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Abstract
Let G = (V,E) be an n-vertices m-edges directed graph
with edge weights in the range [1,W ] and L = log(W ).
Let s ∈ V be a designated source. In this paper we
address several variants of the problem of maintaining the
(1 + ε)-approximate shortest path from s to each v ∈
V \ {s} in the presence of a failure of an edge or a
vertex. From the graph theory perspective we show that

G has a subgraph H with Õ(nL/ε) edges such that for any
x, v ∈ V , the graph H \ x contains a path whose length
is a (1 + ε)-approximation of the length of the shortest
path from s to v in G \ x. We show that the size of
the subgraph H is optimal (up to logarithmic factors) by
proving a lower bound of Ω(nL/ε) edges. Demetrescu,
Thorup, Chowdhury and Ramachandran [12] showed that
the size of a fault tolerant exact shortest path subgraph
in weighted directed/undirected graphs is Ω(m). Parter
and Peleg [18] showed that even in the restricted case of
unweighted undirected graphs the size of any subgraph for
the exact shortest path is at least Ω(n1.5). Therefore, a
(1 + ε)-approximation is the best one can hope for. We
consider also the data structure problem and show that there

exists an Õ(nL/ε) size oracle that for any v ∈ V reports a
(1 + ε)-approximate distance of v from s on a failure of any
x ∈ V in O(log log1+ε(nW )) time. We show that the size of
the oracle is optimal (up to logarithmic factors) by proving
a lower bound of Ω(nL/ε logn). Finally, we present two
distributed algorithms. We present a single source routing
scheme that can route on a (1 + ε)-approximation of the
shortest path from a fixed source s to any destination t in
the presence of a fault. Each vertex has a label and a routing

table of Õ(L/ε) bits. We present also a labeling scheme that

assigns each vertex a label of Õ(L/ε) bits. For any two
vertices x, v ∈ V the labeling scheme outputs a (1 + ε)-
approximation of the distance from s to v in G\x using only
the labels of x and v.

1 Introduction

In this paper we address several computational aspects
of the problem of maintaining single-source approximate
shortest paths for weighted directed graphs in the
presence of failure. Let s be any designated source
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vertex in graph G = (V,E) and ε be any positive
fraction. We first consider the problem of computing a
sparse subgraph H of G that for any x, v ∈ V contains a
(1+ε)-multiplicative approximation of the shortest path
from s to v in G \ {x}. Such a subgraph H is referred
as a fault tolerant (1 + ε)-shortest path subgraph.

Demetrescu, Thorup, Chowdhury and Ramachan-
dran [12] showed that the size of a fault tolerant exact
shortest path subgraph in weighted directed/undirected
graphs is Ω(m) and therefore a (1 + ε)-approximation is
the best that one can hope for. Parter and Peleg [18]
showed that even in the case of unweighted undirected
graphs there are graphs such that the size of their fault
tolerant exact shortest path subgraph is at least Ω(n1.5).

Bilò, Gualà, Leucci, and Proietti [5] showed that
any weighted undirected graph has a fault tolerant
(1 + ε)-shortest path subgraph of size O((1/ε2)n log n).
Their result, however, uses techniques that rely heavily
on the undirectedness of the graph and therefore cannot
be extended to weighted directed graphs.

A fault tolerant (1 + ε)-shortest path subgraph for
directed graphs is important both from theoretical and
practical point of views. From the theoretical point
of view it is always an intriguing challenge to match
or almost match in directed graphs the bounds that
are known for undirected graphs. Finding small size
subgraphs for directed graphs that preserve distance
related properties of the graph is a hard task since many
of the standard tools that are being used in undirected
graphs rely on the fact that distances in undirected
graphs are symmetric which is obviously not the case
in directed graphs.

