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Abstract

We consider the problem of estimating the first moment of a data stream defined as F1 =∑
i∈{1,2,...,n}∣fi∣ to within 1± �-relative error with high probability. Several algorithms are well-

known for this problem including the median estimator over p-stable sketches by Indyk [11], the

geometric means estimator over p-stable sketches by Li [13] and the Hss sketch based algorithm

in [8]. The current best algorithm is given by Kane, Nelson and Woodruff in [12] that uses

space O(�−2 log(mM)) and is proved to be space-optimal. In this paper, we present a novel,

space-optimal algorithm for estimating Fp with an elementary analysis that is based on the

characteristic function of stable distributions.

1 Introduction

There is an increasing need to compute over massive data streams that arrive rapidly and contin-

uously. Sources of data range from network switches, sensor networks, web, transaction data etc..

Many applications over such data seek to monitor the health and integrity of the underlying system

as reflected by the data (e.g., network, bridge, reactor, industrial plant), using very efficient algo-

rithms that have guaranteed error-tolerance, invoking a “deep-analysis” algorithm only when the

monitoring algorithms raise an alarm. A deep data analysis requires data storage and retrieval from

secondary storage, which makes it an expensive operation. This has led to the design of single-pass

online algorithms that process the arriving data in real time and are very efficient with respect to

space or time (preferably both), typically requiring sub-linear (often only poly-logarithmic) space

and time.

We can view a data stream computing model as follows. An input stream � is abstracted as

a potentially infinite sequence of records of the form (pos, i, v), where, i ∈ {1, 2, . . . , n} = [n] and

v ∈ ℤ is the change to the frequency fi of item i. The pos attribute is simply the sequence number

of the record. Each input record (pos, i, v) changes fi ← fi + v. Thus, fi =
∑

(pos,i,v) v, that is, fi
is the sum of the changes made to the frequency of i since the inception of the stream. The vector

f = [f1, f2, . . . , fn]T is called the frequency vector of the stream. We assume that items come from

the domain [n] = {1, 2, . . . , n}, each stream update (pos, i, v) has ∣v∣ ≤M and the size of the stream

is m, that is, the number of records appearing in the stream.

The pth frequency moment is defined as Fp =
∑

i∈[n]∣fi∣p . The problem of estimating Fp, and

in particular, the estimation of F0, F1 and F2, have been fundamental to the development of data

stream processing techniques and lower bounds [1, 11, 2, 15, 4, 7, 9, 3]. These problems have many
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applications. For example, in network monitoring F1 sketches are used to detect differences in

network traffic flows [6], F1 and F2 sketches are used for approximate histogram maintenance for

database query optimization [10, 5] and Fp sketches can be used for fast approximations of document

similarities over the web [13]. There are many basic primitives ranging from fast approximation of

range-queries, finding heavy hitters, quantiles, etc. whose solutions are derived from Fp estimation

techniques.

We will say that a randomized algorithm computes an �-approximation to a real valued quantity

L, provided, it returns L̂ such that ∣L̂ − L∣ < �L, with probability that is at least some absolute

constant strictly larger than 1/2. In this paper, we consider the problem of estimating F1 to

within approximation factor of 1± � and with probability at least some constant c > 0.5, where the

probability is taken over the internal random bits used by the algorithm. Since prior work [1] shows

that that any deterministic algorithm for 0.1-approximation of Fp, p ≥ 0 requires Ω(n) space, we

consider the problem of randomized �-approximation of F1.

1.1 Review: Previous work

[1] presents a seminal randomized sketch technique for �-approximation of F2 in the data streaming

model using space O(�−2 log(mM)) bits. Estimation of F0 (i.e., number of i ∈ [n] s.t. ∣fi∣ ∕= 0)

was first considered by Flajolet and Martin in [7] and improved in [1, 9, 3]. Woodruff [16] presents

an Ω(�−2) space lower bound for the problem of estimating Fp, for all p ≥ 0. This is improved to

Ω(�−2 log(�2M)) in [12]. Since the techniques for estimating Fp for p > 2 are substantially different

from those used for estimating Fp for 0 < p < 2, we do not review this line of work. The notation

X ∼ D means that the random variable has probability distribution D. The term i.i.d. stands for

independent and identically distributed family of random variables.

Indyk’s estimator. Indyk in [11] presented the first algorithm for estimating F1 using p-stable

sketches, for p ∈ (0, 2]. A p-stable sketch is a linear combination X =
∑n

i=1 aisi where the si’s

are drawn independently from the p-stable distribution St(p, 1) with scale factor 1. By property

of stable distributions, X ∼ S
(
p, (Fp(a))1/p

)
. For estimating F1, keep t = O( 1

�2
) independent

Cauchy sketches (i.e., 1-stable) X1, X2, . . . , Xt and let F̂1 = (4/�) ⋅ mediantr=1∣Xr∣q. Then, F̂1 ∈
(1 ± �)F1 with probability 15/16. Further, Indyk shows that for stable distributions it suffices

to, (a) truncate the support of the distribution St(p, 1) beyond (mM)O(1), and, (b) consider the

approximation to the continuous St(p, 1) distribution by discretizing it using into a grid with interval

size (mM/�)−O(1).

