
Distributing Frequency-Dependent Data Stream Computations

Sumit Ganguly
sganguly@cse.iitk.ac.in

Indian Institute of Technology, Kanpur, India

Abstract

Data stream computations in domains such as in-
ternet applications are often performed in a highly
distributed fashion in order to save time. An exam-
ple is the class of applications that use the Google
Mapreduce framework of scalable distributed pro-
cessing as presented by (Dean & Ghemawat 2004).
A basic question here is: what kind of data stream
computations admit scalable and efficient distributed
algorithms? We show that the class of data stream
computations that approximate functions of the fre-
quency vector of the stream can be computed effi-
ciently in a distributed manner.

1 Introduction

Modern distributed data-centric applications typi-
cally process massive amounts of data over a col-
lection of nodes that are organized in the form of a
tree. The applications include internet data process-
ing and sensor networks, among others. An exam-
ple is the class of applications that use the Google
Mapreduce framework of scalable and flexible dis-
tributed processing as presented by (Dean & Ghe-
mawat 2004). In this model, data resides at the hun-
dreds or even thousands of nodes that form the leaf
nodes of a depth one tree. Data at each of the nodes
is locally reduced, and the reduced data is sent to the
root site, which combines the locally reduced copies
into a single copy and then computes an answer from
it. In sensor networks, the sensors are organized in
the form of a directed spanning tree and local data
at nodes is reduced and combined up the tree. Many
such practical algorithms are maximally flexible in the
sense that all trees over the same set of leaf nodes may
be used to compute the answer.

There is another practical model of data process-
ing, namely, data stream processing, that also pro-
cesses massive amounts of data, but, in a sequential,
online fashion. Typically, a low space summary of
the data stream is constructed and maintained with
respect to newly arriving data or updates. Although
the data streaming model is sequential, it is an oft-
spoken virtue of data stream processing that typi-
cal stream summary structures are efficiently compos-
able. By composability, we mean that there is a bi-
nary composition operation � that takes instances of
the summary structure that are maintained indepen-
dently over distributed streams and combines them
into a single instance whose state is the same as, or

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Fifteenth Computing: The Australasian
Symposium (CATS 2009), Wellington, New Zealand. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 94, Rod Downey and Prabhu Manyem, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

is equivalent to, the state of the summary structure
after processing the concatenation of the distributed
streams at a single site. The property of compos-
able summaries makes it viable to have data-parallel
distributed streaming computation with substantial
flexibility, as illustrated by the following example.
Example 1. Consider a distributed computation
consisting of k nodes such that the input at each
node is an n-dimensional vector fi, i = 1, 2, . . . , k.
The problem is to design an efficient distributed al-
gorithm to compute an approximation to the `2 norm
of the sum of the vectors f1 + . . . + fk. This is pos-
sible using the randomized linear sketch technique
by (Alon et al. 1998) for approximating the `2 norm
of a vector in the data stream model. Each site com-
putes a random sketch of its input vector using the
same random bits and sends it to a central site. The
central site composes the sketches received from the
sites, by simply adding them like vectors in the sketch
space and then applies the `2-approximation function
on the composed sketches. The composition opera-
tion is time-efficient, as well as associative and com-
mutative. So any binary tree over the set of leaf nodes
may be used to compute the answer, making the dis-
tributed computation highly flexible.
The composability property of stream structures
presents the possibility that sequential data stream
execution can be molded into data-parallel execu-
tion over distributed streams. This was explored
in the mud model (acronym for Massive Unordered
Distributed algorithms) presented by (Feldman et al.
2008). We first outline the data streaming model and
then discuss the mud model and the results by (Feld-
man et al. 2008).

1.1 Data Stream Model

A general data stream over the domain [n] is mod-
eled as a sequence of individual records of the form
(index, i, δ), where, index represents the position of
this record in the sequence, i ∈ [n] and δ is either 1,
or −1, signifying, respectively, insertion or deletion of
an instance of i. The data streaming algorithm may
be viewed as a pair of functions (⊕, output). Here, ⊕
is the configuration transition function of the stream-
ing algorithm, that is, if the current configuration of
the algorithm is s and the input is the sequence σ,
then, the configuration of the algorithm starting from
s and after processing σ is s ⊕ σ. The output func-
tion takes the current configuration and returns an
output; the function output may take multiple ar-
guments. The space and time requirement of a data
stream algorithm are, respectively, the space and time
requirement of the ⊕ operation. The communication
complexity of a data stream algorithm is defined as
dlogQ(m)e, where, Q(m) is the set of reachable con-
figurations of the stream algorithm for inputs of size
at most m. The communication complexity gives a

lower bound on the number of bits that needs to be
communicated in order to precisely convey the cur-
rent configuration of the algorithm.

The frequency of i ∈ [n] in the stream σ, denoted
by fi(σ), is defined as the number of current instances
of i, counting insertions and subtracting deletions:

fi(σ) =
∑

(index,i,δ)

δ, i ∈ [n] .