Graph spanners are probably the most notable ex-
ample for a separation between undirected and directed
graphs. For every weighted undirected graph there is a
subgraph with O(n1+1/k) edges that approximates the
distances with a multiplicative stretch of 2k−1 [20]. It is
very easy to see that such a general result is not possible
for directed graphs since no subgraph can approximate
all distances of a complete bipartite graph.

The second problem that we address is designing
a single source compact routing scheme that after any
failure is able to route on paths that are stretched
by a factor of at most (1 + ε). From the practical
point of view there are network routing scenarios in
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which routers only need to know which outgoing link to
choose to get on a shortest path to a packet destination.
More specifically, the Autonomous System’s link-state
database that is used by the Open Shortest Path First
(OSPF) TCP/IP internet routing protocol is a directed
graph [16]. Therefore, designing a single source routing
scheme that is resilient to link failures in directed graphs
is of real practical need.

Lastly, we present an efficient oracle for reporting
(1+ε)-approximate distances from a source vertex after
an occurrence of a failure. We also present a distributed
implementation of this oracle (a labeling scheme).

Next, we formally state our results. All our results
hold for the general case of weighted directed graphs
where edge weights are assumed to be in the range
[1,W ].

Sparse subgraph. We show that it is possible to com-
pute a subgraph H ⊆ G with O(n log3(n) log1+ε(nW ))
edges such that for every v, x ∈ V , the distance of v
from s in H \ {x} is at most (1 + ε) times the distance
from s in G\{x}. Moreover, the in-degree of each vertex
in H is bounded by O(log4(n) log1+ε(nW )). We also es-
tablish a lower bound of Ω(n log1+ε W ) on the size of
such a subgraph.

Oracle. We can build a data structure of size
O(n log1+ε(nW )) that can report in O(log log1+ε(nW ))
time, for every x, v ∈ V , a (1 + ε)-approximate distance
of v from s in G\{x}. Also, we show that the size of the
oracle is optimal (up to logarithmic factors) by proving
a lower bound of Ω(n log1+ε(W )/ log n). Our lower
bound is independent of the time needed for reporting
the (1 + ε)-approximate distances.

Labeling scheme. Using this data structure we can
also get a very compact labeling scheme for reporting
approximate distances from s under any vertex failure.
Each vertex will store a label of O(log1+ε(nW ) log n)
bits such that for any failing vertex x and a destina-
tion vertex v, it is possible to determine the (1 + ε)-
approximate distance of v from s in G\{x} by process-
ing the labels associated with v and x only.

Routing. We provide a single source routing
scheme that can route on a (1 + ε)-approximate short-
est path from source s to any destination v ∈ V
in the presence of a fault. Each vertex has a label
of O(log4(n) log1+ε(nW )) bits and a routing table of

O(log5 n log1+ε(nW )) bits. When the routing is started
at the source the labels of the faulty vertex and the
destination vertex are assumed to be known.

It must be noted that we describe all our construc-
tions with respect to vertex failure only. Edge failure
can be handled by inserting a vertex, say zuv, in mid-
dle of each tree edge (u, v) on the shortest path tree
rooted at source s. So the deletion of tree edge (u, v) is

equivalent to deletion of vertex zuv.

1.1 Related work For undirected graphs, Baswana
and Khanna [2] showed a fault tolerant 3-shortest
path subgraph with O(n log n) edges. Parter and
Peleg [19] improved this result by showing that such a
subgraph exists with 3n edges. Bilò, Gualà, Leucci, and
Proietti [5] showed that any weighted undirected graph
has a fault tolerant (1+ε)-shortest path subgraph of size
O((1/ε2)n log n). Parter and Peleg [18] showed that any
unweighted (un)directed graph has a fault tolerant exact
shortest path subgraph with O(n3/2) edges. They also
showed a matching lower bound. Parter [17] extended
this result to two edge failures with O(n5/3) edges but
only for undirected graphs. She also showed a lower
bound of Ω(n5/3). Recently, Gupta and Khan [15]
extended the work of [17] to vertex failures and directed
graphs.