To reduce the number of random bits required to maintain independent sketches, Nisan’s pseudo-

random generator (PRG) [14] is used for fooling space S bounded randomized machine computation.

We can assume that the stream is ordered since the sketches are linear and therefore their values

are independent of the order of item arrivals. For each element i, the stable random variables

si(u) for u = 1, 2, . . . , t are computed from the ith chunk of S random bits obtained from Nisan’s

generator that stretches a seed of length S log n to nS bits. The space used by Indyk’s estimator is

S = O(�−2 log(�−1mM)). The random seed size becomes S log n = O(�−2 log(mM�−1) log(n)) and

this dominates the space requirement of the F1 estimation algorithm. The time taken to obtain the

ith random bit chunk is O(�−2 log(�−1) (log n)) simple field operations on a field of size (mM)O(1).

Kane, Nelson and Woodruff [12] observe that a seed length of O(log(mM� ) log(n)) suffices.
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Li’s estimator. Li [13] proposes the geometric means estimator for estimating Fp. Given p-stable

sketches Xu =
∑

i∈[n] fisi(u), u = 1, 2, . . . , t, the geometric means estimator is defined as

Ŷp,t = C(p, p/t)−t
t∏
i=1

∣Xi∣p/t.

where,

C(p, q) =
2

�
Γ
(
1− q

p

)
Γ(q) sin

(�q
2

)
, − 1 < q < p .

Li [13] proves that (i) the estimator is unbiased, that is, E [Yp,t] = Fp, and, (ii) ∣Ŷp,t − Fp∣ < �Fp
with prob. 1/8 provided, t = Ω(�−2).

Kane, Nelson, Woodruff’s (KNW) estimator for Fp. Kane, Nelson and Woodruff [12]

present two estimators for estimating Fp for p ∈ (0, 2) that we denote by knw-1 and knw-2. Both

these estimators use space that is tight with respect to the lower bounds, which was also improved in

the same paper. The estimators view the computation of the p-stable sketches as the multiplication

of the t× n random matrix A with the n-dimensional frequency vector f . Each Ai,j ∼ Dp, where,

Dp is the discretized and truncated version of St(p, 1). However, unlike Indyk and Li’s proposal to

use fully independent Ai,j ’s, the knw-1 estimator requires just the following limited independence.

(i) For each row value i, the column entries (i.e., Ai,j ’s) are O(�−p log3p(1/�))-wise independent,

and, (ii) the rows of A are pair-wise independent. This can be achieved using a random seed

of size O(t log(mM)) = O
(
�−p log3p(1/�) log(mM)

)
. The update processing time requirement is

O(�−2−p log3p(1/�)). The knw-2 estimator further reduces the independence requirement among

the variates in a single row of A to log(�−1)/ log log(�−1). This reduces the estimation time to

O
(
�−2(log �−1)2/(log log �−1)

)
simple operations on fields of size (mM)O(1).

Hss estimator. An estimator for Fp based on the Hss technique was presented in [8] for esti-

mating Fp. Though it uses sub-optimal space O(�−2−p(log(mM)2(log n)), it has the best update

processing time so far, namely, O(log2(mM)).

Contributions We present a novel, space-optimal algorithm for estimating Fp that uses space

O(�−2 log(mM)). The algorithm has a simpler and elementary analysis as compared to the space-

optimal estimators of [12] and directly utilizes the characteristic function of stable distributions.

2 A space-optimal estimator for Fp

Let s = 256 ⋅ e5 ⋅ �−2. Keep p-stable sketches X1, X2, . . . , Xs, where, Xi =
∑n

j=1 fjsi,j , and

si,j ∼ St(p, 1). The family {si,j}nj=1, for each fixed i, is assumed to be log(1/�)-wise indepen-

dent. The random seeds generating the families {si,j} and {si′,j}, for i ∕= i′, need only be pair-wise

independent. Define

Cs(t) =
1

s
(cos(tX1) + . . . cos(tXs)) and F̂p(t) =

1

tp
log

1

Cs(t)
. (1)

The estimation procedure is as follows. The estimate 0 is returned if all the Xi’s are 0. Otherwise,

values of t = 1, 2−1/p, 2−2/p, . . . , 2(−3+⌈log(mM)⌉)/p are chosen until one is found that satisfies the
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following condition. (
1 +

�

16

)
e−1 ≤ Cs(t) ≤

(
1− �

16

)
e−1/8 . (2)

If no such t is found to satisfy (2) then 0 is returned. Otherwise, the estimate F̂p(t) given by (4)

is returned.

