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1 Introduction

A spanner is a sparse subgraph of a given graph that
preserves approximate distance between each pair of
vertices. In precise words, a t-spanner of a graph G =
(V,E), for any t ∈ N, is a subgraph (V,ES), ES ⊆ E
such that, for any u, v ∈ V , their distance in the sub-
graph is at most t times their distance in the original
graph. The parameter t is called the stretch associated
with the t-spanner. The concept of spanner was de-
fined formally by Peleg and Schäffer [13] though the
associated notion was used implicitly by Awerbuch [3]
in the context of network synchronizers. Computing t-
spanner of smallest size for a given graph is a well mo-
tivated combinatorial problem with numerous applica-
tions in the area of distributed systems, communica-
tion networks and all pairs approximate shortest paths
(see [4, 13] and references therein). However, comput-
ing t-spanner of smallest size for a graph is NP-hard.
In fact, for t > 2, it is NP-hard [6] even to approx-
imate the smallest size of t-spanner of a graph with
ratio O(2(1−µ) ln n) for any µ > 0. Having realized
this fact, researchers have pursued another direction
: to design an efficient algorithm which, for a given
graph on n vertices, outputs a t-spanner whose size
is of the order of the maximum size of the sparsest t-
spanner of a graph on n vertices. A 43 years old girth
lower bound conjecture by Erdős [7] implies that there
are graphs on n vertices whose 2k as well as (2k− 1)-
spanner will require Ω(n1+1/k) edges. This conjecture
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has been proved for k = 1,2, 3 and 5. Given the hard-
ness result for the original spanner problem, therefore,
a valid algorithmic goal would be to design an efficient
algorithm that, for any weighted graph on n vertices,
computes a (2k − 1)-spanner of size O(n1+1/k). In
the classical RAM model, there exist efficient algo-
rithms [1, 10] which achieve this goal. In this article
we address the problem of computing spanners of un-
weighted graphs in streaming model. This problem
has recently gained lot of importance due to its appli-
cation in computing all-pairs approximate distances in
streaming environment [9].

The streaming model [11] has the following two
characteristics: firstly the input data can be accessed
only sequentially in the form of a stream; secondly
the working memory is considerably smaller than the
size of the entire input stream. An algorithm in this
model is allowed to make one or more passes over the
input stream to solve a given computational problem.
The sequentiality in accessing the data and the small
working memory size enforce the following restric-
tion : during a pass, a data item once evicted from the
memory can’t be brought back into the memory. The
number of passes, the size of working memory, and the
processing time per data item are the parameters which
one aims to optimize in a streaming algorithm. For the
existing streaming algorithms for various graph prob-
lems please refer to [9, 12].

1.1 Computing spanner in streaming envi-
ronment and new results

Feigenbaum et al. [9] designed the first streaming al-
gorithm for spanners of unweighted graphs. For any
k ∈ N, their algorithm computes a (2k+1)-spanner of
expected size O(kn1+1/k) in one pass and requires ex-
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pected Θ(k2n1/k) processing time per edge. Note that
the size of the spanner thus computed is away from the
conjectured optimal bound by a factor of Θ(kn1/k2

).
We present a one pass streaming algorithm that

spends amortized constant time per edge and computes
a (2k−1)-spanner of expected size O(kn1+1/k). Note
that the size of the spanner (and the working memory)
is away from the conjectured optimal bound just by a
factor of k, and so is essentially optimal for any con-
stant k. Moreover, one pass and O(m) time to process
the stream is the best one can hope for in the streaming
model.

Recently and independently Elkin [5] came up with
a streaming algorithm for graph spanners. The effi-
ciency parameters of his algorithm are the same as
that of our algorithm except a slight difference in the
processing time per edge. Our algorithm takes O(m)
time to process the entire stream of edges, and thus
amortized O(1) time per edge. The processing time
per edge achieved by his algorithm has O(1) expected
bound and O(

√
log n

log log n) worst case bound. Another
difference is that our algorithm has an advantage of
using only elementary data structures for implementa-
tion at the expense of slightly involved analysis.

Remark. Our algorithm at each stage maintains a
(2k − 1)-spanner of the graph seen so far. Therefore,
it can also be viewed as a partial dynamic (incremen-
tal) algorithm for computing a (2k − 1)-spanner of an
unweighted graph with amortized O(1) time per edge
insertion.

Our algorithm is based on new simple ideas and a
combination of the techniques used by the algorithms
of Baswana and Sen [4], and Feigenbaum et al. [9].