The frequency vector f(σ) is the n-dimensional vec-
tor whose ith coordinate is the value fi(σ). A pop-
ular class of data processing applications over data
streams can be modeled as exact or approximate com-
putations over the frequency vector of the stream.
Examples of such functions include, finding frequent
items in a data stream, finding the median/quantiles,
approximating the frequency vector by a histogram,
computing the `p norms of the frequency vector, etc..
This class of functions are called frequency-dependent
functions and denoted as str[freq].

1.2 The mud model

A mud algorithm models distributed computation
that is organized in the form of a binary operator
tree T , where, data resides only at the leaf nodes.
We will view the data at the leaf nodes as a stream
over Σ∗ (i.e., a sequence from Σ∗). A mud algorithm
is represented as a triple (φ,�, ψ). Each leaf node
vl ∈ T applies the reduction function φ : Σ∗ → M
to its local stream σl to obtain a message φ(σl) that
is sent to its parent. Each internal node applies the
message composition function � : M ×M → M to
combine the messages received from its left and right
children to produce a new summary message that is
then conveyed to its parent. Let �T (σ) ∈ M denote
the data summary obtained at the root of the tree T
at the end of this process, where, σ is the concatena-
tion of the data streams in a left to right traversal of
the leaf nodes of T . The root of the computation tree
T produces the output ψ(�T (σ)) where, ψ : M → O
processes a data summary message and returns an
output value. A mud algorithm is said to compute a
function g(σ) provided

ψ(�T (σ)) = g(σ), ∀ trees T over leaf sequence σ.

In other words, the mud model by (Feldman et al.
2008) admits only those algorithms whose output is
independent of the tree T . The space and time re-
quirements of a mud algorithm P = (φ,�, ψ) are
measured as the maximum of the respective require-
ments for the functions φ and � respectively (the out-
put function ψ is excluded). The communication is
measured as the maximum number of bits sent from
a child node to its parent, as a function of the input
stream size.

Extending mud. The mud proposal does not al-
low general approximations, for example, mud disal-
lows an algorithm that computes a function over the
frequency vector of its input stream such that the
output of the algorithm is different for two different
input streams, both having the same frequency vector
and both satisfying approximation criterion. We ex-
tend the mud proposal as follows. The approximate
computation of a function g : Σ∗ → O is specified
by a binary approximation predicate Approx(ĝ, g)
that returns true if ĝ(σ) is an acceptable approx-
imation to the exact value g(σ) and is false oth-
erwise. A mud algorithm P = (φ,�, ψ) is said
to approximately compute g : Σ∗ → O with re-
spect to Approx, if the output of the tree satisfies
Approx(P (T, σ), g(σ)) = true.

We will also relax mud’s requirement that all bi-
nary trees over the ordered left to right sequence of
leaf nodes must yield the same answer. This was re-
quired so that mud algorithms would be highly flex-
ible and implied that its corresponding streaming al-
gorithm be symmetric, that is, it gives the same an-
swer for all permutations of the input stream. We
classify a mud algorithm P = (φ,�, ψ) as min-
imally flexible (or, inflexible), if there is a single
family of trees {Tk}k≥1, containing one tree Tk for
each number k of leaf nodes and the output satisfies
Approx(�Tk

(σ), g(σ)) = true, for all k ≥ 1. and
for all input streams σ partitioned left to right into
k contiguous sub-streams, where, each sub-stream is
given as input to one leaf node. A mud algorithm
P = (φ,�, ψ) is maximally flexible if for any binary
tree T over k of leaf nodes, Approx(�T (σ), g(σ)) =
true. The original mud proposal allowed only max-
imally flexible algorithms.

A sub-class of mud algorithms, called
mud[vecsum] is defined as follows. Here, each
leaf node vl has an n-dimensional integer vector fl.
The algorithm computes an approximation to some
function g : Zn → O defined as the application of
g to the sum of the distributed vectors, that is,
g(f1 + . . . + fk). The class mud[vecsum] contains
interesting practical algorithms. For example, in
a large network, there may be a collection of k
distinct traffic matrix monitoring centers, corre-
sponding to nodes. It is needed to aggregate the
data by adding the matrices (or, vectors, tensors,
etc.) coordinate-wise, and then, to perform an
approximate computation over the resulting “global”
matrix.

Results of (Feldman et al. 2008). Feldman et.
al. ask the following question. Suppose that there
is a data streaming algorithm that computes (or ap-
proximates) a function g. When does this imply the
existence of a maximally flexible mud algorithm for
computing g over distributed data streams, and, what
are the resource bounds of such a mud algorithm in
terms of the resource bounds of the streaming algo-
rithm? The main result of (Feldman et al. 2008) is
given below and uses the following terminology. A
function g : Σ∗ → O is said to be total if it is defined
for all sequences in Σ∗. It is said to be partial (also
called a promise function) if it is only defined for some
specific subset of Σ∗. A function g : Σ∗ → O is said to
be symmetric if g(σ) = g(π(σ)) for any permutation
π over σ, and any σ ∈ Σ∗.

