(k+D! NP = DI/ NT(p] + 1 = p)]

—1/2 pPH2(k — p)k—pt1/2
(k 4+ 1)k+1+1/2
_ 1/2 71/2 L p+1/2 . L k“l‘l_p
e(2/m) "k +1) <k+1> (1 k+1>
<e(2/m) 2 (k+1)"Y2 .

<e(2/m)2(k+1)

Step 1 follows directly by rewriting |p(p — 1)...(p — k)|, Step 2 follows by writing each of the
product expressions in terms of the Gamma function, Step 3 uses the Gamma reflection formula
IT'(2)I'(1 —2)| = w/|sin(wz)| > =, Step 4 uses Stirling’s approximation and Step 5 uses p < k+1.
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Applying to (13),

‘ ( D > ‘(1 — 1/(9p))p—k’—1(9p)_(k+l) < 6(2/71’)1/2(k‘ + 1)—1/2e(k+1—p)/(9p) (gp)—(k+1)

k+1
8/9[(817) (k+1)
(n(k + 1))172

< (e/9)'

k+1

Case 2: k+1 < p. Then, |(kf;1)| < W Applying to (13),

p d p—k—l d k+1 (pe)kJFl ( —k:—].
1.4 AL )™ ke j(op)
‘<k+l>‘< +c) (c) - (9p(k+1))k+1€

< (gay) | <1

The bias is bounded by max((e/4)16,1278¢12) < 1278¢!2, |

Proof of Corollary 2:Claim about variance. We have n? = 0% + (f; — |fi])? < 0% + 0% =

o%. By Lemma 1, part (2),
() LI w

k

Var[ﬁi] < (Z
v=1

Taking ratios of successive terms in the summation above, we have for v > 1, p > 2, ¢ > 9p and

c/d>9p

fip v U) _f2p 2 2(zk:

v=1

1(,2))|mi p— o|v/20 3 )
‘(g)l‘fz = (v+1)9p —1)o = 200p — 1) <972

Substituting in (14),

1\20-2 (202)p? _
Var[ ] <|fil*~ 2<1+%) m <3p*c’|filP2 .

Averaged Taylor Polynomial Estimator. We restate the construction of the estimator. Let
{Xi};_, be a family of independent and identical estimators with expectation p and variance
0? and let A be an estimate of u. Let s > 16k and » = O(s). Choose independently

random permutations over [s], denoted m1,...,m,. For each permutation 7;, choose a random
permutation 7; of the set m;([k]) = {m;(1),...,m;(k)}. Let 7; denote 7 om;. Order the elements
of 7;([k]) in increasing order of the indices, that is, let 7;([k]) = {a;1,aj2,...,a;x} where a;; <

ajo < ... < aji. The averaged Taylor polynomial estimator ¥ is defined as follows:

(v) v

I =20 3 A ks X)) = (1) 30,
j=1

V.
v=0 =1

The averaged polynomial estimator is also abbreviated as (i, A, k, 7, 5).
The following statement directly implies Lemma 3, by letting » = 16s.
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Lemma 13 (General form of Lemma 3.) E [5(¢, A, k,r)] =E[W(, A\, k)]. Foriy(z) = P, |f2—
lfill < o,|fil = 9po, k> 144, s > 16k,

Var[d(a?, fi k,ry5)] < 02| fil P20 il P20 ((3/7) + (1 + (72)71) /s)

Proof The first statement follows by linearity of expectation.

E[W}:%ZEW(&,@)H% > EWo] .

i=1 1<i<j<r

Let Q;’;}/ be the random variable that denotes the number of indices shared among the first v
and v’ positions of 7;([k]) and 7;([k]), that is, Q”;;’l = ‘{ail, ooy} N{aj, ... a5} Let Ay
denote the set {a;1,...,a;} and Aj,y denote the set {aji,...,a;,}. Fix an element x € Aj;,.
Then, & € Aj, provided, there exists y € [k] such that m;(y) = = and 7;(y) is among the least
v’ indices among 7;([k]). Hence,

Prlz € Ajp] = (k/s)- (v'/k)=2'/s .

Sampling with replacement, we obtain an upper bound Q on Q = f}’/. Then, Q is binomially

distributed as Binom(v;v’/s) and all moments of Q) are at least as large as the corresponding
moments of Q. Let a,(\) = (*)(\)/v!. Then,

k v v’
Eids] = > aeNawNE [T (Xay =N [ (Xa,s = V)]
v,v'=0 =1 I'=1
k min(v,v’)
= > aNar() Y I E[Xx:-»?
v,0'=0 Q;’;’IZO tGAwﬂAjU/
X 11 E[X; — AJPr[QY = q]
tG(AivUAju/)\(AivﬁAjv/)
k min(v,v’) ) /
= Y aMNaw(N) Y 0P — NP QY = g
v,v'=0 q=0
k o an
ngl:oav()\)av/(/\)(u—/\) E gy [W} (15)
k
< Y anWNaw W) (=2 (140 /)" (16)
v,0'=0

Step 1 follows from the definition of ¥; and 1J;, Step 2 separates the shared variables X; with
t € Ay N Ajy from the exclusive variables, Step 3 is a rewriting of the previous step, Step 4
replaces the distribution for @ by the distribution @ which uses sampling with replacement.
Since all moments of Q) are at least as large as that of @, this step follows. The final step
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uses a property of binomial distribution, namely, if 2 has the distribution Binom(n;p), then
E[b*] = (1+ (b—1)p)". Since, Q““ has the distribution Binom(v;v’/s), we have

