
Estimating Entropy
(and its Friends)
on Data Streams

Amit Chakrabarti

Dartmouth College

Hanover, NH, USA

Largely based on joint work with
Graham Cormode and Andrew McGregor

2

What is a Data Stream?
! A huge amount of data whizzing by

! Relevance: explosion of data in our heavily
networked world
! 1 billion credit card transactions/month, worldwide

! 3 billion telephone calls/day, in U.S.

! 1 billion IP packets/hour, at an average router

! 2.5 billion emails/hour, worldwide (2006 est.)

! Want to mine such a huge data stream,
but can’t store it all

3

What is Entropy?
! A measure of randomness or information content

! Thermodynamics, anyone?

! For probability distribution p = (p1, p2, …, pn),
entropy H(p) := %i#[n] pi log(1/pi)

! Rich mathematical theory (information theory),
initiated by Claude Shannon

4

Data Stream Model
! Input stream = sequence !a1, a2, …, am"

! Each token ai # [n] := {1, 2, …, n}

! m, n huge

! Compute function $(a1, a2, …, am) using
! sublinear space << m, n; ideally, polylog(m, n)

! small number of passes; ideally, one pass

5

Example Problems
! Tokens often uninteresting as numbers

! Interesting: frequency distribution of tokens

fa := #{i : ai = a}, i # [n]

! Statistical analysis of stream: &(f1, f2, …, fn)
! Most popular token: compute maxa {fa}

! Heavy hitters: compute {a : fa > m/10}

! Frequency moments: compute %a#[n] (fa)
k

6

Frequency Moments
! The problem that started the “modern age”

! Estimate Fk := %a#[n] fa
k [Alon,Matias,Szegedy’96]

! Fairly well understood at this point
! Sublinear space requires randomization and approximation

! Upper bound: Õ(n1—2/k) for k > 2; Õ(1) for k # {0,1,2}

[AMS’96] [Coppersmith,Kumar’96] [Indyk,Woodruff’05]

! Lower bound: '(n1—2/k)

[BarYossef,J,K,S’02] [Chakrabarti,Khot,Sun’03]

[Woodruff’04]

, also (-approx requires '((—2)

7

Entropy Norm
! Previously: estimate (kth power of) k-norm

Fk := %a#[n] fa
k

! Now: estimate

FH := %a#[n] fa log fa

Called the entropy norm of the stream

! Key application: detecting anomalies in IP traffic

8

Empirical Entropy
! Frequencies f1, f2, …, fn define empirical

probability distribution on tokens

! Empirical entropy

H := %a#[n] (fa/m) log(m/fa)

! Applications in databases and networking

! Estimating FH, H proposed in applied work, but no
nontrivial algorithms (until this year)

9

The Main Problem
H := %a#[n] (fa/m) log(m/fa)

FH := %a#[n] fa log fa

! Compute (-approx to H in space o(m) words
! i.e., output estimate that w.h.p. lies in [(1*()H, (1+()H]

! Try doing the same for FH

! Note: FH = m(log m * H), but that doesn’t help

! And other entropy-like quantities

10

(Slightly) Old Results
! For estimating FH

! If FH > m/), (-approx in space O()(*2 log m) words
! Else, O(1)-approx needs space '()) bits

[Chakrabarti,DoBa,Muthukrishnan’06]

! For estimating H
! O(1)-approx for large H in space dependent on H

[Guha,McGregor,Venkatasubramanian’06]

! Two-pass (-approx in space O((*2 log2m)
[Chakrabarti,DoBa,Muthukrishnan’06]

! One-pass (-approx in space ! O((*3 log5m)
[Bhuvanagiri,Ganguly’06]

One word = O(log m + log n) bits

11

New Results
! For estimating H

! One-pass (-approx in space O((*2 log m)

! Considerably simpler than previous one-pass algorithm

! Lower bound of '((*2/log2 (*1)

! For estimating higher order entropy Hk

! Multiplicative approx lower bound of '(m/log m)

! Additive (-approx in space O(k2 (*2 log2 m log2 n)

! Also: estimating unbiased random walk entropy
[Chakrabarti,Cormode,McGregor’07]

To appear, SODA’07

12

Estimators
! Wish to compute Q

! Design random variable X (basic estimator):
! E[X] = Q

! Var[X] as small as possible

! X easy to update as stream is read (= small space)

! If Var[X] tiny, then w.h.p. X !(Q

! Else, reduce variance: maintain several
independent Xs and average

Implicit in [Alon,Matias,Szegedy’96]

13

Estimators:
Brief Analysis

! Basic estimator X, E[X] = Q

! Let Y = average of 3(*2Var[X]/Q2 copies of X

Then, Pr[|Y*Q| > (Q] + 1/3 (Chebyshev)

! Let Z = average of 5(*2Max[X]/Q copies of X

Then, Pr[|Z*Q| > (Q] + 1/3 (Chernoff)

! Y (or Z) serves as a final estimator

Space - Var[X]/Q2 or Max[X]/Q

14

Designing an Estimator
! Input !a1, a2, …, am"; fi = frequency of a # [n]

! Want to compute %a#[n] $(fa)/m, for some $
! To compute H, use $(x) = x log(m/x)

! To compute FH, use $(x) = mx log x

! Pick J #unif [m]

! Let R = #{k : ak = aJ, J + k + m}

! Basic estimator X = $(R) * $(R*1)

15

Why This Works
! Want: %a#[n] $(fa)/m

! Pick J #unif [m]

! Let R = #{k : ak = aJ, J + k + m}

! Basic estimator X = $(R) * $(R*1)

! Using some calculus, we can show
! For FH, Var[X]/FH

2 is “small”

! For H, Max[X]/H is “small”…… well…… + (log m)/H

i.e., sample one token
from the input stream

!