Theorem 1 (Feldman et al. 2008). Every total
data streaming algorithm that computes a symmetric
function g over its input stream using space s(m),
communication c(m) and time t(m) can be trans-
formed into a maximally flexible mud algorithm, that
uses communication c(m), space O(s(m)2) and time
2Θ(s(m)). Furthermore, there exist promise functions
and streaming algorithms for such a function that re-
quire log n space and communication and for which
any maximally flexible mud algorithm requires Ω(m)
communication.

In Theorem 1, the mud algorithm corresponding
to the streaming algorithm requires space (s(m))2 and
time 2Θ(s(m)). These are the space and time require-
ments respectively of the message composition func-
tion � of the mud algorithm; the space requirement
of the φ function remains s(m), since the given data
stream algorithm is used unchanged by each leaf node
and the message formed is the configuration of the
streaming algorithm. The quadratic space and ex-
ponential time complexity expression arise essentially

due to the use of a Savitch-like simulation for the mes-
sage composition operation. An important fact used
in obtaining the simulation results of Theorem 1 is
that the function that is being computed is symmet-
ric, that is, invariant of the order of the input.

1.3 Contributions

We prove theoretical properties regarding simulation
of mud algorithms from data streaming algorithms1.
Our first result presents an isomorphism between the
resource usage of total algorithms for approximating
frequency-dependent functions over data streams and
computing the same approximate function over the
sum of distributed vectors.

Theorem 2 Given a communication c(m) total data
streaming algorithm for approximating a function
g : Zn → O over the frequency vector of its input
stream with respect to approximation predicate Ap-
prox, there is a maximally flexible mud[vecsum] al-
gorithm P = (φ,�, ψ) for approximating g over the
sum of the vectors distributed over the leaves un-
der the approximation predicate Approxthat requires
c(m)-communication and whose message composition
function � requires time and space O(c(m)).

Theorem 2 differs from Theorem 1 in several
ways. First, it does not assume that the stream-
ing algorithm that computes a general approximation
(also called indeterminate approximation by (Feld-
man et al. 2008)) of a function g(f(σ)) is a symmetric
function of its input. Yet, it shows that the corre-
sponding mud[vecsum] algorithm is maximally flex-
ible. Secondly, there is improvement in the space and
time complexity of the message composition � oper-
ator of the resulting mud[vecsum] algorithm. These
are both O(c(m)) in Theorem 2, in comparison with
(s(m))2-space and 2Θ(s(m))-time respectively for the
� operation in Theorem 1. This is a significant im-
provement, since, s(m) = Ω(c(m)). We do not use a
Savitch-like non-deterministic guess and verify tech-
nique for proving this result. Rather, we use a struc-
tural property of streaming algorithms for comput-
ing functions of the frequency of input streams that
shows that given any streaming algorithm, there ex-
ists a streaming algorithm that computes the same
approximation and is essentially a linear map, such
that the communication complexity of the latter al-
gorithm is no more than that of the former. A formal
statement of the structural property is given in Sec-
tion 2. However, the structural property does not
present upper bounds for storing the linear map (ex-
cept for the trivial bound obtained by storing a d×n
matrix representing the linear map explicitly). This
implies that we are not able to present general upper
bounds for the space and time complexity of the φ
function in the resulting mud[vecsum] algorithm of
Theorem 2.

Theorem 3 Suppose that there is a possibly inflexi-
ble mud[vecsum]algorithm for approximating a func-
tion g : Zn → O over of the sum of the distributed vec-
tors with respect to approximation predicate Approx
that requires communication c(m). Then, there is
a maximally flexible mud[vecsum] algorithm P =
(φ,�, ψ) for approximating g over the sum of the vec-
tors distributed over the leaves under the approxima-
tion predicate Approxsuch that its communication
requirement is c(m) and space and time requirement
of the message composition function � is O(c(m)).

1The converse, namely, the simulation of a data streaming al-
gorithm from a mud algorithm may be done as follows. Given P =
(φ,�, ψ), define s ⊕ (index, i, v) = s � φ({i, v}) and output(s) =
ψ(s).

Theorem 3 shows that the existence of any mud al-
gorithm P that approximates a function g over the
sum of the distributed vectors implies the existence
of a highly flexible mud[vecsum] algorithm for the
same function with communication and space require-
ments that are no more than that of the original al-
gorithm. At first sight, this might appear to be a bit
surprising, since inflexibility is replaced by full flexi-
bility with no additional resource cost for the message
composition function �. However, Theorem 3 does
not present space and time bounds for the message
creation function φ, as before.