1.2 Preliminaries

We assume, like the previous streaming algorithms [8,
9], that n, the number of vertices is known in advance
and the vertices are numbered from 1 to n. The central
idea of the algorithm is a suitable grouping of vertices
called clustering.

Definition 1.1 A cluster is a subset of vertices, and
a clustering C, is a union of disjoint clusters. Each
cluster will have a unique vertex which will be called
its center.

The uniqueness of the center of a cluster can be used to
represent a clustering C as an array (of the same label

C) of size n in the following way : C[v] will denote the
center of the cluster containing v unless v does not be-
long to any cluster, in which case C[v] = 0. A cluster
c is said to be adjacent to a vertex u if there is some
edge (u, v) in the graph for some v ∈ c. With respect
to a given clustering C, a vertex u ∈ V is said to be a
clustered vertex if it belongs to some cluster in C, and
an unclustered vertex otherwise.

2 Streaming algorithm for (2k − 1)-
spanners

Prior to processing the stream of edges, we have the
graph on n vertices without edges. As a preprocessing
step the algorithm employs random sampling to con-
struct initial k clusterings {Ci|0 ≤ i ≤ k−1} as shown
in Figure 1.

S0 ← V ; Sk ← ∅;
For (0 < i < k)

Si is formed by selecting each v ∈ Si−1

independently with probability n−1/k;
For (each v ∈ V and 0 ≤ i < k)

if (v ∈ Si) Ci[v]← v else Ci[v]← 0.

Figure 1: Forming the initial k clusterings

Let `c(v) be the highest level i < k such that v appears
as center of some cluster in Ci. It can be observed
that initially each cluster in Ci, i < k is a singleton set
storing only its center, and a small fraction of cluster
centers at each level i < k − 1 are selected randomly
to form cluster centers at level i+1. We will say that a
cluster c ∈ Ci is a sampled cluster at level i if its center
was selected to form a cluster center at (i + 1)th level.
As will become evident from the algorithm below, the
only change in a cluster during processing the stream
will be that other vertices from lower levels might join
it, and the following assertion will hold at each stage.

A :
For each cluster c′ ∈ Ci+1, there exists a unique
sampled cluster c at level i such that c ⊆ c′, and
vice versa.

An overview of the algorithm: Let `(u) denote the
highest level i < k such that u appears as a member
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of some cluster in Ci. In the beginning `(u) = `c(u)
for each u ∈ V . When an edge, say (u, v), appears in
the stream, the algorithm will process u if `(u) ≤ `(v)
and will process v otherwise. This processing and in
fact the whole algorithm from view point of a vertex
can be described informally as follows.

Each vertex u ∈ V waits at its present level `(u)
for an opportunity to move to a level higher than `(u).
Vertex u gets such an opportunity only when an edge,
say (u, v), appears in the stream such that `(v) > `(u)
and the cluster c containing v is a sampled cluster at
level `(u). In this case, it follows from assertion A
that there must be some cluster c′ ∈ C`(u)+1 such that
c ⊆ c′. So u adds the edge to the spanner, moves to the
next level and joins the cluster c′. If c′ too is a sampled
cluster at `(u) + 1, the vertex u further moves to the
next level and joins appropriate cluster c′′ satisfying
c′ ⊆ c′′, and so on. However, u will get an opportu-
nity to move to a higher level on very few occasions
since there is only a small fraction of sampled clus-
ters at each level. Most of the times it will receive an
edge incident from an unsampled cluster in C`(u). In
this case, u just adds that edge to the spanner provided
no edge appeared in the stream earlier which was inci-
dent on u from the same unsampled cluster. In order to
check the latter condition, it is wasteful to explore the
entire list of neighboring clusters of u at level `(u).
So we adopt a buffering approach such that the ver-
tex u will initially add the edge to its temporary buffer
Temp(u), and prune this set once its size grows suffi-
ciently.
The algorithm : First we describe the data structures
used by the algorithm. We shall use k arrays Ci, i < k
to store clustering at each level. Each vertex u ∈ V
keeps lists Temp(u) and E(u). The list E(u) will store
one edge per unsampled cluster at level `(u) which is
adjacent to u, and Temp(u) will act as a temporary
buffer for these edges which we prune once the num-
ber of edges in Temp(u) equals the number of edges
in E(u). Whenever vertex u moves to a higher level,
it moves all edges of the lists E(u) and Temp(u) to a
bigger list ES which will store spanner partially. Ini-
tially all the lists are empty. The algorithm for pro-
cessing an edge (u, v) of the stream and the procedure
Prune(u, i) are described in Figures 2 and 3 respec-
tively. For the procedure Prune() we shall use an ar-
ray A. Before the first call of Prune() every entry
of A is initialized to 0 and at the end of every call all