2q 2 /1w 2,/ v
n n v ov
b ] =+ )2 = B ]
L=zl = U=~ ITEDE
We note that E[¢¥;9;] is maximized when X is as far apart from p as possible Hence, (15) is
v
maximized when | — A| is as large as possible, which is o. Thus, [1 + (# /\)2 } < (1 + v’/s)v,
yielding (16).
We therefore have,

k
E[0:9;] —E[%]E[Y;] = Y au(Naw(A)(u— X" [(1+0/5)" — 1]

= 3 aWar (W= N [(1 o /s)" —1]

since, (1 +v'/s)? — 1 1is 0 if either v or v is 0.
Divide the range of summation 1 < v,v" < k into regions Ry : 1 < v,v" < L\/EJ and
Ry : [Vk| +1 < v,v' <k. In the region Ry, vv'/s < k/s < 1/16.

|VE] )
S aNay (N = NP1+ 0 /s) — 1]

v,w'=1

VE] ,
= 3 aWaw N (= N [0 /s + c(wr' /5)?]

vv'=1
|VE] 9
= [Z ay(N) (=N (v/vs + cv2/s)} ,  where, |c|] <1/2. (17)

v=1

Let k; = [vVk|. Assuming that 1) is analytic in [p, A],

k1 k1
> v = 0" = (= A > e W= A = (1= N o) = 30 ax(N) = )]
v=1 v=0 t>k1+1
—a(w-N— Y ta) - N (18)
t>k1+1
Similarly,
k1 k1 2 k1
202%()\)(;4 A = ZU% (L—N)"~+ 2 e Zav -
v=1 v=1
— () (- N+ aa) (- NP~ 3 PN (- A (19)

t>k1+1

18



Let ¢(x) = 2P, p = |fil, X = fi, Ifil = fil < o, |fil > 9po and k > 144. Let b =
min(|p], k1 +1). Then,

>t = 3 o) -

t>ki1+1 t>k1+1

N P _
<frh 1|“_/\|bz(t+k1+l)‘<t+k +1>\(9p—1) '
>0 1

Taking ratios of successive terms of summation, we have for ¢ > 0 and k1 = v/144 = 12,

(t—l—kl—‘,—2)‘(t+£+2)‘(9p—1>7t71 _ |p—(t+k1+1)| <i
(t+ki+ D) (8 )| Op =1 (E+k+1)(9p—1) ~ 17 °

Hence,

> t(i))fzp_tﬂfﬂ—fi)tﬁ (k1+1)|<k +1>}fp bl ghi el §7 g7

t>k1+1 t>0

<AF™ 1/90‘<k 1

)|<9p>—’“<18/17> |

For k1 +1 > p, |(k113r1)‘ < O((k 4+ 1)~'/2) as shown in the proof of Corollary 2. Otherwise,
(klljrl) < (pe/(ky + 1))"1F1 In either case,

(18/17)e™* (k1 + 1) (klljr 1) |(9p) "1 < (20/17)(18 - 12/e) 2 < (72) 712

Similarly, it can be shown that

S (D) f A = B < QOADE + 1P P < (72

t>k1+1

Rewriting (18) and (19) and using k > 144
Z”( Vi = A < plfP o+ (27

Z” < )fp “(Ifil = fi)" < plfilPto (1 + (72)7M)

Combining, and substituting in (17) we have

RHS of (17) < (1+2(72)"Yp|filP~10)?/s . (20)
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We now consider the second region Ry : |vk| +1 < w,v’ < k. Then,

k
S auWaw () — N [(1+ 0 /s)7 — 1]
v,w'=k1+1
k !
= > (M) (B)Er ey
v,w'=k1+1
k . 2
—[ Z (i) ip_v(aa)”} ,  where, |af < 1.
v=k1+1
i b P\ 2p—(v+v')
< Aip_vv/ ao)' T (1 4+ ' /s)?
g (O) (&) 7 a1
k !
B T ——
v,0'=k1+1

since for each value of v/, there is a value o, € [0, 1] such that
(14" /s)" = X WTIR/29)  gince, v, 0/ < k.

From (21), it follows that there exists a value of 8 € [0, 1] such that

k
Y P —

v v
v '=k1+1
k /
= Z (i})) <1]19'> f?pi(vﬂ )(ag)vt Pt )k/(28)
v’ =k1+1

Therefore, for some 0 < |a|, 5 <1 and f;1, fiz € f; £ aceP*/(29) e have

k
> e W)= A [+ fs) — 1]
vw'=k1+1
a P[P\ 2 ! ! !
_ Z (v> <v/> fip (v+v )(ao,)v+v eBu+v)k/(2s)
vw'=k1+1
k N 2
[ 3 ()i ey
v=k1+1

< |fi|2p_202(72)_24 .
Combining (20) and (22), and since k > 144, we have,
E[ﬂﬂ%} - E[Q?JE[&A (1 + 2(72)_11)2p2|fl‘|2p_20’2/8 + |fi|2p—20.2(72)—24

<
< (14 (72) P il 0% s
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(21)

(22)



Therefore, for any fixed ¢, j with ¢ # j, we have

Var[ﬁ] = %Var[ﬁi] + i(;) (E [ﬁiﬁj] - E[ﬁi]E[ﬁj])

< |filP720?((3p% /r) + (1 + (72)71)p%/s)
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