Proof Outline. The proof outline of Theorems 2
and 3 is as follows. A sub-class of mud[vecsum] al-
gorithms, called reducible algorithms is defined, that
are maximally flexible and distributed algorithms.
Theorem 2 is proved by showing that that any total
data stream algorithm that approximates a function
of the frequency vector of its input stream, that is,
an algorithm in the str[freq] class, can always be
used to design a reducible distributed streaming algo-
rithm, using essentially no more resources than that
used by the streaming algorithm.

The proof of Theorem 3 requires an additional
step. First, a converse of the above statement is
proved, that is, a reducible distributed streaming
algorithm for approximating a function of the sum
of distributed vectors can be used to design a total
data streaming algorithm for computing the same ap-
proximation to the function over the frequency vec-
tor of its input stream using, essentially, no more
resources than that used by the given reducible al-
gorithm. This shows that the class of reducible
mud[vecsum] algorithms and total data streaming
algorithms str[freq] are equivalent.

The problem now reduces to showing that corre-
sponding to any mud[vecsum] algorithm for approx-
imating a function of sum of distributed vectors, and
one that is not necessarily reducible, it is possible
to design a reducible mud[vecsum] algorithm for ap-
proximating the same function. This step is proved as
follows. We define a mudflat[vecsum] distributed
algorithm as a tree consisting of two levels, namely,
the root and the leaves. Each leaf node reduces its
input stream say σj to the message φ(σj) and relays
it to the root. The root node applies the message
composition function �(φ(σ1), . . . , φ(σt)) and applies
ψ to this quantity. The mudflat[vecsum] dis-
tributed algorithm may in general be inflexible. Any
mud[vecsum] algorithm may be viewed as a mud-
flat algorithm, by simply aggregating the internal
nodes of the tree into a single root. We then show
that corresponding to any mudflat algorithm, one
can design a reducible algorithm for approximating
the same function. The proof essentially proceeds
by showing that a module K ⊂ Zn can be con-
structed from the mudflat algorithm such that a
total streaming algorithm from str[freq] can be de-
signed for computing the same approximation such
thatK is the kernel of the automaton. By Theorem 2,
a total streaming algorithm from str[freq] implies
the existence of a fully flexible mud[vecsum] algo-
rithm. This proves Theorem 3.

2 Review: Data stream processing

We model a general stream over the domain [n]
as a sequence of individual records of the form
(index, a), where, index represents the position of
this record in the sequence and a belongs to the set
Σ = Σn = {e1,−e1, . . . , en,−en}. Here, ei refers to
the n-dimensional elementary vector (0, . . . , 0, 1 (ith
position), 0 . . . , 0). The frequency of a data stream σ,

denoted by f(σ) is defined as the sum of the elemen-
tary vectors in the sequence. That is,

f(σ) =
∑

(index,v)∈σ

v .

The concatenation of two streams σ and τ is denoted
by σ ◦ τ . The size of a data stream σ is defined as
follows.

|σ| = max
σ′ sub-sequence of σ

‖f(σ′)‖∞ .

A deterministic stream automaton is an ab-
straction for deterministic algorithms for processing
data streams. It is defined as a two tape Turing
machine, where the first tape is a one-way (unidi-
rectional) input tape that contains the sequence σ of
updates that constitutes the stream. Each update is a
member of Σ, that is, it is an elementary vector or its
inverse, ei or −ei. The second tape is a (bidirectional)
two way work-tape. A configuration of a stream au-
tomaton is modeled as a triple (q, h, w), where, q is a
state of the finite control, h is the current head po-
sition of the work-tape and w is the content of the
work-tape. The set of configurations of a stream au-
tomaton A that are reachable from the initial config-
uration o on some input stream is denoted as C(A).
The set of configurations of an automaton A that is
reachable from the origin o for some input stream σ
with |σ| ≤ m is denoted by Cm(A). A stream automa-
ton may be viewed as a tuple (n,C, o,⊕, ψ), where,
⊕ : C × Σ → C is the configuration transition func-
tion and ψ : C → O is the output function. The
transition function, written as s ⊕ t, where, s ∈ C
and t is a stream update, denotes the configuration
of the algorithm after it starts from configuration s
and processes the stream record t. We generally write
the transition function in infix notation. The notation
is generalized so that a⊕σ denotes the current config-
uration of the automaton starting from configuration
and processing the records of the stream σ in a left
to right sequence, that is,

s⊕ (σ ◦ τ) def= (s⊕ σ)⊕ τ .

After processing the input stream σ, the stream au-
tomaton prints the output

outputA(σ) = ψ(o⊕ σ) .

The automaton A is said to have communication func-
tion comm(A,m) = log|Cm(A)|. It is said to have
space function space(A,m), provided, for all input
streams σ such that |σ| ≤ m, the number of cells
used on the work-tape during the processing of input
is bounded above by space(A,m). The space func-
tion does not include the space used by the automaton
A to print its output. This allows the automaton to
print outputs of size Ω(space(A,m)). The online pro-
cessing time function of an automaton A, denoted by
Time(A,m), is the time complexity of the mapping ⊕
for processing records of an input stream whose size
is at most m.

