
Incremental DFS algorithms:
a theoretical and experimental study

Surender Baswana∗† Ayush Goel ∗ Shahbaz Khan ‡§

Abstract
The depth first search (DFS) tree is a fundamental data structure
used for solving various graph problems. For a given graph
G = (V,E) on n vertices and m edges, a DFS tree can be
built in O(m + n) time. In the last 20 years, a few algorithms
have been designed for maintaining a DFS tree efficiently under
insertion of edges. For undirected graphs, there are two prominent
algorithms, namely, ADFS1 and ADFS2 [ICALP14] that achieve
total update time of O(n3/2√m) and O(n2) respectively. For
directed acyclic graphs, the only non-trivial algorithm, namely,
FDFS [IPL97] requires total O(mn) update time. However, even
after 20 years of this result, there does not exist any non-trivial
incremental algorithm for maintaining a DFS tree in directed graphs
with o(m2) worst case bound.

In this paper, we carry out extensive experimental and theoret-
ical evaluation of the existing incremental DFS algorithms in ran-
dom graphs and real world graphs and derive the following results.

1. For insertion of a uniformly random sequence of
(
n
2

)
edges,

each of ADFS1, ADFS2 and FDFS perform equally well
and are found to take Θ(n2) time experimentally. This is
quite surprising because the worst case bounds of ADFS1
and FDFS are greater than Θ(n2) by a factor of

√
m/n

and m/n respectively, which are also proven to be tight.
We complement this experimental result with a probabilistic
analysis of these algorithms establishing Õ(n2)1 bound on
their time complexity. For this purpose, we derive results
about the structure of a DFS tree in a random graph. These
results are of independent interest in the domain of random
graphs.

2. The insight that we developed about DFS tree in random
graphs leads us to design an extremely simple algorithm for
incremental DFS that works for both undirected and directed
graphs. Moreover, this algorithm theoretically matches and
experimentally outperforms the state-of-the-art algorithm in
dense random graphs. Furthermore, it can also be used as
a single-pass semi-streaming algorithm for computing incre-
mental DFS and strong connectivity for random graphs using
O(n logn) space.

∗Department of Computer Science and Engineering, Indian In-
stitute of Technology Kanpur, India (www.cse.iitk.ac.in), email:
sbaswana@cse.iitk.ac.in, ayushgoel529@gmail.com.
†This research was partially supported by UGC-ISF (the University

Grants Commission of India & Israel Science Foundation) and IMPECS
(the Indo-German Max Planck Center for Computer Science) .
‡Faculty of Computer Science, University of Vienna, Austria

(cs.univie.ac.at), email: shahbaz.khan@univie.ac.at
§This research work was done as a part of PhD degree at IIT Kanpur. The

work was supported partially by Google India under the Google India PhD
Fellowship Award, and partially by European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement no. 340506.

1Õ() hides the poly-logarithmic factors.

3. Even for real world graphs, which are usually sparse, both
ADFS1 and FDFS turn out to be much better than their theo-
retical bounds. Here again, we present two simple algorithms
for incremental DFS for directed and undirected graphs re-
spectively, which perform very well on real graphs. In fact
our proposed algorithm for directed graphs almost always
matches the performance of FDFS.

1 Introduction
Depth first search (DFS) is a well known graph traversal
technique. Right from the seminal work of Tarjan [53], DFS
traversal has played the central role in the design of efficient
algorithms for many fundamental graph problems, namely,
biconnected components, strongly connected components,
topological sorting [53], bipartite matching [24], domina-
tors [54] and planarity testing [25].

A DFS traversal produces a rooted spanning tree (or
forest), called DFS tree (forest). Let G = (V,E) be a graph
on n = |V | vertices and m = |E| edges. It takes O(m+ n)
time to perform a DFS traversal and generate its DFS tree
(forest). Given any ordered rooted spanning tree, the non-
tree edges of the graph can be classified into four categories
as follows. An edge directed from a vertex to its ancestor
in the tree is called a back edge. Similarly, an edge directed
from a vertex to its descendant in the tree is called a forward
edge. Further, an edge directed from right to left in the tree is
called a cross edge. The remaining edges directed from left
to right in the tree are called anti-cross edges. A necessary
and sufficient condition for such a tree to be a DFS tree is the
absence of anti-cross edges. In case of undirected graphs,
this condition reduces to the absence of all cross edges.

Most of the graph applications in the real world deal
with graphs that keep changing with time. These changes
can be in the form of insertion or deletion of edges. An al-
gorithmic graph problem is modeled in the dynamic environ-
ment as follows. There is an online sequence of insertion and
deletion of edges and the aim is to maintain the solution of
the given problem after every edge update. To achieve this
aim, we need to maintain some clever data structure for the
problem such that the time taken to update the solution after
an edge update is much smaller than that of the best static
algorithm. A dynamic algorithm is called an incremental al-
gorithm if it supports only insertion of edges.

In spite of the fundamental nature of the DFS tree, very

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

few incremental algorithms have been designed for maintain-
ing a DFS tree. A short summary of the current-state-of-the-
art of incremental DFS algorithms is as follows. An obvious
incremental algorithm is to recompute the whole DFS tree in
O(m + n) time from scratch after every edge insertion. Let
us call it SDFS henceforth. It was shown by Kapidakis [29]
that a DFS tree can be computed inO(n log n) time for a ran-
dom graph [17, 7] if we terminate the traversal as soon as all
vertices are visited. Let us call this variant as SDFS-Int. No-
tice that both these algorithms recompute the DFS tree from
scratch after every edge insertion. Let us now move onto the
algorithms that avoid this recomputation from scratch.

The first incremental DFS algorithm, namely FDFS, was
given by Franciosa et al. [19] for directed acyclic graphs,
requiring total update time of O(mn). For undirected
graphs, Baswana and Khan [6] presented two algorithms,
namely ADFS1 and ADFS2, that achieve total update time
of O(n3/2

√
m) and O(n2) respectively. However, the worst

case update time to process an edge for these algorithms is
still O(m). Recently, an incremental algorithm [4], namely
WDFS, giving a worst case guarantee of O(n log3 n) on the
update time was designed. However, to date there is no non-
trivial incremental algorithm for maintaining a DFS tree in
general directed graphs. Refer to Table 1 for a comparison
of these results.

Despite having several algorithms for incremental DFS,
not much is known about their empirical performance. For
various graph algorithms [41, 2, 3], the average-case time
complexity (average performance on random graphs) has
been proven to be much less than their worst case complex-
ity. A classical example is the algorithm by Micali and Vazi-
rani [42] for maximum matching. Its average case complex-
ity has been proved to be only O(m log n) [45, 3], despite
having a worst case complexity of O(m

√
n). An equally

important aspect is the empirical performance of an algo-
rithm on real world graphs. After all, the ideal goal is to de-
sign an algorithm having a theoretical guarantee of efficiency
in the worst case as well as superior performance on real
graphs. Often such an empirical analysis also leads to the
design of simpler algorithms that are extremely efficient in
real applications. The algorithm by Micali and Vazirani [42]
has also been empirically analysed [39, 13, 30, 26] resulting
in several important heuristics to improve its performance
on various types of graphs. Thus, such an analysis bridges
the gap between theory and practice. Experimental analysis
of different algorithms for several dynamic graph problems
has been performed including connectivity [1, 27], minimum
spanning trees [48, 10], shortest paths [15, 22, 51], etc.

Our study focuses on incremental DFS algorithms as
most dynamic graphs in the real world are dominated by
insertion updates [32, 36, 14]. Moreover, in every other
dynamic setting, only a single dynamic DFS algorithm is
known [4, 5], making a comparative study impractical.

Algorithm Graph Update time Total time
SDFS [53] Any O(m) O(m2)

SDFS-Int
[29]

Random O(n log n)
expected

O(mn log n)
expected

FDFS [19] DAG O(n)
amortized O(mn)

ADFS1 [6] Undirected O(n3/2/
√
m)

amortized O(n3/2
√
m)

ADFS2 [6] Undirected O(n2/m)
amortized O(n2)

WDFS [4] Undirected O(n log3 n) O(mn log3 n)

Table 1: A comparison of incremental DFS algorithms.

1.1 Our results In this paper, we contribute to both ex-
perimental analysis and average-case analysis of incremental
DFS algorithms. Our analysis reveals the following results.

1. Empirical performance of the existing algorithms
We first evaluated the performance of the existing al-
gorithms on the insertion of a uniformly random se-
quence of

(
n
2

)
edges. The most surprising revelation of

this evaluation was the similar performance of ADFS1
and ADFS2, despite the difference in their worst case
bounds (see Table 1). Further, even FDFS performed
better on random graphs taking just Θ(n2) time. This
is quite surprising because the worst case bounds of
ADFS1 and FDFS are greater than Θ(n2) by a factor of√
m/n and m/n respectively. Moreover, by construct-

ing worst case examples the analysis of ADFS1 [6] and
FDFS (see Appendix B) is also shown to be tight. Their
superior performance on random graphs motivated us to
explore the structure of a DFS tree in a random graph.

2. Structure of DFS tree in random graphs
A DFS tree of a random graph can be seen as a
broomstick: a possibly long path without any branching
(stick) followed by a bushy structure (bristles). As
the graph becomes denser, we show that the length of
the stick would increase significantly and establish the
following result.

THEOREM 1.1. For a random graph G(n,m) with
m = 2in log n, its DFS tree will have a stick of length
at least n− n/2i with probability 1−O(1/n).

The length of stick evaluated from our experiments
matches perfectly with the value given by Theorem 1.1.
It follows from the broomstick structure that the inser-
tion of only the edges with both endpoints in the bris-
tles can change the DFS tree. As follows from Theo-
rem 1.1, the size of bristles decreases as the graph be-
comes denser. With this insight at the core, we are able

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

to establish Õ(n2) bound on ADFS1 and FDFS for a
uniformly random sequence of

(
n
2

)
edge insertions.

Remark: It was Sibeyn [52] who first suggested view-
ing a DFS tree as a broomstick while studying the
height of a DFS tree in random graph. However, his
definition of stick allowed a few branches on the stick
as well. Note that our added restriction (absence of
branches on the stick) is crucial in deriving our results
as is evident from the discussion above.

3. New algorithms for random and real world graphs
We use the insight about the broomstick structure and
Theorem 1.1 to design a much simpler incremental
DFS algorithm (referred as SDFS2) that works for both
undirected graphs and directed graphs. Despite being
very simple, it is shown to theoretically match (upto
Õ(1) factors) and experimentally outperform ADFS
and FDFS for dense random graphs.
For real graphs both ADFS and FDFS were found to
perform much better than other algorithms including
SDFS2. With the insights from ADFS/FDFS, we de-
sign two simple algorithms for undirected and directed
graphs respectively (both referred as SDFS3), which
perform much better than SDFS2. In fact, for di-
rected graphs SDFS3 almost matches the performance
of FDFS for most real graphs considered, despite being
much simpler to implement as compared to FDFS.