For the case of multiple edge faults, Bilò et al. [6]
obtain a k-fault tolerant (2k+1)-shortest path subgraph
with O(kn) edges again only for undirected graphs.
They also showed that there is a data structure of
size O(kn log2 n) that reports the (2k+ 1)-approximate
distance from s in O(k2 log2 n) time. For preserving
exact distances in (un)directed graphs, Bodwin et al. [7]
obtain a construction of a k-fault tolerant subgraph with

Õ(kn2−1/2k)1 edges.
In the case of all-pair shortest paths (APSP), Deme-

trescu, Thorup, Chowdhury and Ramachandran [12]
showed that we can build an O(n2 log n) size data struc-
ture that can report the distance from u to v avoiding
x for any u, v, x ∈ V in O(1) time. The construction
time of their data structure is O(mn2 +n3 log n). Bern-
stein and Karger further improved the preprocessing
time to Õ(

√
mn2) [3] and finally to Õ(mn) [4]. The lat-

ter preprocessing time matches, up to poly-logarithmic
factors, the best known runtime for the APSP in the
same setting. Duan and Pettie [14] extended the result
of [12] to dual failures by designing a data structure of
O(n2 log3 n) space that can answer any distance query
upon the failure of two vertices in O(log n) time. The
authors of [14] comment that their techniques do not
seem to be extensible beyond two failures, and even an
oracle for three failures seem too hard to achieve.

In undirected graphs, the questions of finding graph
spanners, approximate distance oracles and compact
routing schemes that are resilient to f vertex or edge
failures have been studied in [8, 9, 10, 13].

1.2 Organization of the Paper We describe no-
tation and terminology in Section 2. In Section 3 we

1Õ() hides the poly-logarithmic factors.
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provide the main ideas used in our paper. We present
a randomized algorithm for computing a fault tolerant
(1 + ε)-shortest path subgraph in Section 4. In order
to use it for routing, the subgraph should satisfy some
additional property. We present a deterministic algo-
rithm for computing the subgraph with this additional
property in Section 5. As a byproduct we are also able
to bound the in-degree of the vertices in the subgraph.
The oracle and the labeling scheme are described in Sec-
tion 6, and the routing scheme is described in Section 7.
In Section 8, we present our lower bounds.

2 Preliminaries

Let G = (V,E) be a directed graph on n = |V | vertices
and m = |E| edges, and s ∈ V be the designated source
vertex. We assume that the weight of each edge is a
real number greater than one and bounded above by
some threshold, say W . Below we introduce some of
the notation that will be used throughout the paper.

• wt(u, v): Weight of edge (u, v) in G.

• wt(P ): Weight of path P in G, that is, if P is

(u0, . . . , ut) then wt(P ) =
∑t−1
i=0 wt(ui, ui+1).

• T : A shortest path tree of G rooted at s.

• T (v): Subtree of T rooted at a vertex v.

• parentT (v): Parent of vertex v in T .

• pathT (a, b): Path from vertex a to vertex b in T .

• pathT (ā, b): pathT (a, b) \ {a}.

• pathT (a, b̄): pathT (a, b) \ {b}.

• depthT (v): Depth of vertex v in T .

• P [·, b]: The prefix of path P up to vertex b,
assuming that b lies in P .

• P [a, b]: The sub-path of path P lying between
vertices a, b, assuming a precedes b on P .

• σ(P ): Subsequence of those vertices of path P
whose incoming edge in the path is a non-tree edge.

• freq(w, C): The number of sequences of set C in
which vertex w appears.

• P ::Q : The path formed by concatenating paths P
and Q in G. Here it is assumed that the last vertex
of P is the same as the first vertex of Q.

• distH(u, v): Distance of v from u in graph H.

• G \ x: Graph obtained by deleting node x from G.

• powers(c): Set of all powers of c in range [1, nW ].