The approximate computation of a function g :
Zn → O of the frequency vector g(f(σ)) is speci-
fied by a binary approximation predicate Approx :
E×E → {true, false} such that an estimate â ∈ O
is considered an acceptable approximation to the true
value a ∈ O provided Approx(â, a) = true and is
not considered to be an acceptable approximation if
Approx(â, a) = false. A stream automaton A is
said to compute a function g : Zn → O of the fre-
quency vector f(σ) of its input stream σ with respect
to the approximation predicate Approx, provided

Approx(ψ(σ), g(f(σ))) = true

for all feasible input streams σ. A stream automa-
ton is said to be total if the feasible input set is the
set of all input streams over the domain [n] and is
said to be partial otherwise. The class str[freq]
represents data streaming algorithms for computing
approximation of (partial or total) functions of the
frequency vector of the input stream. The notation
Z2m+1 denotes the set of integers {−m, . . . , 0, . . . ,m}.
We present the basic theorem of stream automaton.

Theorem 4 (Ganguly 2008). For every stream
automaton A = (n,CA, oA,⊕A, ψA), there exists a
stream automaton B = (n,CB , oB ,⊕B , ψB) such that
the following holds.

(1.) For any Approx predicate and any total
function g : Zn → O, Approx(ψB(σ), g(σ)) holds if
Approx(ψA(σ), g(σ)) holds.

(2.) comm(B,m) ≤ comm(A,m).

(3.) There exists a sub-module M ⊂ Zn and an
isomorphic map ϕ : CB → Zn/M where, (Zn/M,

⊕
)

is viewed as a module with binary addition operation⊕
, such that for any stream σ,

ϕ(a⊕ σ) = ϕ(a)
⊕

[f(σ)]

where, x 7→ [x] is the canonical homomorphism from
Zn to Zn/M (that is, [x] is the unique coset of M to
which x belongs).

(4.) comm(B,m) = O((n − dimM) logm), where,
dimM is the dimension of M .

Conversely, given any sub-module M ⊂ Zn, a stream
automaton A = (n,CA, oa,⊕A, ψA) can be con-
structed such that there is an isomorphic map ϕ :
CA → Zn/M such that for any stream σ,

ϕ(a⊕ σ) = ϕ(a)
⊕

[f(σ)] .

where,
⊕

is the addition operation of Zn/M , and

comm(A,m) = log
⌈∣∣{[x] : x ∈ Zn2m+1}

∣∣⌉
= Θ((n− dimM) logm)

Randomized stream automata can be defined as a
deterministic stream automaton with one additional
tape for the random bits. The random bit string R
is initialized on the random bit tape before any in-
put record is read; thereafter the random bit string
is used in a two way read-only manner. The rest of
the execution proceeds as before. We will say that a
randomized stream automaton correctly computes an
approximation given by the predicate Approx to a
function g of the frequency vector of the input stream,
provided, for all feasible streams σ,

Approx(ψ(R, σ), g(f(σ))) = true

for at least 3/4 fraction of the possible values taken
by the random bit string R.

3 mud[vecsum] Algorithm from str[freq]

In this section, we show an isomorphism between the
resource usage of approximating a total function g :
Zn → O with respect to an approximation predicate
Approx as an mud[vecsum] algorithm and a data
streaming algorithm from str[freq]. We first define
a sub-class of mud[vecsum] algorithms that we call

reducible algorithms, and show its equivalence with
data streaming computations, in the above sense. We
then show that corresponding to any mud algorithm
for computing approximations to total functions of
vector sums, one can construct a reducible algorithm
for the same problem with the same or less commu-
nication.
Notation: Given a vector sequence τ = x1, x2, . . . , xk
where the xj ’s belong to Zn, we use the following
abbreviations. For any function φ : Zn → D, we
extend the notation φ : (Zn)∗ → D∗ as follows.

φ(τ) denote= (φ(x1), . . . , φ(xk)) .

For τ ∈ (Zn)∗, let∑
τ

denote= x1 + x2 + . . .+ xk .

In the following definition, let M be the set of mes-
sages and O be the domain of output.

Definition 1 A mud[vecsum] algorithm Q =
(φ,�, ψ) is said to be reducible if there exists a sym-
metric function Υ : (Zn)∗ → M such that ψ(φ(τ)) =
ψ(Υ(τ)) and �(φ(τ)) = Υ(τ), for all τ ∈ (Zn)∗, and,

Υ(τ) = Υ
(∑

τ
)
, and

Υ(τ, σ) = Υ(τ ′, σ),
∀σ, τ, τ ′,∈ (Zn)∗ s.t. Υ(τ) = Υ(τ ′).