4. Semi-Streaming Algorithms
Interestingly, both SDFS2 and SDFS3 can also be used
as single-pass semi-streaming algorithms for comput-
ing a DFS tree of a random graph using O(n log n)
space. This immediately also gives a single-pass semi-
streaming algorithm using the same bounds for answer-
ing strong connectivity queries incrementally. Strong
connectivity is shown [8, 28] to require a working mem-
ory of Ω(εm) to answer these queries with probabil-
ity greater than (1 + ε)/2 in general graphs, for any
0 < ε ≤ 1. Hence, our algorithms not only give a solu-
tion for the problem in semi-streaming setting but also
establish the difference in hardness of the problem in
semi-streaming model for general and random graphs.

1.2 Organization of the article We now present the out-
line of our paper. In Section 2, we describe the various nota-
tions used throughout the paper in addition to the experimen-
tal setting, datasets used as input and a brief overview of the
existing algorithms. The experimental evaluation of these
algorithms on random undirected graphs is presented in Sec-
tion 3. In the light of inferences drawn from this evaluation,
the experiments to understand the structure of the DFS tree
for random graphs is presented in Section 4. Then, in Sec-
tion 5 we theoretically establish the properties of this struc-
ture and provide a tighter analysis of the aforementioned

algorithms for random graphs. The new algorithm for in-
cremental DFS inspired by the broomstick structure of the
DFS tree is presented and evaluated in Section 6. Section 7
evaluates the existing algorithms on real graphs and proposes
simpler algorithms that perform very well on real graphs. Fi-
nally, Section 8 presents some concluding remarks and scope
for future work.

2 Preliminaries
For all the experiments described in this paper, we add a
pseudo root to the graph G, i.e., a dummy vertex s that
is connected to all vertices in G. All the algorithms thus
start with an empty graph augmented with the pseudo root
s and its edges, and maintain a DFS tree rooted at s after
every edge insertion. It can be easily observed that each
subtree rooted at any child of s is a DFS tree of a connected
component of G. Given a graph G under insertion of edges,
the following notations will be used throughout the paper.

• T : A DFS tree of G at any time during the algorithm.

• path(x, y) : Path from the vertex x to the vertex y in T .

• T (x) : The subtree of T rooted at a vertex x.

• LCA(u, v) : Lowest common ancestor of u and v in T .

The two prominent models for studying random graphs
are G(n,m) [7] and G(n, p) [16, 17]. A random graph
G(n,m) consists of the first m edges of a uniformly random
permutation of all possible edges in a graph with n vertices.
In a random graphG(n, p), every edge is present in the graph
with probability p independent of other edges. We now state
the following classical result for random graphs that shall be
used in our analysis.

THEOREM 2.1. [20] Graph G(n, p) with p = 1
n (log n+ c)

is connected with probability at least 1−e−c for any constant
c > 0.

2.1 Experimental Setting In our empirical study on ran-
dom graphs, the performance of different algorithms is com-
pared in terms of the number of edges processed, instead
of the time taken. This is because the total time taken by
the evaluated algorithms is dominated by the time taken to
process the graph edges (see Appendix A). Further, compar-
ing the number of edges processed provides a deeper insight
in the performance of the algorithm (see Section 3). Also,
it makes this study independent of the computing platform
making it easier to reproduce and verify. For random graphs,
each experiment is averaged over several test cases to get the
expected behavior. For the sake of completeness, the corre-
sponding experiments are also replicated measuring the time
taken in Appendix D. However, for real graphs the perfor-
mance is evaluated by comparing the time taken and not the

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

edges processed. This is to ensure an exact evaluation of
the relative performance of different algorithms. The source
code of our project is available on Github under the BSD
2-clause license2.

2.2 Datasets In our experiments we considered the fol-
lowing types of datasets.

• Random Graphs: The initial graph is a star graph,
having an edge from the pseudo root s to each vertex.
The update sequence is generated based on Erdős Rényi
G(n,m) model by choosing the first m edges of a
random permutation of all the edges in the graph. For
the case of DAGs, the update sequence is generated
using an extension of G(n,m) model for DAGs [12].

• Real graphs: We use a number of publically avail-
able datasets [32, 36, 14] derived from the real world.
These include graphs related to Internet topology, col-
laboration networks, online communication, friendship
networks and other interactions.

2.3 Existing algorithms We now give a brief overview
of the results on maintaining incremental DFS. The key
ideas used in these algorithms are crucial to understand their
behavior on random graphs.

Static DFS algorithm (SDFS) The static algorithm for
computing the DFS tree of a graph was given by Tarjan [53].
In the incremental version of the same, SDFS essentially
computes the whole DFS tree from scratch after every edge
insertion.

Static DFS algorithm with interrupt (SDFS-Int) Static
DFS tree was shown to have much better performance for
a random graph by Kapidakis [29]. Only difference from
SDFS is that the algorithm terminates as soon as all the ver-
tices of the graph are marked visited. Again, the algorithm
recomputes the DFS tree from scratch after every edge in-
sertion though requiring only O(n log n) time for random
graphs.

Incremental DFS for DAG/directed graph (FDFS) FDFS
[19] maintains the post-order (or DFN) numbering of ver-
tices in the DFS tree, which is used to rebuild the DFS tree
efficiently. On insertion of an edge (x, y) in the graph, it
first checks whether (x, y) is an anti-cross edge by verify-
ing if DFN[x] <DFN[y]. In case (x, y) is not an anti-cross
edge, it simply updates the graph and terminates. Otherwise,
it performs a partial DFS on the vertices reachable from y in
the subgraph induced by the vertices with DFN number be-
tween DFN[x] and DFN[y]. In case of DAGs, this condition

2https://github.com/shahbazk/IncDFS-Experimental

essentially represents a candidate set of vertices that lie in
the subtrees hanging on the right of path(LCA(x, y), x) or
on the left of path(LCA(x, y), y). FDFS thus removes these
reachable vertices from the corresponding subtrees and com-
putes their DFS tree rooted at y to be hanged from the edge
(x, y). The DFN number of all the vertices in candidate set
is then updated to perform the next insertion efficiently. The
algorithm can also be trivially extended to directed graphs.
Here, the candidate set includes the subtrees hanging on the
right of path(LCA(x, y), x) until the entire subtree contain-
ing y (say T ′). Note that for DAGs instead of entire T ′, just
the subtrees of T ′ hanging on the left of path(LCA(x, y), y)
are considered. However, FDFS in directed graphs is not
known to have any bounds better than O(m2).

Incremental DFS for undirected graphs (ADFS) ADFS
[6] (refers to both ADFS1 and ADFS2) maintains a data
structure that answers LCA and level ancestor queries. On
insertion of an edge (x, y) in the graph, ADFS first verifies
whether (x, y) is a cross edge by computingw = LCA(x, y)
and ensuring that w is not equal to either x or y. In
case (x, y) is a back edge, it simply updates the graph and
terminates. Otherwise, let u and v be the children of w such
that x ∈ T (u) and y ∈ T (v). Without loss of generality, let x
be lower than y in the T . ADFS then rebuilds T (v) hanging
it from (x, y) as follows. It first reverses path(y, v) which
converts many back edges in T (v) to cross edges. It then
collects these cross edges and iteratively inserts them back
to the graph using the same procedure. The only difference
between ADFS1 and ADFS2 is the order in which these
collected cross edges are processed. ADFS1 processes these
edges arbitrarily, whereas ADFS2 processes the cross edge
with the highest endpoint first. For this purpose ADFS2
uses a non-trivial data structure. We shall refer to this data
structure as D.

Incremental DFS with worst case guarantee (WDFS)
Despite several algorithms for maintaining DFS incremen-
tally, the worst case time to update the DFS tree after an
edge insertion was still O(m). Baswana et al. [4] presented
an incremental algorithm, giving a worst case guarantee of
O(n log3 n) on the update time. The algorithm builds a data
structure using the current DFS tree, which is used to effi-
ciently rebuild the DFS tree after an edge update. However,
building this data structure requires O(m) time and hence
the same data structure is used to handly multiple updates
(≈ Õ(m/n)). The data structure is then rebuilt over a pe-
riod of updates using a technique called overlapped periodic
rebuilding. Now, the edges processed for updating a DFS
tree depends on the number of edges inserted since the data
structure was last updated. Thus, whenever the data structure
is updated, there is a sharp fall in the number of edges pro-
cessed per update resulting in a saw like structure on the plot

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: For various existing algorithms, the plot shows (a) Total number of edges processed (logarithmic scale) for
insertion of m =

(
n
2

)
edges for different values of n, (b) Total number of edges processed for n = 1000 and up to n

√
n

edge insertions, (c) Number of edges processed per update for n = 1000 and up to n
√
n edge insertions. See Figure 11 for

corresponding time plot.

of number of edges processed (or time taken) per update.

3 Experiments on Random Undirected graphs
We now compare the empirical performance of the existing
algorithms for incrementally maintaining a DFS tree of a
random undirected graph.

We first compare the total number of edges processed
by the existing algorithms for insertion of m =

(
n
2

)
edges,

as a function of number of vertices in Figure 1 (a). Since
the total number of edges is presented in logarithmic scale,
the slope x of a line depicts the growth of the total number
of edges as O(nx). The performance of SDFS, SDFS-Int
and WDFS resemble their asymptotic bounds described in
Table 1. For small values of n, WDFS performs worse than
SDFS and SDFS-Int because of large difference between
the constant terms in their asymptotic bounds, which is
evident from their y-intercepts. However, the effect of
constant term diminishes as the value of n is increased. The
most surprising aspect of this experiment is the exceptional
performance of ADFS1 and ADFS2. Both ADFS1 and
ADFS2 perform extremely faster than the other algorithms.
Furthermore, ADFS1 and ADFS2 perform equally well
despite the difference in their asymptotic complexity (see
Table 1).

Inference I1: ADFS1 and ADFS2 perform equally well
and much faster than other algorithms.

Remark: Inference I1 is surprising because the com-
plexity of ADFS1 and ADFS2 has been shown [6] to
be O(n3/2

√
m) and O(n2) respectively. Further, they

also presented a sequence of m edge insertions where
ADFS1 takes Ω(n3/2

√
m) time, proving the tightness of its

analysis. However, ADFS2 takes slightly more time than
ADFS1, for maintaining the data structureD (see Figure 11).

We now compare the total number of edges processed
by the existing algorithms as a function of number of
inserted edges in Figure 1 (b). The slopes of SDFS-Int,
WDFS and ADFS represent the number of edges processed
per edge insertion. Here again, the performance of SDFS,
SDFS-Int and WDFS resembles with their worst case values
(see Table 1). Similarly, both ADFS1 and ADFS2 perform
equally well as noted in the previous experiment. When the
graph is sparse (m << n log3 n), WDFS performs worse
than SDFS because of high cost of update per edge insertion
(see Table 1). Further, as expected the plots of SDFS-Int
and WDFS grow linearly in m. This is because their update
time per insertion is independent of m. However, the plots
of ADFS are surprising once again, because they become
almost linear as the graph becomes denser. In fact, once
the graph is no longer sparse, each of them processes ≈ 2
edges per edge insertion to maintain the DFS tree. This
improvement in the efficiency of ADFS for increasing value
of m is counter-intuitive since more edges may be processed
to rebuild the DFS tree as the graph becomes denser.

Inference I2: ADFS processes ≈ 2 edges per insertion
after the insertion of O(n) edges.