If (`(u) > `(v)) swap (u, v) Endif
i← `(u) ; x← Ci[v] ; h← `c(x);
If (h > i) // opportunity for u to move up

For j = i + 1 to h do Cj [u]← x;
`(u)← h;
ES ← ES ∪ Temp(u) ∪ E(u);
Temp(u)← ∅; E(u)← {(u, v)};

Else
Temp(u)← Temp(u) ∪ {(u, v)};
If (|Temp(u)| = |E(u)|) Prune(u, i) Endif

Endif

Figure 2: Processing an edge (u, v) of the stream.

1. For each (u, w) ∈ E(u) do
A[Ci[w]]← 1.

2. For each (u, v) ∈ Temp(u) do
If (A[Ci[v]] = 0)

A[Ci[v]]← 1;
E(u)← E(u) ∪ {(u, v)} Endif

Temp(u)← Temp(u)\(u, v).

3. For each (u, w) ∈ E(u) do A[Ci[w]]← 0.

Figure 3: The procedure Prune(u, i).

non-zero entries of A are reset to zero.

From the way a vertex joins cluster at next higher level
during the algorithm it follows easily that each u ∈ V
is a clustered vertex at all the levels from 0 to `(u).
Furthermore, the processing of an edge always pre-
serves the validity of assertion A. We now state an
important observation which will be used in the anal-
ysis of the algorithm.

Observation 2.1
For each vertex u ∈ V , |Temp(u)| < |E(u)| always,
except just before the invocation of Prune(u, i) when
|Temp(u)| = |E(u)|.

3 Analysis of the algorithm

Analyzing the running time : The time complex-
ity of the algorithm shown in Figure 2 is determined
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by the iterations of the For loop and various calls of
Prune(). Each iteration of the loop increases the level
of some vertex, and since the level of a vertex never
exceeds k − 1, the total time spent on these loops is
O(nk). The total time required by Prune(u, i) is of
the order of |E(u)| + |Temp(u)|, which by Obser-
vation 2.1 is O(|Temp(u)|). So it suffices to charge
O(1) cost to each edge of Temp(u) to account for the
time spent in a call of Prune(u, i). Note that an edge
(u, v) ∈ E is processed only once by Prune(u, i)
while being a member of Temp(u). This is because,
after Prune(u, i) procedure, either the edge gets dis-
carded forever or it becomes a member of E(u). Hence
each edge will be charged only O(1) cost during all
calls of Prune() during the algorithm. So total time
spent in processing the stream of edges is O(m + nk)
which is certainly O(m) when m = Ω(nk). In or-
der to ensure that time taken is O(m) always, we may
start our algorithm only after we have seen nk edges
in the stream; and in case there are only nk edges in
the stream, we just output all of them as spanner edges.
We now define two sets of edges E+ and Temp as fol-
lows.

• E+ = ∪u∈V E(u) ∪ ES .

• Temp = ∪u∈V Temp(u).

In the following subsections, we shall now prove that
the set E+∪Temp at any moment is a (2k−1)-spanner
for the set of edges appeared in the stream till that mo-
ment, and its expected size is O(kn1+1/k).

3.1 Analyzing the stretch of the spanner

Lemma 3.1 Let c′ be any cluster in Ci. Each vertex
u ∈ c′ is connected to its center through a path of at
most i edges from E+.

Proof: The proof is based on induction on i and the
number of edges of the stream seen so far. Let x be the
center of the cluster c′. If c′ is a singleton cluster, there
is nothing to prove, so assuming otherwise, let u 6= x
be a vertex which belongs to c′. The vertex u would
have become member of c′ only in the following situ-
ation in the past. Vertex u was at some level j < i and
some edge (u, v) appeared in the stream with vertex v
being a member of some sampled cluster c in Cj . The
assertion A implies that c is a subset of c′, and x is its
center too. Now applying induction hypothesis, there

is a path ⊆ E+ between v and x with length at most
j. Also note that vertex u adds the edge (u, v) to E(u)
while joining c′. Hence there is a path ⊆ E+ of length
at most j +1 ≤ i between u and the center of the clus-
ter c′ 2