Analysis. We first prove the correctness of the estimator assuming full-independence of the si,j ’s

for each fixed i. We will then relax the independence required.

Lemma 2.1 Suppose the family of random variables {si,j}nj=1 is fully independent and for each i ∕=
i′, the random seeds generating the families {si,j} and {si′,j}, for i ∕= i′, are pair-wise independent.

Let s = 256e5�−2, � ≤ 1 and Fp ≥ 1.

1. If t satisfies (2) then F̂p(t) ∈ (1± 8�/15)Fp with probability at least 1− 2e−3− e−4.75 ≥ 0.89.

2. If Fp ≥ 1, then a value of t satisfying (2) can be found with probability at least 1 − 10/s ≥
0.9997.

3. If Xj = 0 for j = 1, 2, . . . , s, then, Fp = 0 with probability 1.

Proof Let X be a p-stable sketch, X =
∑n

j=1 fjsj , where, sj ∼ St(p, 1) and i.i.d.. The character-

istic function of X satisfies

E
[
eitX

]
= E [cos(tX)] + iE [sin(tX)] = e−Fp∣t∣p . (3)

Thus we have E [cos(tX)] = e−Fp∣t∣p . Also, clearly Var
[
cos(tX)

]
≤ 1.

Since Cs(t) is the average of s pair-wise independent observations cos(tX),

E [Cs(t)] = e−Fp∣t∣p and Var
[
Cs(t)

]
≤ 1/s . (4)

We now make the following three claims.

Claim 1. If ∣t∣pFp ≤ 1 then, Pr
[
∣Cs(t)− e−∣t∣

pFp ∣ ≥ �
16e
−Fp∣t∣p

]
≤ e−3.

Proof of Claim 1. Let ∣t∣pFp ≤ 1.

Pr
[
∣Cs(t)− e−∣t∣

pFp ∣ ≥ �

16
e−Fp∣t∣p

]
= Pr

[
∣Cs(t)− E [Cs(t)]∣ ≥

�

16
e−∣t∣

pFp

]
≤

Var
[
Cs(t)

]
(�/16)2e−2Fp∣t∣p

≤ 1

s(�/16)2e−2
≤ 1

e3
.

The first inequality follows since E [Cs(t)] = e−∣t∣
pFp , the second inequality follows from Chebychev’s

inequality and the third inequality follows by (4) and since ∣t∣pFp ≤ 1, and the final inequality follows

since s = 256�−2e5.

Claim 2. If ∣t∣pFp < 1/8 then Pr
[
Cs(t) <

(
1− �

16

)
e−1/8

]
≤ e−4.75.

Proof of Claim 2. Let ∣t∣pFp < 1/8. Then,

Pr
[
Cs(t) <

(
1− �

16

)
e−1/8

]
= Pr

[
e−Fp∣t∣p − Cs(t) > e−Fp∣t∣p − (1− �

16
)e−1/8

]
≤ Pr

[∣∣Cs(t)− E [Cs(t)]
∣∣ > �

16
e−1/8

]
≤ 1

s(�/16)2e−1/4
= e−4.75 .

4



The first equality follows from E [Cs(t)] = e−∣t∣
pFp , the second inequality follows since ∣t∣pFp <

1/8 and so e−∣t∣
pFp > e−1/8, the third inequality follows from Chebychev’s inequality and since

Var
[
Cs(t)

]
≤ 1/s, and the last inequality follows by substituting s = 256�−2e5.

Claim 3. If ∣t∣pFp > 1 then Pr
[
Cs(t) >

(
1 + �

16

)
e−1
]
≤ e−3.

Proof of Claim 3. Let ∣t∣pFp > 1. Then,

Pr
[
Cs(t) >

(
1 +

�

16

)
e−1
]

= Pr
[
Cs(t)− E [Cs(t)] >

(
1 +

�

16

)
e−1 − e−∣t∣pFp

]
≤ Pr

[
∣Cs(t)− E [Cs(t)]∣ >

�

16
e−1
]
≤ 1

se−2(�/16)2
= e−3 .

The arguments are the same as in Claim 2, except that the second inequality is obtained using the

fact that ∣t∣pFp > 1 implies e−∣t∣
pFp < e−1.

We now return to the proof of the lemma. Define the event Good(t) to be

Good(t) ≡ 1

8
≤ ∣t∣pFp ≤ 1 and Cs(t) ∈

(
1± �

16

)
e−∣t∣

pFp .

By Claims 1 through 3, using union bound,

Pr [Good(t)] ≥ 1− 2e−3 − e−4.75 ≥ 0.89 .