Finally, to investigate the exceptional behavior of
ADFS, we compare the number of edges processed per edge
insertion by the existing algorithms as a function of number
of inserted edges in Figure 1 (c). Again, the expected
behavior of SDFS, SDFS-Int and WDFS matches with their
worst case bounds described in Table 1. The plot of WDFS
shows the saw like structure owing to overlapped periodic
rebuilding of the data structure used by the algorithm (recall
WDFS in Section 2.3). Finally, the most surprising result of
the experiment are the plots of ADFS shown in the zoomed

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: The variation of (a) pc : Probability of next inserted edge being a cross edge, and (b) ls : Length of broomstick,
with graph density. Different lines denote different number of vertices.

component of the plot. The number of edges processed per
edge insertion sharply increases to roughly 5 (for n = 1000)
when m reaches O(n) followed by a sudden fall to reach 1
asymptotically. Note that the inserted edge is also counted
among the processed edges, hence essentially the number
of edges processed to update the DFS tree asymptotically
reaches zero as the graph becomes dense. This particular
behavior is responsible for the exceptional performance of
ADFS.

Inference I3: Number of edges processed by ADFS for
updating the DFS tree asymptotically reaches zero as the
graph becomes denser.

To understand the exceptional behavior of ADFS for
random graphs inferred in I1, I2 and I3, we shall now
investigate the structure of a DFS tree for random graphs.

4 Structure of a DFS tree: The broomstick
We know that SDFS, SDFS-Int and WDFS invariably
rebuild the entire DFS tree on insertion of every edge. We
thus state the first property of ADFS that differentiates it
from other existing algorithms.

Property P1: ADFS rebuilds the DFS tree only on
insertion of a cross edge.

Let T be any DFS tree of the random graph G(n,m).
Let pc denote the probability that the next randomly inserted
edge is a cross edge in T . We first perform an experimental
study to determine the behavior of pc as the number of edges
in the graph increases. Figure 2 (a) shows this variation of
pc for different values of n. The value pc starts decreasing
sharply once the graph has Θ(n) edges. Eventually, pc
asymptotically approaches 0 as the graph becomes denser.
Surely ADFS crucially exploits this behavior of pc in random

graphs (using Property P1). In order to understand the reason
behind this behavior of pc, we study the structure of a DFS
tree of a random graph.

Broomstick Structure The structure of a DFS tree can be
described as that of a broomstick as follows. From the root
of the DFS tree there exists a downward path on which there
is no branching, i.e., every vertex has exactly one child. We
refer to this path as the stick of the broomstick structure. The
remaining part of the DFS tree (except the stick) is called the
bristles of the broomstick.

Let ls denote the length of the stick in the broomstick
structure of the DFS tree. We now study the variation of ls
as the edges are inserted in the graph. Figure 2 (b) shows
this variation of ls for different values of n. Notice that the
stick appears after the insertion of roughly n log n edges (see
the zoomed part of Figure 2 (b)). After that ls increases
rapidly to reach almost 90% of its height within just ≈
3n log n edges, followed by a slow growth asymptotically
approaching its maximum height only near O(n2) edges.
Since any newly inserted edge with at least one endpoint on
the stick necessarily becomes a back edge, the sharp decrease
in pc can be attributed to the sharp increase in ls. We now
theoretically study the reason behind the behavior of ls using
properties of random graphs, proving explicit bounds for ls
described in Theorem 1.1.

4.1 Length of the stick The appearance of broomstick
after insertion of n log n edges as shown in Figure 2 (b) can
be explained by the connectivity threshold for random graphs
(refer to Theorem 2.1). Until the graph becomes connected
(till Θ(n log n) edges), each component hangs as a separate
subtree from the pseudo root s, limiting the value of ls to 0.
To analyze the length of ls for m = Ω(n log n) edges, we
first prove a succinct bound on the probability of existence

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

of a long path without branching during a DFS traversal in
G(n, p) in the following lemma.

LEMMA 4.1. Given a random graph G(n, p) with p =
(log n0 + c)/n0, for any integer n0 ≤ n and c ≥ 1, there
exists a path without branching of length at least n − n0 in
the DFS tree of G with probability at least 1− 2e−c.

Proof. Consider any arbitrary vertex u = x1, the DFS
traversal starting from x1 continues along a path without
branching so long as the currently visited vertex has at least
one unvisited neighbor. Let xj denotes the jth vertex visited
during the DFS on G(n, p) starting from x1. The probability
that xj has at least one neighbor in the unvisited graph is
1− (1− p)n−j .

s u v

n0n02n04n0

Figure 3: Estimating the length of stick in the DFS tree.

We shall now calculate the probability that
〈x1, . . . , xn−n0

〉 is indeed a path. Let v = xn−n0
.

We partition this sequence from v towards u into contiguous
subsequences such that the first subsequence has length n0
and (i + 1)th subsequence has length 2in0 (see Figure 3).
The probability of occurrence of a path corresponding to the
ith subsequence is at least(

1−
(

1− log n0 + c

n0

)2in0
)2in0

≥

(
1−

(
1

n0ec

)2i
)2in0

≥ 1− e−2
ic

Hence, the probability that DFS from u traverses a path of
length n − n0 is at least Π

log2 n
i=0

(
1− 1

t2i

)
for t = ec. The

value of this expression is lower bounded by 1− 2e−c using
the inequality Π

i=log2 t
i=0

(
1− 1

t2i

)
> 1 − 2

t , that holds for
every c ≥ 1 since it implies t > 2.

In order to establish a tight bound on the length of stick,
we need to choose the smallest value of n0 that satisfies the
following condition. Once we have a DFS path of length
n − n0 without branching, the subgraph induced by the
remaining n0 vertices and the last vertex of this path v (see
Figure 3) is still connected. According to Theorem 2.1, for
the graph G(n, p) if the value of p ≥ 1

n0
(log n0 + c), the

subgraph on n0 vertices will be connected with probability
at least 1 − e−c. Combining this observation with Lemma
4.1 proves that the probability that DFS tree of G(n, p) is a
broomstick with stick length ≥ n − n0 is at least 1 − 3e−c.

Figure 4: Comparison of experimentally evaluated (E) and
theoretically predicted (P) value of length of the stick in the
broomstick structure for different number of vertices. The
experimentally evaluated value exactly matches the theoreti-
cally predicted value.

This probability tends to 1 for any increasing function c(n),
where c(n) ≥ 1 for all n.

Now, a graph property P is called a monotone increas-
ing graph property if G ∈ P implies that G + e ∈ P ,
where G + e represents the graph G with an edge e added
to it. Clearly, the length of the stick being at least n − n0
is a monotone increasing property, as adding more edges can
only increase this length. Thus, being a monotone increasing
property, standard arguments3 can be used to show that the
above high probability bound for random graph G(n, p) also
holds for the random graph G(n,m) having m = dp ·

(
n
2

)
e.

Finally, using c = log n we get the proof of Theorem 1.1 as
well as the following corollary.

COROLLARY 4.1. For any random graph G(n,m) with
m = 2in log n, its DFS tree will have bristles of size at most
n/2i with probability 1−O(1/n).

To demonstrate the tightness of our analysis we compare
the length of the stick as predicted theoretically (for c = 1)
with the length determined experimentally in Figure 4, which
is shown to match exactly. This phenomenon emphasizes the
accuracy and tightness of our analysis.

5 Implications of broomstick property
Though the broomstick structure of DFS tree was earlier
studied by Sibeyn [52], the crucial difference in defining
the stick to be without branches proved to be extremely
significant. To emphasize its significance we now present
a few applications of the broomstick structure of DFS tree,
in particular Corollary 4.1 to state some interesting results.

3Refer to proof of Theorem 4.1 in [20]

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Note that the absence of branches on the stick is crucial for
all of the following applications.

THEOREM 5.1. For a uniformly random sequence of edge
insertions, the number of edge insertions with both endpoints
in bristles of the DFS tree will be O(n log n)

Proof. We split the sequence of edge insertions into phases
and analyze the expected number of edges inserted in bristles
in each phase. In the beginning of first phase there are
n log n edges. In the ith phase, the number of edges in the
graph grow from 2i−1n log n to 2in log n. It follows from
Corollary 4.1 that ni, the size of bristles in the ith phase, will
be at most n/2i−1 with probability 1−O(1/n). Notice that
each edge inserted during ith phase will choose its endpoints
randomly uniformly. Therefore, in ith phase the expected
number of edges with both endpoints in bristles are

mi =
n2i
n2
m ≤ 2in log n/22(i−1) = n log n/2i−2

Hence, the expected number of edges inserted with both
endpoints in bristles is

∑logn
i=1 mi = O(n log n).

In order to rebuild the DFS tree after insertion of a
cross edge, it is sufficient to rebuild only the bristles of the
broomstick, leaving the stick intact (as cross edges cannot
be incident on it). Corollary 4.1 describes that the size
of bristles decreases rapidly as the graph becomes denser
making it easier to update the DFS tree. This crucial insight
is not exploited by the algorithm SDFS, SDFS-Int or WDFS.
We now state the property of ADFS that exploits this insight
implicitly.

Property P2: ADFS modifies only the bristles of the DFS
tree keeping the stick intact.

We define an incremental algorithm for maintaining a
DFS for random graph to be bristle-oriented if executing the
algorithm A on G is equivalent to executing the algorithm
on the subgraph induced by the bristles. Clearly, ADFS
is bristle-oriented owing to property P2 and the fact that it
processes only the edges with both endpoints in rerooted
subtree (refer to Section 2.3). We now state an important
result for any bristle-oriented algorithm (and hence ADFS)
as follows.

THEOREM 5.2. For any bristle-oriented algorithm A if the
expected total time taken to insert the first 2n log n edges of
a random graph is O(nα logβ n) (where α > 0 and β ≥ 0),
the expected total time taken to process any sequence of m
edge insertions is O(m+ nα logβ n).

Proof. Recall the phases of edge insertions described in the
proof of Lemma 5.1, where in the ith phase the number of
edges in the graph grow from 2i−1n log n to 2in log n. The

size of bristles at the beginning of ith phase is ni = n/2i−1

w.h.p.. Further, note that the size of bristles is reduced to
half during the first phase, and the same happens in each
subsequent phase w.h.p. (see Corollary 4.1). Also, the
expected number of edges added to subgraph represented
by the bristles in ith phase is O(ni log ni) (recall the proof
of Lemma 5.1). Since A is bristle-oriented, it will process
only the subgraph induced by the bristles of size ni in the
ith phase. Thus, if A takes O(nα logβ n) time in first phase,
the time taken by A in the ith phase is O(nαi logβ ni). The
second term O(m) comes from the fact that we would need
to process each edge to check whether it lies on the stick.
This can be easily done inO(1) time by marking the vertices
on the stick. The total time taken by A is O(nα logβ n) till
the end of the first phase and in all subsequent phases is given
by the following

m+

logn∑
i=2

cnαi logβ ni ≤
logn∑
i=2

c
(n

2i−1

)α
logβ

(n

2i−1

)

≤ m+ cnα logβ n

logn∑
i=2

1

2(i−1)α
(for β ≥ 0)

≤ m+ c · c′nα logβ n (

logn∑
i=2

1

2(i−1)α
= c′, for α > 0)

Thus, the total time taken by A is O(m+ nα logβ n).