We start by defining a detour:

Definition 2.1. A simple path P = (u0, . . . , ut = v)
in G is said to be a detour to v with respect to T if u0
is an ancestor of v, and for 0 < i < t, none of the ui’s
is an ancestor of v in T .

Notice that it follows from the above definition that
tree edges and forward edges are also detours of size one.
Next, we define a special class of detours, the tree-path
favouring detours, that will be used in our constructions.

Definition 2.2. A detour D from u to v is a tree-path
favouring detour if for any a, b ∈ D \ {u, v}, where a
precedes b in D and a is an ancestor of b in T , it holds
that the segment D[a, b] is a tree path.

It is easy to see that if a detour is not a tree-
path favouring detour then we can easily convert it into
a tree-path favouring detour, by repeatedly replacing
segment D(a, b) with the tree path pathT (a, b). Since
T is the shortest path tree, by doing this we do not
increase the weight of the detour. So, henceforth we
can assume that all the detours referred in paper are
tree-path favouring detours.

For the sake of simplicity we use the following alter-
native weight function (usually known as the Johnson
transformation) which is quite popular in the literature
of shortest paths.

wt∗(u, v) := wt(u, v) + distG(s, u)− distG(s, v)

It is easy to see that for any edge (u, v), wt∗(u, v) is
non-negative. Also if (u, v) is a tree edge then wt∗(u, v)
must be zero. From the next lemma it follows that for
any detour D, wt∗(D) must be bounded by nW .

Lemma 2.1. Let a, b ∈ T be such that a is an ancestor
of b, and let P be any path from a to b. Then, wt∗(P ) =
wt(P )− distG(a, b).

Proof. Let P be equal to (a = a0, . . . , at = b). So

wt∗(P ) =
∑t
i=1 wt

∗(ai−1, ai)

=
∑t
i=1(wt(ai−1, ai) + distG(s, ai−1)− distG(s, ai))

= distG(s, a0)− distG(s, at) +
∑t
i=1 wt(ai−1, ai)

= wt(P ) + distG(s, a)− distG(s, b)

Thus we get wt∗(P ) = wt(P )− distG(a, b).

In the next Lemma we show an important property
of certain detours which we use for constructing our
subgraph. This Lemma uses the new weight function
and exemplifies its significance.

Lemma 2.2. Let x, v ∈ V be such that x is an ancestor
of v in T . There is a shortest path from s to v in
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G \ x of the form - pathT (s, a)::D::pathT (b, v), where
D is a detour starting from a vertex a ∈ pathT (s, x̄)
and terminating at a vertex b ∈ pathT (x̄, v) for which
wt∗(D) is minimum.

Proof. Let P be some shortest path from s to v in G\x.
Let a be the last vertex of P that is also in pathT (s, x̄),
and let b be the first successor of a in P that is in
pathT (x̄, v). It is easy to see that such two vertices
a, b must exist. By the detour definition it also follows
that P [a, b] is a detour for b, as none of its internal
vertices can be an ancestor of b. Thus we can set D to be
P [a, b]. Since T is the shortest path tree we can replace
the segments P [s, a] and P [b, v] with pathT (s, a) and
pathT (b, v), respectively, without increasing the total
weight. Thus the path Q = pathT (s, a)::D::pathT (b, v)
forms a shortest path from s to v in G \ x. Note
that wt(Q) = distG(s, v) + (wt(D)− distG(a, b)) which
equals distG(s, v) + wt∗(D). For every other path
Q′ of the form pathT (s, a′)::D′::pathT (b′, v), where
a′ ∈ pathT (s, x̄) and b′ ∈ pathT (x̄, v), it holds that
wt(Q′) = distG(s, v) + wt∗(D′). Now since wt(Q) =
wt(P ) and P is a shortest path it follows that D must
be a detour with minimum wt∗ value among all detours
which starts at a vertex in pathT (s, x̄) and terminates
at a vertex in pathT (x̄, v).