Reducible algorithms are denoted by the pair (Υ, ψ).
The Υ function essentially represents an aggregat-
ing function such that the vector of messages φ(τ)
is equivalent to the single message Υ(τ). In addi-
tion, reducible mud[vecsum] algorithms are maxi-
mally flexible. This follows from the fact that Υ func-
tion is symmetric. For any tree T with left to right
sequence of input streams at the leaves σ1, . . . , σt, let
σ = σ1 ◦ . . . ◦ σt and let xi = f(σi). Then,

�T (σ) = �(φ(σ1), . . . , φ(σt))
= Υ(σ1, . . . , σt) = Υ(x1 + . . .+ xt) .

Thus, all trees on the same set of leaf nodes
give the same output, which implies that reducible
mud[vecsum] algorithms are fully flexible.

3.1 str[freq] gives reducible algorithms

Lemma 1 Suppose there is a total data stream algo-
rithm over the domain [n] for approximating g(f(σ))
using communication complexity c(m) bits. Then,
there exists a reducible mud[vecsum] algorithm P
for approximating g(f1 + . . . + fk) with communica-
tion c(m).

Proof: : Let A = (n,CA, oA,⊕A, ψA) be a total
stream algorithm that approximates g(f(σ)). Then,
by Theorem 4, there exists a stream automaton
B = (n,CB , oB ,⊕B , ψA) such that comm(A,m) ≥
comm(B,m) and there exists a sub-module M of Zn
and an isomorphism ϕ from the set of configurations
of B, CB to the factor module (Zn/M,

⊕
) that pre-

serves the transition function, that is,

ϕ(a⊕ σ) = ϕ(a)
⊕

[x] .

The communication algorithm P = (φP ,�, ψP) is as
follows.

φP (f) = [f],�([f1], . . . , [fr]) = [f1 + . . .+ fr]

ψP ([f]) = ψB(ϕ−1(B)) .

The algorithm is reducible, since, the Υ function is
defined as (x1, . . . , xt) 7→ [x1 + . . .+xk]. The correct-
ness of P follows from the commutative, associative
addition operation

⊕
in a module. The communica-

tion from each party is equal to the communication
required by B which is c(m) bits, by Theorem 4.

Since reducible algorithms are maximally flexible,
Lemma 1 implies Theorem 2.

3.2 Reducibility yields str[freq] algorithm

We now prove the converse of the Lemma 1. That is,
we will show that any reducible mud[vecsum] algo-
rithm for computing an approximation to some func-
tion g of the sum of n-dimensional vectors that are
distributed in the leaf nodes of a tree implies the ex-
istence of a total data streaming algorithm over the
domain [n] for computing the same approximation to
g over the frequency vector of its input stream. The
symbols σ, τ, ρ etc. will be used to refer only to se-
quences of vectors in Zn, whereas, x, y, z etc., will
refer to vectors from Zn.

Lemma 2 Suppose g : Zn → O is approximated
by a reducible algorithm P = (Υ, ψ) with respect to
the approximation predicate Approx with communi-
cation comm(P,m). Then, there is a total stream
automaton B that approximates g(f(σ)) over any in-
put stream σ over [n] with respect to Approx with
communication complexity at most comm(P,m) bits.

Proof: For x, y ∈ Zn, define

x R y if ∃σ, τ ∈ (Zn)∗ s.t.
∑

σ = x,
∑

τ = y

and Υ(τ) = Υ(σ).

By construction, the relation R is reflexive and sym-
metric.

(1). Suppose x R y. Then, there exist vector
sequences σ, τ such that

∑
σ = x,

∑
τ = y and

Υ(σ) = Υ(τ). Since the algorithm is reducible, for
any z ∈ Zn, Υ(x,−σ, σ, z) = Υ(x,−σ, τ, z), or that
x + z R y + z, for any z ∈ Zn. Setting z = −y we
have, x− y R 0.

Let x R y and y R z. Then, there exists vector
sequences τ, σ, σ′ and ρ such that

∑
τ = x,

∑
σ =∑

σ′ = y and
∑
ρ = z such that Υ(τ) = Υ(σ) and

Υ(σ′) = Υ(ρ). By the previous paragraph, x R y
implies x − y R 0 and y R z implies y − z R 0. By
property of reducibility,

Υ(0) = Υ(τ,−σ, σ′,−ρ) = Υ(τ,−σ, σ, ρ) = Υ(τ,−ρ)

or that x−z R 0. So, there exists σ′ such that
∑
σ′ =

x− z and Υ(σ′) = Υ(0). Therefore,

Υ(x) = Υ(σ′, z) = Υ(0, z) = Υ(z)

or that x R z. Thus, R is an equivalence relation.
(2). Suppose x R 0. Then, Υ(0) = Υ(x,−x) =

Υ(0,−x) = Υ(−x), or that −x R 0. Suppose x R 0
and y R 0. Then, −x R 0 and −y R 0. Thus,

Υ(0) = Υ(x+ y,−x,−y) = Υ(x+ y, 0, 0) = Υ(x+ y)

or, that x+ y R 0.
Define the algorithm Q = (φ′,�, ψ′) as follows.