Lemma 5.1 and Lemma 5.2 immediately implies the
similarity of ADFS1 and ADFS2 as follows.

Equivalence of ADFS1 and ADFS2 On insertion of a cross
edge, ADFS performs a path reversal and collects the back
edges that are now converted to cross edges, to be iteratively
inserted back into the graph. ADFS2 differs from ADFS1
only by imposing a restriction on the order in which these
collected edges are processed. However, for sparse graphs
(m = O(n)) this restriction does not change its worst case
performance (see Table 1). Now, Lemma 5.2 states that the
time taken by ADFS to incrementally process any number
of edges is of the order of the time taken to process a sparse
graph (with only 2n log n edges). Thus, ADFS1 performs
similar to ADFS2 even for dense graphs. Particularly, the
time taken by ADFS1 for insertion of any m ≤

(
n
2

)
edges is

O(n2
√

log n), i.e., O(n3/2m
1/2
0) for m0 = 2n log n. Thus,

we have the following theorem.

THEOREM 5.3. Given a uniformly random sequence of ar-
bitrary length, the expected time complexity of ADFS1 for
maintaining a DFS tree incrementally is O(n2

√
log n).

Remark: The factor ofO(
√

log n) in the bounds of ADFS1
and ADFS2 comes from the limitations of our analysis
whereas empirically their performance matches exactly.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 5: Comparison of existing and proposed algorithms on undirected graphs: (a) Total number of edges processed
(logarithmic scale) for insertion of m =

(
n
2

)
edges for different values of n. (b) Number of edges processed per edge

insertion for n = 1000 and up to n
√
n edge insertions. See Figure 12 for corresponding time plot.

6 New algorithms for Random Graphs
Inspired by Lemma 5.1 and Lemma 5.2 we propose the
following new algorithms.

6.1 Simple variant of SDFS (SDFS2) for random undi-
rected graphs We propose a bristle-oriented variant of
SDFS which satisfies the properties P1 and P2 of ADFS, i.e.,
it rebuilds only the bristles of the DFS tree on insertion of
only cross edges. This can be done by marking the vertices
in the bristles as unvisited and performing the DFS traver-
sal from the root of the bristles. Moreover, we also remove
the non-tree edges incident on the stick of the DFS tree. As
a result, SDFS2 would process only the edges in the bris-
tles, making it bristle-oriented. Now, according to Lemma
5.2 the time taken by SDFS2 for insertion of m = 2n log n
edges (and hence any m ≤

(
n
2

)
) is O(m2) = O(n2 log2 n).

Thus, we have the following theorem.

THEOREM 6.1. Given a random graph G(n,m), the ex-
pected time taken by SDFS2 for maintaining a DFS tree of
G incrementally is O(n2 log2 n).

We now compare the performance of the proposed al-
gorithm SDFS2 with the existing algorithms. Figure 5 (a)
compares the total number of edges processed for insertion
of m =

(
n
2

)
edges, as a function of number of vertices in

the logarithmic scale. As expected SDFS2 processes Õ(n2)
edges similar to ADFS. Figure 5 (b) compares the number of
edges processed per edge insertion as a function of number
of inserted edges. Again, as expected SDFS2 performs much
better than WDFS and SDFS-Int, performing asymptotically
equal to ADFS as the performance differs only when the
graph is very sparse (≈ n log n). Interestingly, despite the
huge difference in number of edges processed by SDFS2 and
ADFS (see Figure 5 (a)), SDFS2 is faster than ADFS2 and
equivalent to ADFS1 in practice (see Figure 12 (a)).

6.2 Experiments on directed graphs and DAGs The
proposed algorithm SDFS2 also works for directed graphs.
It is easy to show that Corollary 4.1 also holds for directed
graphs (with different constants). Thus, the properties of
broomstick structure and hence the analysis of SDFS2 can
also be proved for directed graphs using similar arguments.
The significance of this algorithm is highlighted by the fact
that there does not exists any o(m2) time algorithm for
maintaining incremental DFS in general directed graphs.
Moreover, FDFS also performs very well and satisfies the
properties P1 and P2 (similar to ADFS in undirected graphs).
Note that extension of FDFS for directed graphs is not known
to have complexity o(m2), yet for random directed graphs
we can prove it to be Õ(n2) using Lemma 5.2.

We now compare the performance of the proposed al-
gorithm SDFS2 with the existing algorithms in the directed
graphs. Figure 6 (a) compares the total number of edges pro-
cessed for insertion of m =

(
n
2

)
edges, as a function of num-

ber of vertices in the logarithmic scale. As expected SDFS2
processes Õ(n2) edges similar to FDFS. Figure 6 (b) com-
pares the number of edges processed per edge insertion as
a function of number of inserted edges for directed graphs.
Thus, the proposed SDFS2 performs much better than SDFS,
and asymptotically equal to FDFS. Again despite the huge
difference in number of edges processed by SDFS2 with re-
spect to FDFS, it is equivalent to FDFS in practice (see Fig-
ure 6 (a) and Figure 13 (a)).

Finally, we compare the performance of the proposed al-
gorithm SDFS2 with the existing algorithms in DAGs. Fig-
ure 7 (a) compares the total number of edges processed for
insertion of m =

(
n
2

)
edges, as a function of number of ver-

tices in the logarithmic scale. Both SDFS and SDFS-Int per-
form equally which was not the case when the experiment
was performed on undirected (Figure 1) or directed graphs
(Figure 6). Moreover, SDFS2 processes around Õ(n3) edges

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 6: Comparison of existing and proposed algorithms on directed graphs: (a) Total number of edges processed for
insertion of m =

(
n
2

)
edges for different values of n in logarithmic scale. (b) Number of edges processed per edge insertion

for n = 1000 and up to n
√
n edge insertions. See Figure 13 for corresponding time plot.

Figure 7: Comparison of existing and proposed algorithms on DAGs: (a) Total number of edges processed (logarithmic
scale) for insertion of m =

(
n
2

)
edges for different values of n. (b) Number of edges processed per edge insertion for

n = 1000 and up to n
√
n edge insertions. See Figure 14 for corresponding time plots. (c) Variation of length of broomstick

for 1000 vertices and different values of m for different type of graphs. Zoomed portion shows the start of each line.

which is more than the proven bound of Õ(n2) for undirected
and directed graphs. However, FDFS processes Õ(n2) edges
as expected. Figure 7 (b) compares the number of edges pro-
cessed per edge insertion as a function of number of inserted
edges. Again, both SDFS and SDFS-Int perform similarly
and SDFS2 does not perform asymptotically equal to FDFS
even for dense graphs. Notice that the number of edges pro-
cessed by SDFS2 does not reach a peak and then asymp-
totically move to zero as in case of undirected and general
directed graphs. Also, FDFS performs much better (simi-
lar to ADFS for undirected graphs) for DAGs as compared
to directed graphs. Again, despite superior performance on
random DAGs, for general DAGs the analysis of FDFS can
be shown to be tight (see Appendix B).

To understand the reason behind this poor performance
of SDFS-Int and SDFS2 on DAGs, we compare the variation
in length of broomstick for the undirected graphs, general
directed graphs and DAGs in Figure 7 (c). The length of

the broomstick varies as expected for undirected and general
directed graphs but always remains zero for DAGs. This is
because the stick will appear only if the first neighbor of the
pseudo root s visited by the algorithm is the first vertex (say
v1) in the topological ordering of the graph. Otherwise v1
hangs as a separate child of s because it not reachable from
any other vertex in the graph. Since the edges in G(n,m)
model are permuted randomly, with high probability v1 may
not be the first vertex to get connected to s. The same
argument can be used to prove branchings at every vertex
on the stick. Hence, with high probability there would be
some bristles even on the pseudo root s. This explains
why SDFS-Int performs equal to SDFS as it works same as
SDFS until all the vertices are visited. SDFS2 only benefits
from the inserted edges being reverse cross edges which are
valid in a DFS tree and hence avoids rebuilding on every
edge insertion. Thus, Corollary 4.1 and hence the bounds
for SDFS2 proved in Theorem 6.1 are not valid for the

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

case of DAGs as resulting in performance described above.
Moreover, the absence of the broomstick phenomenon can
also be proved for other models of random graphs for DAGs
[12] using the same arguments.

Finally, Lemma 5.1 also inspires interesting applications
of SDFS2 in the semi-streaming environment as follows.

6.3 Semi-streaming algorithms In the streaming model
we have two additional constraints. Firstly, the input data can
be accessed only sequentially in the form of a stream. The
algorithm can do multiple passes on the stream, but cannot
access the entire stream. Secondly, the working memory is
considerably smaller than the size of the entire input stream.
For graph algorithms, a semi-streaming model allows the
size of the working memory to be Õ(n).

The DFS tree can be trivially computed using O(n)
passes over the input graph in the semi-streaming environ-
ment, each pass adding one vertex to the DFS tree. However,
computing the DFS tree in even Õ(1) passes is considered
hard [18]. To the best of our knowledge, it remains an open
problem to compute the DFS tree using even o(n) passes in
any relaxed streaming environment [46, 50]. Now, some of
the direct applications of a DFS tree in undirected graphs are
answering connectivity, bi-connectivity and 2-edge connec-
tivity queries. All these problems are addressed efficiently
in the semi-streaming environment using a single pass by
the classical work of Westbrook and Tarjan [57]. On the
other hand, for the applications of a DFS tree in directed
graphs as strong connectivity, strong lower bounds of space
for single-pass semi-streaming algorithms have been shown.
Borradaile et al. [8] showed that any algorithm requires a
a working memory of Ω(εm) to answer queries of strong
connectivity, acyclicity or reachability from a vertex require
with probability greater than (1 + ε)/2.

We now propose a semi-streaming algorithm for main-
taining Incremental DFS for random graphs. The key idea to
limit the storage space required by this algorithm is to just
discard those edges from the stream whose at least one end-
point is on the stick of the DFS tree. As described earlier,
this part of DFS tree corresponding to the stick will never be
modified by the insertion of any edge. If both the endpoints
of the edge lie in bristles, we update the DFS tree using
ADFS/SDFS2. Lemma 5.1 implies that the expected number
of edges stored will be O(n log n). In case we use SDFS2
(for directed graphs) we also delete the non-tree edges inci-
dent on the stick. Hence, we have the following theorem.

THEOREM 6.2. Given a random graph G(n,m), there ex-
ists a single pass semi-streaming algorithm for maintaining
the DFS tree incrementally, that requires O(n log n) space.

Further, for random graphs even strong connectivity can
be solved using a single pass in the streaming environment
by SDFS2 as follows. Now, SDFS2 keeps only the tree

edges and the edges in the bristles. For answering strong
connectivity queries, we additionally store the highest edge
from each vertex on the stick. The strongly connected
components can thus be found by a single traversal on the
DFS tree [53]. Thus, our semi-streaming algorithm SDFS2
not only gives a solution for strong connectivity in the
streaming setting but also establishes the difference in its
hardness for general graphs and random graphs. To the best
of our knowledge no such result was known for any graph
problem in streaming environment prior to our work. Thus,
we have the following theorem.

THEOREM 6.3. Given a random graph G(n,m), there ex-
ists a single pass semi-streaming algorithm for maintaining
a data structure that answers strong connectivity queries in
G incrementally, requiring O(n log n) space.