We now state a simple lemma that will be used to
obtain a randomized construction for sparse subgraph.

Lemma 2.3. Let C be a collection of at most n2 subsets
of V each of size exactly 4c ln(n). If we pick a subset
S of V of size n/c uniformly at random, then with
probability at least 1− 1/n2, for each set W ∈ C, W ∩S
is non-empty.

Proof. Let t = (4c×ln(n)). Note that there are a total of(
n
n/c

)
possibilities for set S. Now for any subset A ∈ C,

the probability that A ∩ S is empty is(
n−t
n/c

)(
n
n/c

) ≤ (n− t
n

)n/c
=
(

1− 1

n/t

)n/c
=
(

1− 4 ln(n)

n/c

)n/c
which is at most 1/n4. On applying union bound we get
that probability there exists a W ∈ C for which W ∩ S
is non-empty is at most 1/n2.

3 Main Ideas

For any α > 0, let HDα(v) be a detour that originates
from the highest possible ancestor of v in T and termi-
nates at v such that its weight wt∗(HDα(v)) is less than
or equal to α, that is, there is no other detour that ends
at v and starts at a higher ancestor of v whose weight

is bounded by α. We denote the first vertex of HDα(v)
with firstα(v). Consider the following subgraph:

H = T
⋃( ⋃

b∈V
α∈powers(1+ε)

HDα(b)

)

For any x, v ∈ V , the graph H \ x contains a (1 + ε)-
approximation of the shortest path from s to v in
G \ x. This is because if the shortest path takes a
detour D from a to b to avoid x, then H will contain
a detour D′ that starts at a or one of its ancestors,
ends at b and wt∗(D′) ≤ (1 + ε)wt∗(D). Based on this
key observation, we are able to compute an oracle of
size O(n log1+ε(nW )) for reporting (1 + ε)-approximate
distance from the source upon failure of any vertex in
O(log log1+ε(nW )) time. Though the subgraph H can
be seen as a fault tolerant (1+ε)-shortest path subgraph,
its size can be as large as Θ(m). This is because even a
single detour may contain n edges. So storing HDα(v)
for each v and each α may require Ω(m) space in the
worst case. In order to achieve sparseness for H, our
starting point is the sub-structure property of HDα(v)
stated in the following lemma.

Lemma 3.1. Let D = HDα(v) be a detour for v, for
some α > 0. Then for any vertex w ∈ σ(D), the
segment D[·, w] is also a detour.

Proof. Let u be the first vertex on D, that is, u =
firstα(v). We first show that all the vertices of D
must lie in the subtree T (u). Assume this is not the
case, and let y be the last vertex of D that is not in
the subtree T (u). Also let z be the Lowest Common
Ancestor (LCA) of y and u. Consider the path D′ =
pathT (z, y)::D[y, v]. It is easy to see that D′ is a detour
for v. Also the set of non-tree edges of D′ is a subset of
the non-tree edges of D, thus wt∗(D′) ≤ wt∗(D) ≤ α.
But this contradicts the definition ofD, asD′ is a detour
for v starting from an ancestor of u with wt∗ at most α.

From the above discussion it follows that u must be
an ancestor of w. Therefore, it suffices to show now that
none of the internal vertices of D[u,w] are ancestors of
w. Let us suppose there exists a vertex z ∈ D[u,w]
(z 6= u,w) such that z is an ancestor of w. But in such
a case we can replace the segment D[z, w] of detour D
with pathT (z, w), thereby contradicting the fact that
D is a tree path favoring detour. Hence D[u,w] cannot
pass through any ancestor of w, except for the starting
vertex u.