At any stage of the algorithm, let (u, v) be an edge
that has appeared in the stream. It is certain that either
(u, v) belongs to E+ ∪ Temp or it has been discarded
by Prune() in the past. Let (u, v) got discarded dur-
ing Prune(u, i). Now it follows from Prune(u, i)
that the edge (u, v) could be discarded only if we had
already selected some other edge (u, w) in E(u) inci-
dent from the same cluster in Ci to which v belongs.
Lemma 3.1 implies that vertices v and w, being the
members of the same cluster, are connected by a path
⊆ E+ which passes through the center of the cluster
and has length at most 2i. This path concatenated with
the edge (u, w) ∈ E(u), is a path in E+ between u and
v with length at most 2i + 1, which is at most 2k − 1
since i < k always. Thus for each edge discarded by
Prune(), there is a path of length at most 2k−1 in E+

between its endpoints. This implies that any shortest
path in the original graph is stretched by a factor of at
most (2k−1) in the subgraph with edges E+∪Temp.
Hence we can conclude that, at any moment, the set
E+ ∪ Temp is a (2k − 1)-spanner for the stream of
edges seen so far.

3.2 Analyzing the spanner size

A vertex contributes edges to the partial spanner ES
only when it moves to next higher level, and the con-
tribution is |E(u)| + |Temp(u)|. It follows from Ob-
servation 2.1 that |Temp(u)| ≤ |E(u)| holds always.
So it suffices to bound the number of edges accumu-
lated in E(u) for the period when u stays at a particular
level i < k.

Lemma 3.2 For any vertex u and any level i < k,
during the period `(u) = i, the expected number of
edges in E(u) is at most n1/k

Proof: Let us first consider any level i < k − 1. For
any arbitrary but fixed stream of edges, let 〈c1, c2, . . .〉
be the clusters at level i arranged in the chronological
order of their getting adjacent to u. When a cluster
from Ci gets adjacent to u and the cluster is a sampled
cluster, the vertex u will hook onto that cluster and
move to the next level. So an edge incident from cj
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will be added to E(u) if none of c1, ..., cj were sampled
clusters in Ci. Now each cluster at level i is a sampled
cluster independently with probability p = n−1/k. So
an edge incident on u from cj will be added to E(u)
with probability (1 − n−1/k)j . Hence the expected
number of edges in E(u) accumulated during the pe-
riod `(u) = i is at most

∑
1≤j(1 − n−1/k)j ≤ n1/k.

Now let us consider level k−1. Note that the expected
number of clusters at level k − 1 is n1/k, and none of
them is a sampled cluster since Sk = ∅. So a vertex
u on reaching this level would continue to stay there
and would contribute at most one edge per neighbor-
ing cluster to E(u). 2

It thus follows from Lemma 3.2 and the preceding
discussion that the expected number of edges con-
tributed by each vertex to the spanner E+ ∪ Temp is
O(kn1/k). Hence the expected size of the spanner will
be O(min(m, kn1+1/k)).

We can thus conclude the following theorem.

Theorem 3.1 Given any k ∈ N, a (2k−1)-spanner of
expected size O(min(m, kn1+1/k)) for an unweighted
graph can be computed in streaming model in one pass
with O(m) time to process the entire stream. The
working memory required is O(kn1+1/k).

4 Conclusion and open problems

We presented a single pass and linear time stream-
ing algorithm for computing a (2k − 1)-spanner of
size O(min(m, kn1+1/k)) for any unweighted graph.
The size bound is away from the conjectured optimal
bound by a multiplicative factor of k; an important
open problem is to explore whether it is possible to
get rid of this factor while maintaining single pass and
linear time. Another problem is to devise determinis-
tic streaming algorithm for graph spanners. Recently
Ausiello et al. [2] designed such an algorithm for span-
ners of stretch at most 6. Another interesting open
problem is to design streaming algorithm for spanners
of weighted graphs. Note that, for weighted graphs, an
O(k) pass algorithm for computing a (2k−1)-spanner
follows easily from the static algorithm of Baswana
and Sen [4]. The expected size of the spanner and the
working memory will be O(min(m, kn1+1/k), and it
will take amortized O(1) processing time per edge per
pass. So the real challenge is to design a single pass

streaming algorithm for weighted graphs without af-
fecting the optimal bound on the spanner size and con-
stant processing time per edge.
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