7 Incremental DFS on real graphs
We now evaluate the performance of existing and proposed
algorithms on real graphs. Recall that for random graphs,
bristles represent the entire DFS tree until the insertion of
Θ(n log n) edges. This forces SDFS2 to rebuild the whole
tree requiring total Ω(n2) time even for sparse random
graphs, whereas ADFS and FDFS only partially rebuild the
DFS tree and turn out to be much better for sparse random
graphs (see Figure 5 (b), 6 (b) and 7 (b)). Now, most graphs
that exist in the real world are known to be sparse [40].
Here again, both ADFS and FDFS perform much better as
compared to SDFS2 and other existing algorithms. Thus, we
propose another simple variant of SDFS (SDFS3), which is
both easy to implement and performs very well even on real
graphs (much better than SDFS2).

7.1 Proposed algorithms for real graphs (SDFS3) The
primary reason behind the superior performance of ADFS
and FDFS is the partial rebuilding of the DFS tree upon in-
sertion of an edge. However, the partial rebuilding by SDFS2
is significant only when the broomstick has an appreciable
size, which does not happen until the very end in most of the
real graphs. With this insight, we propose new algorithms
for directed and undirected graphs with the aim to rebuild
only the part of DFS tree affected by the edge insertion.

• Undirected Graphs
On insertion of a cross edge (x, y), ADFS rebuilds one
of the two candidate subtrees hanging from LCA(x, y)
containing x or y. We propose algorithm SDFS3
that will rebuild only the smaller subtree (less number
of vertices) among the two candidate subtrees (say
x ∈ T1 and y ∈ T2). This heuristic is found to be
extremely efficient compared to rebuilding one of T1
or T2 arbitrarily. The smaller subtree, say T2, can be
identified efficiently by simultaneous traversal in both
T1 and T2. and terminate as soon as either one is

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

completely traversed. This takes time of the order of
|T2|. We then mark the vertices of T2 as unvisited
and start the traversal from y in T2, hanging the newly
created subtree from edge (x, y).

• Directed Graphs
On insertion of an anti-cross edge (x, y), FDFS rebuilds
the vertices reachable from y in the subgraph induced
by a candidate set of subtrees described in Section 2.3.
FDFS identifies this affected subgraph using the DFN
number of the vertices. Thus, this DFN number also
needs to be updated separately after rebuilding the
DFS tree. This is done by building an additional data
structure while the traversal is performed, which aids
in updating the DFN numbers efficiently. We propose
SDFS3 to simply mark all the subtrees in this candidate
set as unvisited and proceed the traversal from (x, y).
The traversal then continues from each unvisited root
of the subtrees marked earlier, implicitly restoring the
DFN number of each vertex.

We shall now see that these simple heuristics lead to a
significant improvement in their empirical performance.

7.2 Experimental Setup The algorithms are implemented
in C++ using STL (standard template library), and built with
GNU g++ compiler (version 4.4.7) with optimization flag
−O3. The correctness of our code was exhaustively verified
on random inputs by ensuring the absence of anti-cross edges
(or cross edge) in directed (or undirected) graphs. Our
experiments were run on Intel Xeon E5-2670V 2.5 GHz
2 CPU-IvyBridge (20-cores per node) on HP-Proliant-SL-
230s-Gen8 servers with 1333 MHz DDR3 RAM of size
768 GB per node. Each experiment was performed using
a single dedicated processor.

7.3 Datasets We consider the following types of graphs:

• Internet topology: These datasets represent snap-
shots of network topology on CAIDA project (asCaida
[35, 36]), Oregon Route Views Project’s Autonomous
Systems (ass733 [35, 36]) and Internet autonomous sys-
tems (intTop [58, 32]).

• Collaboration networks: These datasets represent the
collaboration networks as recorded on arxiv’s High-
Energy-Physics groups of Phenomenology (arxvPh [34,
14, 32]) and Theory (arxvTh [34, 14, 32]), and on DBLP
(dblp [37, 14, 32]).

• Online communication: These datasets represent
communication of linux kernel messages (lnKMsg
[32]), Gnutella p2p file sharing network (gnutella [49,
36]), Slashdot’s message exchange (slashDt [21, 32]),
Facebook’s wall posts (fbWall [56, 32]), Democratic

National Committee’s (DNC) email correspondence
(dncCoR [32]), Enron email exchange (enron [31, 32]),
Digg’s reply correspondence (digg [11, 32]) and UC
Irvine message exchange (ucIrv [47, 32])

• Friendship networks: These datasets represent the
friendship networks of Flickr (flickr [44, 32], Digg (dig-
gNw [23, 32]), Epinion (epinion [38, 32]), Facebook
(fbFrnd [56, 32]) and Youtube (youTb [43, 32]).

• Other interactions: These datasets represent the other
networks as Chess game interactions (chess [32]), user
loans on Prosper (perLoan [32]), hyperlink network
of Wikipedia (wikiHy [43, 32]), voting in elections on
Wikipedia (wikiEl [33, 32]) and conflict resolution on
Wikipedia (wikiC [9, 32]).

In some of these datasets there are some rare instances in
which edges are deleted (not present in new snapshot). Thus,
in order to use these datasets for evaluation of incremental
algorithms we ignore the deletion of these edges (and hence
reinsertion of deleted edges). Moreover, in several datasets
the edges are inserted in form of batches (having same in-
sertion time), where the number of batches are significantly
lesser than the number of inserted edges. Almost all the algo-
rithms (except FDFS and SDFS3) can be tweaked to handle
such batch insertions more efficiently, updating the DFS tree
once after insertion of an entire batch, instead of treating ev-
ery edge insertion individually.

7.4 Evaluation The comparison of the performance of the
existing and the proposed algorithms for real undirected
graphs and real directed graphs is shown in Table 2 and Table
3 respectively. To highlight the relative performance of dif-
ferent algorithms, we present the time taken by them relative
to that of the fastest algorithm (see Appendix E for the ex-
act time and memory used by different algorithms). In case
the time exceeded 100hrs the process was terminated, and
we show the relative time in the table with a ’>’ sign and
the ratio corresponding to 100hrs. If all algorithms exceed
100hrs giving no fastest algorithm, their corresponding rel-
ative time is not shown (-). For each dataset, the first row
corresponds to the experiments in which the inserted edges
are processed one by one, and the second row corresponds to
the experiments in which the inserted edges are processed in
batches (m∗ denotes the corresponding number of batches).
The density of a graph can be judged by comparing the aver-
age degree (m/n) with the number of vertices (n). Similarly,
the batch density of a graph can be judged by comparing the
average batch size (m/m∗) with the number of vertices (n).

For undirected graphs, Table 2 clearly shows that
ADFS1 outperforms all the other algorithms irrespective of
whether the edges are processed one by one or in batches
(except youTb). Moreover, despite ADFS2 having better

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Dataset n m|m∗ m
n
| m
m∗ ADFS1 ADFS2 SDFS3 SDFS2 SDFS WDFS

ass733 7.72K 21.47K 2.78 1.00 1.88 34.12 639.50 1.13K 2.99K

721.00 29.77 1.00 2.71 38.43 35.57 54.14 95.43

intTop 34.76K 107.72K 3.10 1.00 2.14 111.32 3.78K 8.15K 14.65K

18.27K 5.89 1.00 6.07 99.47 320.49 1.83K 2.24K

fbFrnd 63.73K 817.03K 12.82 1.00 2.18 146.58 2.02K 14.67K 11.75K

333.92K 2.45 1.00 8.10 141.07 491.24 7.63K 4.27K

wikiC 116.84K 2.03M 17.36 1.00 1.82 249.45 3.09K>22.56K>22.56K

205.59K 9.86 1.00 2.26 246.49 2.69K 4.39K 3.35K

arxvTh 22.91K 2.44M 106.72 1.00 1.81 28.31 3.41K>39.96K 9.72K

210.00 11.64K 1.00 6.74 32.01 8.63 13.24 2.84K

arxvPh 28.09K 3.15M 112.07 1.00 2.38 57.94 2.54K>36.29K 11.32K

2.26K 1.39K 1.00 8.25 70.75 103.23 192.22 3.17K

dblp 1.28M 3.32M 2.59 1.00 1.60>22.07K>22.07K>22.07K>22.07K

1.72M 1.93 1.00 1.84>21.26K>21.26K>21.26K>21.26K

youTb 3.22M 9.38M 2.91 1.00 3.53 >347.00 >347.00 >347.00 >347.00

203.00 46.18K 1.26 2.26 >322.18 1.00 1.00 260.73

Table 2: Comparison of time taken by different algorithms,
relative to the fastest (shown in bold), for maintaining in-
cremental DFS on real undirected graphs. See Table 4 for
corresponding table comparing the exact performance.

worst case bounds than ADFS1, the overhead of maintain-
ing its data structure D leads to inferior performance as
compared to ADFS1. Also, SDFS2 significantly improves
over SDFS (> 2 times). However, by adding a simple
heuristic, SDFS3 improves over SDFS2 by a huge margin
(> 10 times) which becomes even more significant when
the graph is very dense (arxvTh and arxvPh). Also, note
that even SDFS3 performs a lot worse than ADFS (> 30
times) despite having a profound improvement over SDFS2.
Further, despite having good worst case bounds, WDFS
seems to be only of theoretical interest and performs worse
than even SDFS in general. However, if the graph is
significantly dense (fbFrnd, wikiC, arxvTh and arxvPh),
WDFS performs better than SDFS but still far worse than
SDFS2. Now, in case of batch updates, SDFS3 is the only
algorithm that is unable to exploit the insertion of edges in
batches. Hence, SDFS3 performs worse than SDFS2 and
even SDFS if the batch density is significantly high (arxvTh
and youTb). Finally, if the batch density is extremely high
(youTb), the simplicity of SDFS and SDFS2 results in a
much better performance than even ADFS.

Observations: For real undirected graphs

• ADFS outperforms all other algorithms by a huge
margin, with ADFS1 mildly better than ADFS2.

• SDFS2 mildly improves SDFS, whereas SDFS3 sig-
nificantly improves SDFS2.

• WDFS performs worse than SDFS for sparse graphs.