Let K = [0]R, that is, K is the equivalence class to
which 0 belongs. By properties (1) and (2), K is a
module. Define φ′ : Zn → Zn/K, where, (Zn/K,+)
is the quotient module whose elements are {[x] | x ∈

Zn} and [x] is the coset x + K to which x belongs.
Let

�([x1], . . . , [xr]) = [x1 + . . .+ xr]
and

ψ′([x1], . . . , [xr]) = ψ(Υ(y)), for any y ∈ [x1+. . .+xr] .

We now prove the correctness of the algorithm P . For
any set of input vectors x1, . . . , xk, it is easy to see by
induction on the height of the computation tree that
the output is

ĝQ(T) = ψ′([x1 + . . .+ xk]) = ψ(y)

for some y ∈ [x1 + . . .+ xk]. Thus, y R x1 + . . .+ xk
and there exists σ, τ ∈ (Zn)∗ such that

∑
σ = y,∑

τ = x1 + . . .+ xk and Υ(τ) = Υ(σ). Therefore,

Υ(x1 + . . .+xk) = Υ(τ) = Υ(σ) = Υ(
∑

σ) = Υ(y) .

Therefore, the output of the tree T with input vectors
x1, . . . , xk under the algorithm Q is

ĝQ(T) = ψ′([x1 + . . .+ xk]) = ψ(Υ(y)) = ψ(Υ(τ)).

Hence,

Approx(ĝQ(T), g(x1 + . . .+ xk))
= Approx(ψ(Υ(y)), g(x1 + . . .+ xk))
= Approx(ψ(Υ(x1 + . . .+ xk)), g(x1 + . . .+ xk))
= true

since it is given that the reducible algorithm P =
(φ,Υ) satisfies the approximation predicate Approx.
Since, φ′(x) = φ′(y) iff [x] = [y], therefore,

comm(Q,m) ≥ log |φ′((Z2m+1)n)|
≥ dlog|{x+K | x ∈ (Z2m+1)n}|e .

The algorithm P = (ψ′, φ′) is converted into a stream
automaton A = (n, o,Zn/K,⊕, ψA) defined as

[x]⊕ σ =
[
x+

∑
σ
]
, [x] ∈ Zn/K

and

ψA([x]) = ψ(Υ(y)), for some y ∈ [x].

Thus, by Theorem 4,

comm(A,m) = dlog|{x+K | x ∈ (Z2m+1)n}|e
≤ comm(Q,m) .

3.3 mud[vecsum] is essentially reducible

We now show that given any c(m)-communication,
s(m)-space and t(m)-time mud[vecsum] algorithm
for computing the approximation to a function g of
the sum of distributed vectors, there exists a reducible
mud[vecsum] algorithm requiring at most c(m)-
communication, c(m)+O(logm) space and O(c(m)+
logm) time. Essentially, this shows that without in-
creasing the communication or space resource require-
ments, one may always assume mud[vecsum] algo-
rithms to be maximally flexible.

In order to show this property, we introduce the
mudflat model. In the mudflat model, the com-
putation tree T is a two level tree consisting of the

root and the leaves. The root is allowed to be have
arbitrary arity. The leaf nodes contain the data, that
yields the input sequence when traversed from left to
right. A mudflat algorithm is denoted by a pair
Q = (φ,�, ψ). Each leaf node vl applies the function
φ : Σ∗ →M to its input σl (say) to obtain φ(σl) that
is sent to the root. The root node applies the func-
tion � : M∗ →M to merge the messages into a single
message as

�(φ(σ1), . . . , φ(σk)) .
The output is obtained as

P (σ1, . . . , σk) = ψ(�(φ(σ1), . . . , φ(σk))) .

The notion of approximation is defined with respect
to an approximation predicate as before. A mud-
flat[vecsum] algorithm for the function g : Zn → O
assumes that the leaf nodes contain vectors from Zn
and the algorithm approximates the function g ap-
plied to the sum of the vectors at the leaves.

Lemma 3 Suppose P = (φ,�, ψ) is a mud-
flat[vecsum] algorithm that approximates g(f1 +
. . .+ fk) with respect to a given approximation pred-
icate Approx. Then, there exists a reducible algo-
rithm Q = (φ′,Υ, ψ′) = (φ′,�′, ψ′) such that Q com-
putes g approximately with respect to Approx. Fur-
ther, comm(Q,m) ≤ comm(P,m) and the space and
time requirement of �′ function is O(comm(Q,m)).

Proof: Let

K = {x− y | φ(x) = φ(y)} .

Suppose φ(x) = φ(y). Given the input vec-
tor sequence (x,−y), the central site C receives
(φ(x), φ(−y)), which is the same as (φ(y), φ(−y)), the
latter being the message sequence received at C for
input vector sequence (−y, y). Since,∑

(x,−y) = x− y and
∑

(y,−y) = y − y = 0

it follows that

ψ ◦ φ(x,−y) = ψ ◦ φ(y,−y).