E[X] =
fa

m
a=1

n

"
1

far=1

fa

" #(r) $#(r $1)() =
1

m
#(fa)

a%[n]

"

Key Algorithmic Step

16

Dealing with H = o(1)
! If H << 1, space usage (log m)/H could be high
! When is H < 1 ?

! Only when some fa > m/2
! i.e., when the input stream A has a dominator, a*

! If we knew about a* in advance…
! Let A, = A * (all occurrences of a*)
! Design estimator X, for A,, similar to X for A
! Compute H from X, and |A,|

! Easy two-pass algorithm, but how about one-pass?

17

Dealing with H = o(1)
! In one pass, we need to

! Sample one token from A

! Sample one token from A,, if a* exists

! Identify a*

! Estimate |A,| within 1±(

! Last two tasks: nice undergrad exercise today
Once a research problem: [Misra,Gries’82]

18

Sampling One Token

AAARepeats:

0
.2
0
2

0
.6
2
7

0
.1
7
3

0
.5
4
9

0
.2
2
8

0
.3
6
6

0
.0
8
2

0
.7
7
0

0
.1
9
1

0
.2
1
7

0
.8
1
5

0
.4
0
8

Tags:

ABACDBABBAACStream:

min tag

! Assign random tag # [0,1] for each token
! Choose token with min tag (= uniform random choice)
! Implementation: keep track of

(min tag, corresponding token, number of repeats)

19

Sampling Two Tokens

Repeats:

0
.6
2
7

0
.5
4
9

0
.2
2
8

0
.3
6
6

0
.7
7
0

0
.1
9
1

0
.4
0
8

Tags:

BCDBBB

AAA

0
.2
0
2

0
.1
7
3

0
.0
8
2

0
.2
1
7

0
.8
1
5

AAAAACStream:

min tag

! Assign tags, choose first token as before
! Delete all occurrences of first token
! Choose token with min remaining tag; count repeats
! Implementation: keep track of two triples

(min tag, corresponding token, number of repeats)

second smallest
tag, but we don’t
want this; same

token as min tag!

min tag amongst
remaining tokens

BBBB

20

Implementation:
Some Details

Maintain (tag1, tok1, rep1), (tag2, tok2, rep2); tag1 < tag2
tok1 will be sample from A, tok2 will be sample from A,

On reading next token, a:
x = random tag # [m3]

if a == tok1:
if x < tag1 then (tag1,tok1,rep1) = (x,a,1) else rep1++

else:
if a == tok2 then rep2++
if x < tag1:

(tag2,tok2,rep2) = (tag1,tok1,rep1)
(tag1,tok1,rep1) = (x,a,1)

else:
if x < tag2 then (tag2,tok2,rep2) = (x,a,1)

21

a =

x =

(tag1,tok1,rep1) =

(tag2,tok2,rep2) =

0.2170.3910.8150.408

Example Run

0
.3
9
1

0
.4
0
8

Tags:

C

0
.2
1
7

0
.8
1
5

AACStream:

CA

(1, 0, 0)

(1, 0, 0)

(0.408, C, 1)

(0.815, A, 1)(0.815, A, 2)(0.408, C, 1)

(0.217, A, 1)

(0.408, C, 2)(0.391, C, 1)

22

Lower Bound
GAP-HAMM communication problem:

! Alice holds x # {0,1}N, Bob holds y # {0,1}N

! Promise:)(x,y) is either + N/2 or . N/2 + √N
! Which is the case?

! Model: one message from Alice to Bob

Requires '(N) bits of communication
[Indyk,Woodruff’03]

23

Observe: there are
! 2)(x,y) tokens with frequency 1 each
! N *)(x,y) tokens with frequency 2 each
So, H = log N +)(x,y)/N

Either H + log N + 1/2 or H . log N + 1/2 + 1/!N

To distinguish, approximate H within (1±(!N log N)*1)

! For this, Alice’s memory contents = '(N) bits
! Translation: (1±()-approx requires '((*2/log2 (*1) bits

Lower Bound, Reduction

Alice: x # {0,1}N, Bob: y # {0,1}N

Entropy estimation algorithm A
! Alice runs A on !(1,x1), (2,x2), …, (N,xN)"

! Alice sends over memory contents to Bob
! Bob continues A on !(1,y1), (2,y2), …, (N,yN)"

(6,0)(5,1)(4,0)(3,0)(2,1)(1,1)

(6,1)(5,1)(4,0)(3,0)(2,1)(1,0)

010011
Bob

110010
Alice

24

Extensions
! Approximating H within a sliding window

! Width-W window: O(log W) space blowup

! Algorithm needs to know m in advance
! After a tweak it no longer does

! Algorithm needs O(m log m) random bits
! Can be reduced to O(polylog m)

25

Further Results
! Key contrib: “distinct sampling” technique

! Entropy approx: two distinct samples

! Can easily extend to more

! Using same technique, additive (-approx for
Hk := kth order entropy
! Space O(k2 (-2 log2 m log2 n)

! Multiplicative approx: '(m/log m) lower bound, via
reduction from another communication problem

! Also: unbiased random walk entropy (mult approx)

26

Open Problems
! '(log m) lower bound?

! Also open for frequency moments

! “Distinct sampling” technique: more applications?

! Our algorithm doesn’t handle token deletions
! [BG’06] does, but that’s complicated
! Anything simpler?

! Algorithms for “information distances”?
! Some results known, but that’s another talk…