Dataset n m|m∗ m
n
| m
m∗ FDFS SDFS3 SDFS2 SDFS

dncCoR 1.89K 5.52K 2.92 1.55 1.00 2.27 9.86

4.01K 1.38 1.55 1.00 2.00 7.18

ucIrv 1.90K 20.30K 10.69 1.69 1.00 2.25 21.81

20.12K 1.01 1.78 1.00 2.35 22.14

chess 7.30K 60.05K 8.22 1.94 1.00 2.54 20.00

100.00 600.46 52.04 26.14 1.00 1.00

diggNw 30.40K 85.25K 2.80 1.00 1.33 3.60 14.50

81.77K 1.04 1.00 1.38 3.78 11.96

asCaida 31.30K 97.84K 3.13 1.00 4.31 13.60 64.71

122.00 801.98 12.57 42.62 1.01 1.00

wikiEl 7.12K 103.62K 14.55 1.01 1.00 2.58 51.80

97.98K 1.06 1.00 1.00 2.53 52.38

slashDt 51.08K 130.37K 2.55 1.03 1.00 2.78 5.85

84.33K 1.55 1.04 1.00 2.07 3.79

lnKMsg 27.93K 237.13K 8.49 1.82 1.00 2.40 23.24

217.99K 1.09 1.77 1.00 2.30 23.13

fbWall 46.95K 264.00K 5.62 1.29 1.00 2.49 14.84

263.12K 1.00 1.31 1.00 2.73 17.11

enron 87.27K 320.15K 3.67 1.00 1.55 5.66 67.58

73.87K 4.33 1.00 1.48 2.61 14.00

gnutella 62.59K 501.75K 8.02 1.23 1.00 2.54 19.13

9.00 55.75K 1.17K 1.04K 1.03 1.00

epinion 131.83K 840.80K 6.38 1.32 1.00 2.29 17.77

939.00 895.42 95.27 93.62 1.00 1.00

digg 279.63K 1.73M 6.19 1.00 1.18 3.96 >29.28

1.64M 1.05 1.00 1.34 4.08 >30.92

perLoan 89.27K 3.33M 37.31 1.00 7.10 30.70 >639.03

1.26K 2.65K 2.13 13.18 1.00 1.01

flickr 2.30M 33.14M 14.39 - - - -

134.00 247.31K >476.50 >476.50 1.01 1.00

wikiHy 1.87M 39.95M 21.36 - - - -

2.20K 18.18K >69.26 >69.26 1.00 1.13

Table 3: Comparison of time taken by different algorithms,
relative to the fastest (shown in bold), for maintaining incre-
mental DFS on real directed graphs. See Table 5 for corre-
sponding table comparing the exact performance.

For directed graphs, Table 3 shows that both FDFS
and SDFS3 perform almost equally well (except perLoan)
and outperform all other algorithms when the edges are
processed one by one. In general SDFS3 outperforms FDFS
marginally when the graph is dense (except slashDt and
perLoan). The significance of SDFS3 is further highlighted
by the fact that it is much simpler to implement as compared
to FDFS. Again, SDFS2 significantly improves over SDFS
(> 2 times). Further, by adding a simple heuristic, SDFS3
improves over SDFS2 (> 2 times), and this improvement
becomes more pronounced when the graph is very dense
(perLoan). Now, in case of batch updates, both FDFS
and SDFS3 are unable to exploit the insertion of edges in
batches. Hence, they perform worse than SDFS and SDFS2

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

for batch updates, if the average size of a batch is at least
600. SDFS and SDFS2 perform almost equally well in such
cases with SDFS marginally better than SDFS2 when the
batch density is significantly high (asCaida, gnutella and
flickr).

Observations: For real directed graphs

• FDFS and SDFS3 outperform all other algorithms
unless batch density is high, where SDFS is better.

• SDFS3 performs better than FDFS in dense graphs.
• SDFS2 mildly improves SDFS, and SDFS3 mildly

improves SDFS2.

Overall, we propose the use of ADFS1 and SDFS3
for undirected and directed graphs respectively. Although
SDFS3 performs very well on real graphs, its worst case
time complexity is no better than that of SDFS on general
graphs (see Appendix C). Finally, in case the batch density
of the input graph is substantially high, we can simply use
the trivial SDFS algorithm.
Remark: The improvement of SDFS3 over SDFS2 is
substantially better on undirected graphs than on directed
graphs. Even then ADFS1 outperforms SDFS3 by a huge
margin. Also, when the batch density is extremely high
(youTb), ADFS1 performs only mildly slower than the
fastest algorithm (SDFS). These observations further high-
light the significance of ADFS1 in practice.

8 Conclusions
Our experimental study of existing algorithms for incremen-
tal DFS on random graphs presented some interesting in-
ferences. Upon further investigation, we discovered an im-
portant property of the structure of DFS tree in random
graphs: the broomstick structure. We then theoretically
proved the variation in length of the stick of the DFS tree
as the graph density increases, which also exactly matched
the experimental results. This led to several interesting ap-
plications, including the design of an extremely simple al-
gorithm SDFS2. This algorithm theoretically matches and
experimentally outperforms the state-of-the-art algorithm in
dense random graphs. It can also be used as a single pass
semi-streaming algorithm for incremental DFS as well as
strong connectivity in random graphs, which also establishes
the difference in hardness of strong connectivity in general
graphs and random graphs. Finally, for real world graphs,
which are usually sparse, we propose a new simple algo-
rithm SDFS3 which performs much better than SDFS2. De-
spite being extremely simple, it almost always matches the
performance of FDFS in directed graphs. However, for undi-
rected graphs ADFS was found to outperform all algorithms
(including SDFS3) by a huge margin motivating its use in
practice.

For future research directions, recall that ADFS (see In-
ference I2) performs extremely well even on sparse random
graphs. Similarly, FDFS and SDFS3 also perform very good
even on sparse random graphs. However, none of these have
asymptotic bounds any better than Õ(n2). After prelimi-
nary investigation, we believe that the asymptotic bounds for
ADFS and FDFS (in DAGs) should be O(m + npolylogn),
and for SDFS3 and FDFS (in directed graphs) should be
O(m + n4/3polylogn), for random graphs. It would be in-
teresting to see if these bounds can be proved theoretically.

References

[1] David Alberts, Giuseppe Cattaneo, and Giuseppe F. Italiano.
An empirical study of dynamic graph algorithms. ACM
Journal of Experimental Algorithmics, 2:5, 1997.

[2] Paola Alimonti, Stefano Leonardi, and Alberto Marchetti-
Spaccamela. Average case analysis of fully dynamic reach-
ability for directed graphs. ITA, 30(4):305–318, 1996.

[3] Holger Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao
Tamaki. Matching algorithms are fast in sparse random
graphs. Theory Comput. Syst., 39(1):3–14, 2006.

[4] Surender Baswana, Shreejit R. Chaudhury, Keerti Choudhary,
and Shahbaz Khan. Dynamic DFS in undirected graphs:
breaking the O(m) barrier. In SODA, pages 730–739, 2016.

[5] Surender Baswana and Keerti Choudhary. On dynamic DFS
tree in directed graphs. In MFCS, Proceedings, Part II, pages
102–114, 2015.

[6] Surender Baswana and Shahbaz Khan. Incremental algorithm
for maintaining a DFS tree for undirected graphs. Algorith-
mica, 79(2):466–483, 2017.

[7] Béla Bollobás. The evolution of random graphs. Transac-
tions of the American Mathematical Society, 286 (1):257–
274, 1984.

[8] Glencora Borradaile, Claire Mathieu, and Theresa Migler.
Lower bounds for testing digraph connectivity with one-pass
streaming algorithms. CoRR, abs/1404.1323, 2014.

[9] Ulrik Brandes, Patrick Kenis, Jürgen Lerner, and Denise
van Raaij. Network analysis of collaboration structure in
wikipedia. In Proceedings of the 18th International Confer-
ence on World Wide Web, WWW, pages 731–740, 2009.

[10] Giuseppe Cattaneo, Pompeo Faruolo, Umberto F. Petrillo,
and Giuseppe F. Italiano. Maintaining dynamic minimum
spanning trees: An experimental study. Discrete Applied
Mathematics, 158(5):404–425, 2010.

[11] Munmun D. Choudhury, Hari Sundaram, Ajita John, and
Dore D. Seligmann. Social synchrony: Predicting mimicry
of user actions in online social media. In Proc. Int. Conf.
on Computational Science and Engineering, pages 151–158,
2009.

[12] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis
Trystram, Jean-Marc Vincent, and Frédéric Wagner. Ran-
dom graph generation for scheduling simulations. In 3rd In-
ternational Conference on Simulation Tools and Techniques,
SIMUTools ’10, Malaga, Spain - March 16 - 18, 2010,
page 60, 2010.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

[13] Steven T. Crocker. An experimental comparison of two
maximum cardinality matching programs. In Network Flows
And Matching, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, October 14-16, 1991, pages
519–538, 1991.

[14] Erik Demaine and Mohammad T. Hajiaghayi. BigDND: Big
Dynamic Network Data. http://projects.csail.
mit.edu/dnd/, 2014.

[15] Camil Demetrescu and Giuseppe F. Italiano. Experimental
analysis of dynamic all pairs shortest path algorithms. ACM
Trans. Algorithms, 2(4):578–601, 2006.

[16] Paul Erdős and Alfréd Rényi. On random graphs I. Publica-
tiones Mathematicae (Debrecen), 6:290–297, 1959.

[17] Paul Erdős and Alfréd Rényi. On the evolution of random
graphs. In Publication of the Mathematical Institute of the
Hungarian Academy of Sciences, pages 17–61, 1960.

[18] Martin Farach-Colton, Tsan-sheng Hsu, Meng Li, and Meng-
Tsung Tsai. Finding articulation points of large graphs in
linear time. In Algorithms and Data Structures, WADS, pages
363–372, 2015.

[19] Paolo G. Franciosa, Giorgio Gambosi, and Umberto Nanni.
The incremental maintenance of a depth-first-search tree in
directed acyclic graphs. Inf. Process. Lett., 61(2):113–120,
1997.

[20] Alan M. Frieze and Michal Karonski. Introduction to Ran-
dom Graphs. Cambridge University Press, 2015.

[21] Vicen Gómez, Andreas Kaltenbrunner, and Vicente López.
Statistical analysis of the social network and discussion
threads in Slashdot. In Proc. Int. World Wide Web Conf.,
pages 645–654, 2008.

[22] Robert Görke, Pascal Maillard, Andrea Schumm, Christian
Staudt, and Dorothea Wagner. Dynamic graph clustering
combining modularity and smoothness. ACM Journal of
Experimental Algorithmics, 18, 2013.

[23] Tad Hogg and Kristina Lerman. Social dynamics of Digg.
EPJ Data Science, 1(5), 2012.

[24] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J. Com-
put., 2(4):225–231, 1973.

[25] John E. Hopcroft and Robert E. Tarjan. Efficient planarity
testing. J. ACM, 21(4):549–568, 1974.

[26] Michael Huang and Clifford Stein. Extending search phases
in the Micali-Vazirani algorithm. In 16th International Sym-
posium on Experimental Algorithms, SEA 2017, June 21-23,
2017, London, UK, pages 10:1–10:19, 2017.

[27] Raj Iyer, David R. Karger, Hariharan Rahul, and Mikkel Tho-
rup. An experimental study of polylogarithmic, fully dy-
namic, connectivity algorithms. ACM Journal of Experimen-
tal Algorithmics, 6:4, 2001.

[28] Abhabongse Janthong. Streaming algorithm for determining
a topological ordering of a digraph. UG Thesis, Brown
University, 2014.

[29] Sarantos Kapidakis. Average-case analysis of graph-
searching algorithms. PhD Thesis, Princeton University, no.
286, 1990.

[30] John D. Kececioglu and A. Justin Pecqueur. Computing
maximum-cardinality matchings in sparse general graphs. In
Algorithm Engineering, 2nd International Workshop, WAE

’92, Saarbrücken, Germany, August 20-22, 1998, Proceed-
ings, pages 121–132, 1998.

[31] Bryan Klimt and Yiming Yang. The Enron corpus: A new
dataset for email classification research. In Proc. European
Conf. on Machine Learning, pages 217–226, 2004.

