Estimating Entropy (and its Friends) on Data Streams

Amit Chakrabarti

Dartmouth College Hanover, NH, USA

Largely based on joint work with Graham Cormode and Andrew McGregor

What is a Data Stream?

- A huge amount of data whizzing by
- Relevance: explosion of data in our heavily networked world
 - 1 billion credit card transactions/month, worldwide
 - 3 billion telephone calls/day, in U.S.
 - 1 billion IP packets/hour, at an average router
 - 2.5 billion emails/hour, worldwide (2006 est.)

Want to mine such a huge data stream, but can't store it all

What is Entropy?

A measure of randomness or information contentThermodynamics, anyone?

• For probability distribution $\mathbf{p} = (p_1, p_2, ..., p_n)$, entropy $H(\mathbf{p}) := \sum_{i \in [n]} p_i \log(1/p_i)$

• Rich mathematical theory (information theory), initiated by Claude Shannon

Data Stream Model

• Input stream = sequence $\langle a_1, a_2, ..., a_m \rangle$ • Each token $a_i \in [n] := \{1, 2, ..., n\}$ • m, n huge

Compute function φ(a₁, a₂, ..., a_m) using
 sublinear space << m, n; ideally, polylog(m, n)
 small number of passes; ideally, one pass

Example Problems

Tokens often uninteresting as numbersInteresting: frequency distribution of tokens

$$f_a := \#\{i : a_i = a\}, i \in [n]$$

Statistical analysis of stream: ψ(f₁, f₂, ..., f_n)
Most popular token: compute max_a {f_a}
Heavy hitters: compute {a : f_a > m/10}
Frequency moments: compute Σ_{a∈[n]} (f_a)^k

Frequency Moments

• The problem that started the "modern age" • Estimate $F_k := \sum_{a \in [n]} f_a^k$ [Alon, Matias, Szegedy'96]

Fairly well understood at this point
 Sublinear space requires randomization and approximation
 Upper bound: Õ(n^{1-2/k}) for k > 2; Õ(1) for k ∈ {0,1,2}
 [AMS'96] [Coppersmith,Kumar'96] [Indyk,Woodruff'05]
 Lower bound: Ω(n^{1-2/k}), also ε-approx requires Ω(ε⁻²)
 [BarYossef,J,K,S'02] [Chakrabarti,Khot,Sun²03]
 [Wood f'04]

Entropy Norm

• Previously: estimate (*k*th power of) *k*-norm $F_k := \sum_{a \in [n]} f_a^k$

• Now: estimate

 $F_H := \sum_{a \in [n]} f_a \log f_a$ Called the entropy norm of the stream

• Key application: detecting anomalies in IP traffic

Empirical Entropy

• Frequencies $f_1, f_2, ..., f_n$ define empirical probability distribution on tokens

• Empirical entropy

 $H := \sum_{a \in [n]} (f_a/m) \log(m/f_a)$

Applications in databases and networking
 Estimating F_H, H proposed in applied work, but no nontrivial algorithms (until this year)

The Main Problem

$$\begin{split} H &:= \sum_{a \in [n]} (f_a/m) \log(m/f_a) \\ F_H &:= \sum_{a \in [n]} f_a \log f_a \end{split}$$

- Compute ε-approx to H in space o(m) words
 i.e., output estimate that w.h.p. lies in [(1-ε)H, (1+ε)H]
- Try doing the same for F_H
 Note: F_H = m(log m H), but that doesn't help
- And other entropy-like quantities

(Slightly) Old Results

 For estimating F_H

 If F_H > m/Δ, ε-approx in space O(Δε⁻² log m) words
 Else, O(1)-approx needs space Ω(Δ) bits [Chakrabarti,DoBa,Muthukrishnan'06]

 For estimating H

 O(1)-appro&rferwlarge=H0(togpace tbgpe)/detst on H [Guha,McGregor,Venkatasubramanian'06]
 Two-pass ε-approx in space O(ε⁻² log²m) [Chakrabarti,DoBa,Muthukrishnan'06]
 One-pass ε-approx in space ≈ O(ε⁻³ log⁵m) [Bhuvanagiri,Ganguly'06]

New Results

For estimating H
 One-pass ε-approx in space O(ε⁻² log m)

• Considerably simpler than previous one-pass algorithm • Lower bound of $\Omega(\epsilon^{-2}/\log^2 \epsilon^{-1})$

- For estimating higher order entropy H_k
 Multiplicative approx lower bound of Ω(m/log m)
 Additive ε-approx in space O(k² ε⁻² log² m log² n)
- Also: estimating unbiased random walk entropy [Chakrabarti,Cormode,McGregor'07] To appear, SODA'07

Estimators: Brief Analysis

• Basic estimator X, E[X] = Q

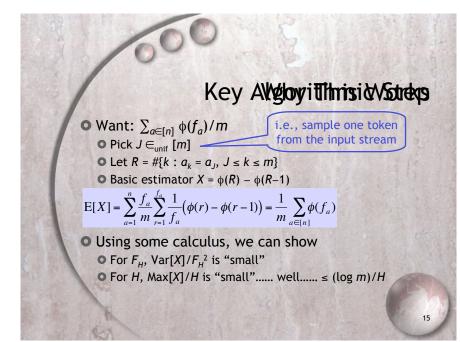
• Let Y = average of $3\epsilon^{-2}Var[X]/Q^2$ copies of XThen, $Pr[|Y-Q| > \epsilon Q] \le 1/3$ (Chebyshev) • Let Z = average of $5\epsilon^{-2}Max[X]/Q$ copies of XThen, $Pr[|Z-Q| > \epsilon Q] \le 1/3$ (Chernoff)