We will now assume that Good(t) holds. Expanding log(1/Cs(t)) around e−∣t∣
pFp using Taylor’s

series, there exists � ∈ [e−∣t∣
pFp , Cs(t)] such that∣∣∣log

1

Cs(t)
− ∣t∣pFp

∣∣∣ =
∣∣∣Cs(t)− e−∣t∣pFp

�

∣∣∣ ≤ �

16

e−∣t∣
pFp

e−∣t∣
pFp(1− �/16)

=
�

16(1− �/16)
(5)

where, the first inequality is obtained by Taylor’s series and the second inequality follows since

Good(t) implies that ∣Cs(t)− e−∣t∣
pFp ∣ ≤ (�/16)e−∣t∣

pFp . Therefore,∣∣F̂p(t)− Fp∣∣ =
∣∣∣ 1

∣t∣p
log

1

Cs(t)
− Fp

∣∣∣ ≤ �

∣t∣p(1− �/16)
≤ 8�Fp

16(1− �/16)
≤ 8�Fp

15
.

Here the first equality follows from the definition of F̂p(t) from (4), the second inequality follows

(5), the third inequality follows since Good(t) implies ∣t∣Fp ≥ 1/8 and the final inequality follows

since � ≤ 1. Thus

Pr
[∣∣F̂p(t)− Fp(t)∣∣ < 8�Fp/15

]
= Pr

[∣∣F̂p(t)− Fp(t)∣∣ < 8�Fp/15 ∣ Good(t)
]
Pr [Good(t)]

= 1 ⋅ Pr [Good(t)] ≥ 0.89 .

This proves the first statement of the lemma. We now prove the second statement of the lemma.

Claim 4. Suppose that 1
8Fp
≤ ∣t∣p ≤ 1

Fp
. Then,

Pr
[(

1 +
�

16

)
e−1 ≤ Cs(t) ≤

(
1− �

16

)
e−1/8

]
≥ 1− 10

s
.

Proof of Claim 4. Suppose ∣t∣pFp ≤ 1. Then,

Pr
[
Cs(t) >

(
1− �

16

)
e−1/8

]
= Pr

[
Cs(t)− E [Cs(t)] >

(
1− �

16

)
e−1/8 − e−1

]
≤ 1

s
((

1− �
16

)
e−1/8 − e−1

)2 ≤ 5

s
.
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Suppose ∣t∣pFp ≥ 1
8 . Then,

Pr

[
Cs(t) <

(
1 +

1

16

)
�−1
]

= Pr

[
E [Cs(t)]− Cs(t) ≥ e−1/8 −

(
1 +

1

16

)
e−1
]

≤ 1

s
(
e−1/8 −

(
1 + 1

16

)
e−1
)2 ≤ 5

s
.

The arguments used are similar to previous claims. By union bound, Claim 4 is proved.

Finally, if Fp = 0 then Xj = 0 for each j. Conversely, if Fp ∕= 0, then, the probability that

X1, . . . , Xs are all zeros has measure 0.

We can now show that O(log(�−1)/ log log(�−1))-wise independence of the stable variables suffices.

Let E [cos(tX)] and E2a [cos(tX)] denote the expectations when the stable variables sj ’s forming X

are respectively fully independent and 2a-wise independent.

Lemma 2.2 For � < 1/2, ∣E [cos(tX)]− E2a [cos(tX)]∣ ≤ �4.

Proof For any tX,

∣∣cos(tX)−
2a−2∑
r=0

(−1)r(tX mod 2�)2r

(2r)!

∣∣ ≤ (2�)2a

(2a)!
≤ �4

2
, if 2a =

8�e log �−1)

log log(�−1)
.

Since X =
∑

j fjsj and the sj ’s are 2a-wise independent, it follows that E [(tX)r mod 2�] =

E2a [(tX)r mod 2�], for r ≤ 2a, since Xr only involves product terms with at most r distinct sj ’s.

Therefore, ∣E [cos(tX)]− E2a [cos(tX)]∣ ≤ 2 ⋅ �42 = �4.

By the above analysis, the number of random bits used by the estimator is O( log(�−1

log log(�−1)
log(mM)).

The space requirement of the estimator is therefore O(�−2 log(mM)) which matches the lower bound

in [12]. The update time requirement isO
(
�−2 log(�−1)

log log(�−1)

)
matching that of the knw-2 estimator [12].

In the next section, we present an estimator for F1 with a significantly improved time requirement.

3 Conclusion

We present a novel space-optimal algorithm for estimating Fp over data streams to within multi-

plicative error factor of 1±� for p ∈ (0, 2]. The algorithm has an elementary analysis as compared to

previous space-optimal algorithms and is based on the characteristic function of stable distributions.
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