[32] Jérôme Kunegis. KONECT - The Koblenz Network
Collection. http://konect.uni-koblenz.de/
networks/, October 2016.

[33] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Gov-
ernance in social media: A case study of the Wikipedia pro-
motion process. In Proc. Int. Conf. on Weblogs and Social
Media, 2010.

[34] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph
evolution: Densification and shrinking diameters. ACM
Trans. Knowledge Discovery from Data, 1(1):1–40, 2007.

[35] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos.
Graphs over time: densification laws, shrinking diameters and
possible explanations. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, Chicago, Illinois, USA, August 21-24,
2005, pages 177–187, 2005.

[36] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data/, June 2014.

[37] Michael Ley. The DBLP computer science bibliography:
Evolution, research issues, perspectives. In Proc. Int. Sympo-
sium on String Processing and Information Retrieval, pages
1–10, 2002.

[38] Paolo Massa and Paolo Avesani. Controversial users demand
local trust metrics: an experimental study on epinions.com
community. In Proc. American Association for Artificial
Intelligence Conf., pages 121–126, 2005.

[39] R. Bruce Mattingly and Nathan P. Ritchey. Implementing on
O(/NM) cardinality matching algorithm. In Network Flows
And Matching, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, October 14-16, 1991, pages
539–556, 1991.

[40] Guy Melancon. Just how dense are dense graphs in the real
world?: A methodological note. In Proceedings of the 2006
AVI Workshop on BEyond Time and Errors: Novel Evaluation
Methods for Information Visualization, BELIV ’06, pages 1–
7, 2006.

[41] Ulrich Meyer. Single-source shortest-paths on arbitrary di-
rected graphs in linear average-case time. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, Jan-
uary 7-9, 2001, Washington, DC, USA., pages 797–806, 2001.

[42] Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|)
algorithm for finding maximum matching in general graphs.
In 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13-15 October 1980,
pages 17–27, 1980.

[43] Alan Mislove. Online Social Networks: Measurement, Anal-
ysis, and Applications to Distributed Information Systems.
PhD thesis, Rice University, Department of Computer Sci-
ence, May 2009.

[44] Alan Mislove, Hema S. Koppula, Krishna P. Gummadi, Peter
Druschel, and Bobby Bhattacharjee. Growth of the Flickr
social network. In Proceedings of the 1st ACM SIGCOMM

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Workshop on Social Networks (WOSN’08), August 2008.
[45] Rajeev Motwani. Average-case analysis of algorithms for

matchings and related problems. J. ACM, 41(6):1329–1356,
1994.

[46] Thomas C. O’Connell. A survey of graph algorithms under
extended streaming models of computation. In Fundamental
Problems in Computing: Essays in Honor of Professor Daniel
J. Rosenkrantz, pages 455–476, 2009.

[47] Tore Opsahl and Pietro Panzarasa. Clustering in weighted
networks. Social Networks, 31(2):155–163, 2009.

[48] Celso C. Ribeiro and Rodrigo F. Toso. Experimental anal-
ysis of algorithms for updating minimum spanning trees on
graphs subject to changes on edge weights. In Experimental
Algorithms, 6th International Workshop, WEA 2007, Rome,
Italy, June 6-8, 2007, Proceedings, pages 393–405, 2007.

[49] Matei Ripeanu, Adriana Iamnitchi, and Ian T. Foster. Map-
ping the gnutella network. IEEE Internet Computing,
6(1):50–57, 2002.

[50] Jan M. Ruhl. Efficient Algorithms for New Computational
Models. PhD thesis, Department of Computer Science, MIT,
Cambridge, MA, 2003.

[51] Dominik Schultes and Peter Sanders. Dynamic highway-
node routing. In Experimental Algorithms, 6th International
Workshop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceed-
ings, pages 66–79, 2007.

[52] Jop F. Sibeyn. Depth First Search on Random Graphs,
volume 6 of Report -. Department of Computing Science,
Ume University, 2001.

[53] Robert E. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM J. Comput., 1(2):146–160, 1972.

[54] Robert E. Tarjan. Finding dominators in directed graphs.
SIAM J. Comput., 3(1):62–89, 1974.

[55] Robert E. Tarjan. Dynamic trees as search trees via Euler
tours, applied to the network simplex algorithm. Mathemati-
cal Programming, 78:169–177, 1997.

[56] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Kr-
ishna P. Gummadi. On the evolution of user interaction in
facebook. In Proceedings of the 2nd ACM SIGCOMM Work-
shop on Social Networks (WOSN’09), August 2009.

[57] Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-
connected and biconnected components on-line. Algorith-
mica, 7(5&6):433–464, 1992.

[58] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia
Zhang. Collecting the internet AS-level topology. SIG-
COMM Computer Communication Review, 35(1):53–61,
2005.

A Performance analysis in terms of edges
Most of the algorithms analyzed in this paper require a
dynamic data structure for answering LCA and LA (level
ancestor) queries. The LCA/LA data structures used by
Baswana and Khan [6] takes O(1) amortized time to main-
tain the data structure for every vertex whose ancestor is
changed in the DFS tree. However, it is quite difficult
to implement and seems to be more of theoretical interest.
Thus, we use a far simpler data structure whose maintenance
require O(log n) time for every vertex whose ancestor is

changed in the DFS tree. Figure 8 shows that the time taken
by these data structures is insignificant in comparison to the
total time taken by the algorithm. Analyzing the number of
edges processed instead of time taken allows us to ignore the
time taken for maintaining and querying this LCA/LA data
structure. Moreover, the performance of ADFS and FDFS is
directly proportional to the number of edges processed along
with some vertex updates (updating DFN numbers for FDFS
and LCA/LA structure for ADFS). However, the tasks re-
lated to vertex updates can be performed in Õ(1) time using
dynamic trees [55]. Thus, the actual performance of these al-
gorithms is truly depicted by the number of edges processed,
justifying our evaluation of relative performance of different
algorithms by comparing the number of edges processed.

Figure 8: Comparison of total time taken and time taken by
LCA/LA data structure by the most efficient algorithms for
insertion of m =

(
n
2

)
edges for different values of n.

B Worst Case Input for FDFS
We now describe a sequence of O(m) edge insertions in a
directed acyclic graph for which FDFS takes Θ(mn) time
to maintain DFS tree. Consider a directed acyclic graph
G = (V,E) where the set of vertices V is divided into two
sets A = {a1, a2, ..., an/2} and B = {b1, b2, ..., bn/2}, each
of size n/2. The vertices in both A and B are connected
in the form of a chain (see Figure 9 (a), which is the DFS
tree of the graph). Additionally, set of vertices in B are
connected using m− n/2 edges (avoiding cycles), i.e. there
can exist edges between bi and bj , where i < j. For any
n ≤ m ≤

(
n
2

)
, we can add Θ(m) edges to B as described

above. Now, we add n/2 more edges as described below.
We first add the edge (a1, b1) as shown in Figure 9 (b).

On addition of an edge (x, y), FDFS processes all outgoing

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(a) (b) (c)

sss
a1a1a1

a2a2a2

an/2an/2an/2

b1

b1b1

bn/2

bn/2bn/2

Figure 9: Example to demonstrate the tightness of analysis
of FDFS. (a) Initial DFS tree of the graph G. (b) Insertion of
a cross edge (a1, b1). (c) The resultant DFS tree.

edges of the vertices having rank φ(x) < φ′ ≤ φ(y), where
φ is the post order numbering of the DFS tree. Clearly,
the set of such vertices is the set B. Hence, all the Θ(m)
edges in B will be processed to form the final DFS tree
as shown in Figure 9 (c). We next add the edge (a2, b1)
which will again lead to processing of all edges in B, and
so on. This process can be repeated n/2 times adding each
(ai, b1), for i = 1, 2, ..., n/2 iteratively. Thus, for n/2
edge insertions, FDFS processes Θ(m) edges each, requiring
a total of Θ(mn) time to maintain the DFS tree. Hence,
overall time required for insertion of m edges is Θ(mn), as
FDFS has a worst case bound of O(mn). Thus, we have the
following theorem.

THEOREM B.1. For each value of n ≤ m ≤
(
n
2

)
, there

exists a sequence of m edge insertions for which FDFS
requires Θ(mn) time to maintain the DFS tree.

C Worst Case Input for SDFS3
We now describe a sequence of m edge insertions for which
SDFS3 takes Θ(m2) time. Consider a graph G = (V,E)
where the set of vertices V is divided into two sets V ′ and I ,
each of size Θ(n). The vertices in V ′ are connected in the
form of a three chains (see Figure 10 (a)) and the vertices in
I are isolated vertices. Thus, it is sufficient to describe only
the maintenance of DFS tree for the vertices in set V ′, as the
vertices in I will exist as isolated vertices connected to the
dummy vertex s in the DFS tree (recall that s is the root).

We divide the sequence of edge insertions into k phases,
where each phase is further divided into k stages. At the
beginning of each phase, we identify three chains having
vertex sets from the set V ′, namely A = {a1, ..., ak},
X = {x1, ..., xp} in the first chain, B = {b1, ..., bl} and
Y = {y1, ..., yq} in the second chain and C = {c1, ..., ck},
Z = {z1, ..., zr} in the third chain as shown in Figure 10 (a).
The constants k, p, q, r = Θ(

√
m) such that q > r + k and

p ≈ q + r + k. We then add eZ = Θ(m) edges to the set Z,
ey = ez + k + 1 edges to Y and ex = ez + ey edges to X ,
which is overall still Θ(m). The size of A and C is k in the
first phase and decreases by 1 in each the subsequent phases.
Figure 10 (a) shows the DFS tree of the initial graph.

Now, the first stage of the phase starts with addition of
the cross edge (b1, c1) as shown in Figure 10 (b). Clearly, s
is the LCA of the inserted edge and SDFS3 would rebuild the
smaller of the two subtrees T (b1) and T (c1). Since q > r,
SDFS3 would hang T (c1) through edge (b1, c1) and perform
partial DFS on T (c1) requiring to process Θ(m) edges in
Z. This completes the first stage with the resultant DFS tree
shown in the Figure 10 (c). This process continues for k
stages, where in ith stage, T (c1) would initially hang from
bi−1 and (bi, c1) would be inserted. The DFS tree at the
end of kth stage is shown in Figure 10 (d). At the end of
k stages, every vertex in B is connected to the vertex c1,
hence we remove it from C for the next phase. For this we
first add the edge (a1, c1). Since both T (b1) and T (a1) have
approximately same number of vertices (as p ≈ q + r + k),
we add constant number of vertices (if required) to Z from I
to ensure T (b1) is rebuilt. The resultant DFS tree is shown in
Figure 10 (e). Finally, we add (a2, c1). Again both T (c1) and
T (a2) have approximately same number of vertices, so we
add constant number of vertices from I to X ensuring T (a2)
is rebuild as shown in Figure 10 (f). Note the similarity
between Figures 10 (a) and 10 (f). In the next phase, the
only difference is that A′ = {a2, ..., ak}, C ′ = {c2, ..., ck}
and s′ = c1. In each phase one vertex each from A and
C are removed and constant number of vertices from I are
removed. Hence the phase can be repeated k times.