• Y (or Z) serves as a final estimator Space \propto Var[X]/Q² or Max[X]/Q

Designing an Estimator

Input (a₁, a₂, ..., a_m); f_i = frequency of a ∈ [n]
Want to compute ∑a∈[n] φ(f_a)/m, for some φ
To compute H, use φ(x) = x log(m/x)
To compute F_H, use φ(x) = mx log x

• Pick $J \in_{unif} [m]$ • Let $R = \#\{k : a_k = a_J, J \le k \le m\}$ • Basic estimator $X = \phi(R) - \phi(R-1)$



Dealing with H = o(1)

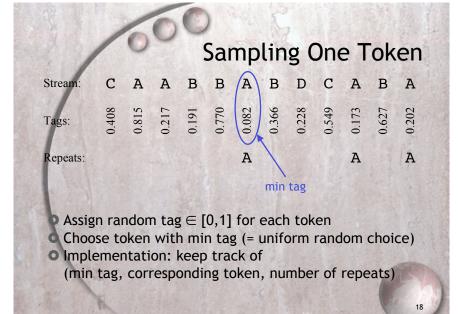
If H << 1, space usage (log m)/H could be high
When is H < 1 ?
Only when some f_a > m/2
i.e., when the input stream A has a dominator, a*

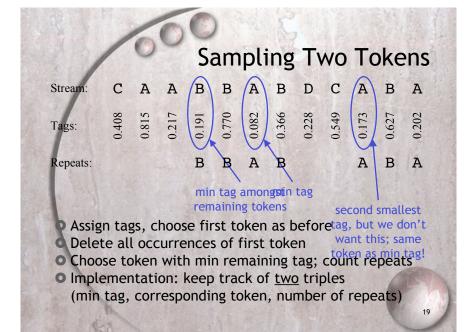
If we knew about a* in advance...
Let A' = A - (all occurrences of a*)
Design estimator X' for A', similar to X for A
Compute H from X' and |A'|
Easy two-pass algorithm, but how about one-pass?

Dealing with H = o(1)

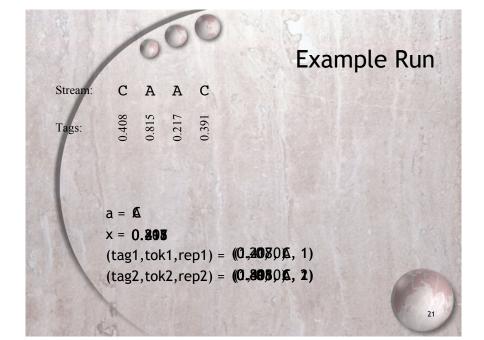
In one pass, we need to
Sample one token from A
Sample one token from A', if a* exists
Identify a*
Estimate |A'| within 1±ε

• Last two tasks: nice undergrad exercise today Once a research problem: [Misra,Gries'82]









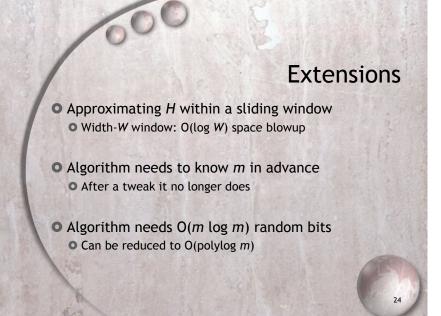
Lower Bound

GAP-HAMM communication problem: • Alice holds $x \in \{0,1\}^N$, Bob holds $y \in \{0,1\}^N$ • Promise: $\Delta(x,y)$ is either $\leq N/2$ or $\geq N/2 + \sqrt{N}$ • Which is the case? • Model: one message from Alice to Bob

Requires $\Omega(N)$ bits of communication

Lower Bound, Reduction

Observe: there are • $2\Delta(x,y)$ tokens with frequency 1 each • $N - \Delta(x,y)$ tokens with frequency 2 each •



Further Results

25

- Key contrib: "distinct sampling" technique
 Entropy approx: two distinct samples
 - Can easily extend to more
- Using same technique, additive $\epsilon\text{-approx}$ for
 - $H_k := k$ th order entropy
 - Space $O(k^2 \varepsilon^{-2} \log^2 m \log^2 n)$
 - Multiplicative approx: $\Omega(m/\log m)$ lower bound, via reduction from another communication problem
- Also: unbiased random walk entropy (mult approx)

Open Problems

- Ω(log m) lower bound?Also open for frequency moments
- "Distinct sampling" technique: more applications?
- Our algorithm doesn't handle token deletions
 [BG'06] does, but that's complicated
 Anything simpler?
- Algorithms for "information distances"? • Some results known, but that's another talk...