Here, ψ ◦ φ is the composite function (ψ ◦
φ)(t1, . . . , tk) = ψ(φ(t1, . . . , tk)). Therefore, the out-
put ψ ◦ φ(x,−y) may be mapped under a new com-
putation function ψ′ ◦ φ′(x,−y) = ψ(φ(0)) while sat-
isfying Approx(ψ(φ(0)), g(x− y)).

Let M = (K) be the ideal generated by K. Sup-
pose y ∈ M . Then there exists r such that y =
x1 + x2 + . . . + xr, xi ∈ K, for 1 ≤ i ≤ r. There-
fore,

ψ(φ(x1), . . . , φ(xk)) = ψ(φ(0), . . . , φ(0)) .

Thus, the output may be considered to be the
same as ψ(φ(0)), since the sum is 0. Therefore,
Approx(ψ(φ(0)), g(y)) = true and y could be
mapped to φ(0) under φ′. In a similar manner, it
is argued that all elements of M could be mapped to
φ(0) under φ′, that is, φ′(M) = φ(0).

Consider a coset x+M and let y ∈ x+M . By a
similar argument as above, it may be inferred that

Approx(ψ(φ(0)), g(x− y)) = true.

Since x − y is indistinguishable from 0, therefore, x
and y could be mapped to the same image by φ′ with-
out error.

We can now construct the communication function
φ′ of the new algorithm Q′ = (φ′,�′, ψ′). Define φ′(x)

to be an encoding of the coset x+M . By definition,
if φ(x) = φ(y), then, x − y ∈ K ⊂ M and therefore,
x +M = y +M and so, φ′(x) = φ′(y). This implies
that for any m,∣∣{φ(x) : ‖x‖∞ ≤ m}

∣∣ ≤ ∣∣{x+M : ‖x‖∞ ≤ m}
∣∣

=
∣∣{φ′(x) : ‖x‖∞ ≤ m}

∣∣ .
Therefore,

comm(Q,m) ≥ log
∣∣{φ(x) : ‖x‖∞ ≤ m}

∣∣
≥ log

∣∣{φ′(x) : ‖x‖∞ ≤ m}
∣∣

= comm(Q′,m) .

The function �′ is defined as: �′(x1 +M,x2 +M) =
x1 + x2 + M and is implemented as the sum of ele-
ments of the factor module. The space requirement
is therefore O(comm(Q′,m)). The output function
ψ′(x + M) is set to ψ(y), where, y is any member
of x +M . This defines the mud[vecsum] algorithm
Q′ = (ψ′,�, φ′). The algorithm Q′ is reducible with
the reducing function Υ(τ) is (

∑
τ) +M .

We can now prove Theorem 3.

Proof [Of Theorem 3]: Any mud algorithm with
computation along a tree T with ordered leaf inputs
σ1, . . . , σk may be viewed as a mudflat algorithm
by aggregating the tree operator into a single operator
ψ′. That is, for input sequence σ1, . . . , σk, define

ψ′(φ(σ1), . . . , φ(σk)) = ψ(�T (σ1, . . . , σk)) .

By Lemma 3, we know that corresponding to
any mudflat[vecsum] algorithm for approximat-
ing a function of the sum of distributed vectors
that uses communication c(m), there is a reducible
mud[vecsum] algorithm that computes the same ap-
proximation using communication c(m). Further,
the message composition function � of the reducible
mud[vecsum] algorithm requires space and time
O(c(m)). Since, reducible algorithms are maximally
flexible, this proves Theorem 3.

Remark. It would be interesting to know prop-
erties of the class of compressible d × n linear maps
(matrices) A, such that all entries of A can be ob-
tained from a small seed. This would be help to char-
acterize the space complexity of the φ function of the
mud[vecsum] algorithms obtained in this work.

References

Alon, N., Matias, Y. & Szegedy, M. (1998), ‘“The
space complexity of approximating frequency mo-
ments”’, J. Comp. Sys. and Sc. 58(1), 137–147.

Dean, J. & Ghemawat, S. (2004), “Simplified data
processing on large clusters”, in ‘Int’l Conference
on Operating System Design and Implementation
OSDI’.

Feldman, J., Muthukrishnan, S., Sidiropoulos, A.,
Stein, C. & Svitkina, Z. (2008), “On distribut-
ing symmetric streaming computations”, in ‘Pro-
ceedings of ACM Symposium on Discrete Algo-
rithms (SODA)’, pp. 710–719. Full version at
arXiv:cs/0611108v2.

Ganguly, S. (2008), “Lower bounds for frequency es-
timation over data streams”, in ‘Proceedings of the
Computer Science Symposium of Russia (CSR),
Springer LNCS 5010’, pp. 204–215.