Thus, we have k phases each having k stages. Further,
in each stage we add a single cross edge forcing SDFS3 to
process Θ(m) edges to rebuild the DFS tree. Thus, the total
number of edges added to the graph is k ∗ k = Θ(m) and
the total time taken by ADFS1 is k ∗ k ∗ Θ(m) = Θ(m2).
Hence, we get the following theorem for any n ≤ m ≤

(
n
2

)
.

THEOREM C.1. For each value of n ≤ m ≤
(
n
2

)
, there

exists a sequence of m edge insertions for which SDFS3
requires Θ(m2) time to maintain the DFS tree.

Remark: The worst case example mentioned above (say
G1) would also work without X,Y and Z. Consider a
second example (say G2), where we take size of A =
2 ∗ k + 2,B = k + 1 and C = k and the vertices of C
have Θ(m) edges amongst each other. The same sequence
of edge insertions would also force SDFS3 to process Θ(m2)
edges. However, G1 also ensures the same worst case bound
for SDFS3 if it chooses the subtree with lesser edges instead
of the subtree with lesser vertices, which is an obvious
workaround of the example G2. The number of edges ex, ey
and ez are chosen precisely to counter that argument.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(a) (b) (c) (d) (e) (f)

sss s ss

a1

a1a1
a1a1a1

a2
a2

ak

akak
akakak

b1b1

b1b1b1b1
b2

bkbk

bkbkbkbk

c1
c1

c1

c1
c1c1

c2c2

ckck

ck

ck
ckck

x1

x1x1
x1x1x1

xp

xpxp
xpxpxp

y1y1

y1
y1y1y1

yqyq

yq
yqyqyq

z1z1

z1

z1
z1z1

zrzr

zr

zr
zrzr

Figure 10: Example to demonstrate the tightness of the SDFS3. (a) Beginning of a phase with vertex sets A, B and X . (b)
Phase begins with addition of two vertex sets C and D. The first stage begins by inserting a back edge (a1, bk) and a cross
edge (b1, ck). (c) The rerooted subtree with the edges in A×X and (bk, a1) as cross edges. (d) Final DFS tree after the first
stage. (e) Final DFS tree after first phase. (f) New vertex sets A′, B′ and X for the next phase.

Figure 11: For various existing algorithms, the plot shows (a) Total time taken (logarithmic scale) for insertion of m =
(
n
2

)
edges for different values of n, (b) Total time taken for n = 1000 and up to n

√
n edge insertions, (c) Time taken per update

for n = 1000 and up to n
√
n edge insertions.

Figure 12: Comparison of existing and proposed algorithms on undirected graphs: (a) Total time taken (logarithmic scale)
for insertion of m =

(
n
2

)
edges for different values of n. (b) Time taken per edge insertion for n = 1000 and up to n

√
n

edge insertions.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 13: Comparison of existing and proposed algorithms on directed graphs: (a) Total time taken (logarithmic scale) for
insertion of m =

(
n
2

)
edges for different values of n. (b) Time taken per edge insertion for n = 1000 and up to n

√
n edge

insertions.

Figure 14: Comparison of existing and proposed algorithms on DAGs: (a) Total time taken (log scale) for insertion of
m =

(
n
2

)
edges for different values of n. (b) Time taken per edge insertion for n = 1000 and up to n

√
n edge insertions.

D Time Plots for experiments
In this section we present the corresponding time plots
for experiments performed earlier which were measured in
terms of number of edges processed. The comparison of
the existing incremental algorithms for random undirected
graphs are shown in Figure 11. The comparison of the exist-
ing and proposed algorithms for random undirected graphs,
random directed graphs and random DAGs are shown in Fig-
ure 12, Figure 13 and Figure 14 respectively.

E Exact performance comparison for real graphs
The performance of different algorithms in terms of time and
memory required on real undirected graphs and real directed
graphs is shown in Table 4 and Table 5 respectively.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Dataset n m|m∗ m
n
| m
m∗ ADFS1 ADFS2 SDFS3 SDFS2 SDFS WDFS

ass733 7.72K 21.47K 2.78 0.08s 35.09M 0.15s 37.17M 2.73s 39.91M 51.16s 33.25M 1.51m 33.25M 3.99m 450.06M

721.00 29.77 0.07s 35.11M 0.19s 36.66M 2.69s 31.98M 2.49s 32.77M 3.79s 32.77M 6.68s 385.61M

intTop 34.76K 107.72K 3.10 0.50s 160.14M 1.07s 162.58M 55.66s 150.17M 31.50m 152.12M 1.13h 148.95M 2.04h 2.57G

18.27K 5.89 0.55s 160.80M 3.34s 169.44M 54.71s 150.84M 2.94m 151.81M 16.76m 146.00M 20.51m 2.56G

fbFrnd 63.73K 817.03K 12.82 10.26s 817.67M 22.39s 837.23M 25.06m 725.08M 5.75h 747.55M 41.80h 748.66M 33.48h 15.13G

333.92K 2.45 10.46s 816.72M 1.41m 844.47M 24.59m 724.12M 1.43h 745.77M 22.17h 746.42M 12.40h 15.14G

wikiC 116.84K 2.03M 17.36 15.96s 1.89G 29.01s 1.91G 1.11h 1.65G 13.71h 1.67G >100.00h - >100.00h -

205.59K 9.86 15.78s 1.89G 35.67s 1.91G 1.08h 1.65G 11.77h 1.67G 19.23h 1.67G 14.68h 38.50G

arxvTh 22.91K 2.44M 106.72 9.01s 2.10G 16.28s 2.11G 4.25m 1.81G 8.53h 1.81G >100.00h - 24.33h 39.48G

210.00 11.64K 8.04s 2.61G 54.22s 2.77G 4.29m 2.34G 1.16m 2.33G 1.77m 2.33G 6.34h 3.94G

arxvPh 28.09K 3.15M 112.07 9.92s 2.69G 23.59s 2.71G 9.58m 2.33G 7.00h 2.32G >100.00h - 31.19h 50.80G

2.26K 1.39K 8.15s 2.69G 1.12m 2.70G 9.61m 2.33G 14.02m 2.32G 26.11m 2.32G 7.18h 26.12G

dblp 1.28M 3.32M 2.59 16.31s 4.51G 26.12s 5.14G >100.00h - >100.00h - >100.00h - >100.00h -

1.72M 1.93 16.93s 4.51G 31.17s 4.76G >100.00h - >100.00h - >100.00h - >100.00h -

youTb 3.22M 9.38M 2.91 17.29m 13.29G 1.02h 14.04G >100.00h - >100.00h - >100.00h - >100.00h -

203.00 46.18K 23.44m 13.27G 42.08m 11.55G >100.00h - 18.67m 12.28G 18.62m 12.28G 80.93h 165.80G

Table 4: Comparison of time taken by different algorithms in seconds(s)/minutes(m)/hours(h) and memory required in
kilobytes(K)/megabytes(M)/gigabytes(G) for maintaining incremental DFS on real undirected graphs.

Dataset n m|m∗ m
n
| m
m∗ FDFS SDFS3 SDFS2 SDFS

dncCoR 1.89K 5.52K 2.92 0.34s 9.22M 0.22s 8.61M 0.50s 8.50M 2.17s 8.50M
4.01K 1.38 0.34s 9.22M 0.22s 8.62M 0.44s 8.48M 1.58s 8.47M

ucIrv 1.90K 20.30K 10.69 0.88s 17.47M 0.52s 15.30M 1.17s 22.94M 11.34s 15.17M
20.12K 1.01 0.87s 17.47M 0.49s 15.28M 1.15s 15.16M 10.85s 15.14M

chess 7.30K 60.05K 8.22 26.03s 44.58M 13.39s 38.42M 34.00s 38.20M 4.46m 45.98M
100.00 600.46 26.54s 52.48M 13.33s 43.75M 0.51s 43.94M 0.51s 44.64M

diggNw 30.40K 85.25K 2.80 2.23m 85.05M 2.98m 82.64M 8.03m 82.36M 32.33m 81.58M
81.77K 1.04 2.32m 85.95M 3.21m 77.41M 8.77m 80.56M 27.70m 77.92M

asCaida 31.30K 97.84K 3.13 35.21s 97.45M 2.53m 87.00M 7.98m 87.95M 37.98m 86.48M
122.00 801.98 35.19s 91.64M 1.99m 86.92M 2.82s 80.75M 2.80s 80.75M

wikiEl 7.12K 103.62K 14.55 16.21s 65.69M 16.02s 61.53M 41.27s 66.11M 13.83m 56.23M
97.98K 1.06 16.27s 69.36M 16.24s 63.88M 41.16s 59.02M 14.18m 58.25M

slashDt 51.08K 130.37K 2.55 14.30m 127.23M 13.85m 123.47M 38.50m 116.55M 1.35h 122.88M
84.33K 1.55 15.24m 126.61M 14.61m 122.08M 30.21m 116.94M 55.39m 122.12M

lnKMsg 27.93K 237.13K 8.49 9.52m 161.89M 5.22m 139.08M 12.51m 139.38M 2.02h 138.66M
217.99K 1.09 9.51m 161.91M 5.38m 138.72M 12.35m 139.58M 2.07h 138.66M

fbWall 46.95K 264.00K 5.62 27.11m 200.05M 21.08m 175.05M 52.52m 174.80M 5.21h 174.81M
263.12K 1.00 29.63m 200.03M 22.68m 175.03M 1.03h 174.77M 6.47h 174.80M

enron 87.27K 320.15K 3.67 10.32m 258.92M 16.00m 240.08M 58.40m 235.11M 11.63h 235.12M
73.87K 4.33 11.31m 258.94M 16.80m 240.08M 29.48m 234.94M 2.64h 234.94M

gnutella 62.59K 501.75K 8.02 29.11m 345.39M 23.64m 286.66M 1.00h 284.78M 7.54h 284.88M
9.00 55.75K 13.49m 288.19M 11.96m 245.27M 0.71s 245.27M 0.69s 245.28M

epinion 131.83K 840.80K 6.38 3.28h 556.69M 2.50h 487.06M 5.71h 478.86M 44.34h 479.22M
939.00 895.42 3.09h 640.75M 3.04h 580.38M 1.95m 570.61M 1.95m 570.59M

digg 279.63K 1.73M 6.19 3.42h 1.13G 4.02h 986.58M 13.53h 977.58M >100.00h -
1.64M 1.05 3.23h 1.13G 4.32h 986.58M 13.20h 977.55M >100.00h -

perLoan 89.27K 3.33M 37.31 9.39m 1.33G 1.11h 1.31G 4.80h 1.31G >100.00h -
1.26K 2.65K 9.18m 1.33G 56.78m 1.31G 4.31m 1.31G 4.35m 1.31G

flickr 2.30M 33.14M 14.39 >100.00h - >100.00h - >100.00h - >100.00h -
134.00 247.31K >100.00h - >100.00h - 12.69m 15.00G 12.59m 15.00G

wikiHy 1.87M 39.95M 21.36 >100.00h - >100.00h - >100.00h - >100.00h -
2.20K 18.18K >100.00h - >100.00h - 1.44h 16.99G 1.63h 16.99G

Table 5: Comparison of performance of different algorithms in terms of time in seconds(s)/minutes(m)/hours(h) and memory
required in kilobytes(K)/megabytes(M)/gigabytes(G) for maintaining incremental DFS on real directed graphs.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