It follows from Lemma 3.1 that for any w ∈
σ(HDα(v)), if H contains a (1 + ε)-approximation of
the detour HDα(v)[·, w], then on including just the suf-
fix HDα(v)[w, v], we can see that H will contain a
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(1 + ε)-approximation of HDα(v). A simple way to in-
clude a (1+ε)-approximation of the detour HDα(v)[·, w]
would be to add to H the detours HDβ(w), for each
β ∈ powers(1 + ε). However, to get a sparse sub-
graph instead of including each HDβ(w), we can use
the same trick recursively and include a further (1 + ε)-
approximation of HDβ(w). This motivates for a hierar-
chical computation of H in some k(≥ 2) rounds where
in a round we only add a short suffix of HDα(v) to the
subgraph H, and we move its prefix (which is a detour
in itself) to the next round to be processed recursively.
This constitutes the main idea for constructing a sparse
subgraph and a compact routing scheme for approxi-
mate shortest paths from s under failure of any vertex.

4 Sparse Subgraph

For the sake of better exposition of the algorithm,
we first present the construction of a subgraph with
Õ(n1.5 log1+ε(nW )) edges using a hierarchy of two
levels. In the next subsection, we extend it to a k-
level hierarchical construction that achieves a bound of
Õ(n log1+ε(nW )) on the size of the subgraph.

4.1 Sparse subgraph with Õ(n1.5 log1+ε(nW ))
edges In this subsection, we give a construction of a
sparse subgraph H with Õ(n1.5 log1+ε(nW )) edges that
with high probability2 preserves the approximate short-
est paths from s after a failure of any vertex. The
underlying idea used in the construction of this sub-
graph is the following. We pick a small set S of ver-
tices uniformly and at random. For each v ∈ S and
for each α ∈ powers(1 + ε), we include HDα(v) in
the subgraph H. We cannot afford to include HDα(u)
for every u ∈ V \S so we include only a small suffix
of HDα(u). Due to the random sampling used to con-
struct S, it turns out that if HDα(u) is long, then its
small suffix will have a vertex, say w, from S. The de-
tour to w concatenated with the small suffix of HDα(u)
will preserve HDα(u) approximately. In Algorithm 4.1
we present the pseudocode for computing a subgraph
H with Õ(n1.5 log1+ε(nW )) edges that is based on this
idea.

We first show that with high probability any long
detour (>

√
n) has in its

√
n length suffix at least one

vertex from set S.

Lemma 4.1. With high probability the following holds -
For each α ∈ powers(1+ε) and each v ∈ V , if HDα(v)
contains more than

√
n non-tree edges, then the last

√
n

vertices of σ(HDα(v)) contain a vertex from set S.

2Throughout the paper we use the term ‘with high probability

(w.h.p.)’ to denote that the probability of the respective event is
at least 1− 1/n2.

Algorithm 4.1: Computation of subgraph with
Õ(n1.5 log1+ε(nW )) edges.

1 H ← T ;
2 foreach v ∈ V and α ∈ powers(1 + ε) do
3 Add last

√
n non-tree edges of HDα(v) to H;

4 S ← A uniformly random set of 4
√
n loge n

vertices;
5 foreach v ∈ S and α ∈ powers(1 + ε) do
6 Add all non-tree edges of HDα(v) to H;

Proof. Consider the collection C defined below.

C = {last
√
n vertices of σ(HDα(v)) | v ∈ V,

α ∈ powers(1 + ε), |σ(HDα(v))| >
√
n}

The collection C will contain at most n2 sets (each of
size
√
n), since for any vertex v we can have at most n

detours corresponding to n ancestors of v in T . So, the
result follows by simply applying Lemma 2.3.

We will now show that upon a failure of any vertex
x, the shortest paths from s in graph G\x are stretched
by a factor of at most (1 + ε)2 in H\x.

Lemma 4.2. For every two vertices x, v ∈ V , w.h.p,

distH\x(s, v) ≤ (1 + ε)2distG\x(s, v).

Proof. Let P be the shortest path from s to v in G\x. If
x is not an ancestor of v in T then P will be just the tree
path from s to v in T . Thus let us consider the case when
x is an ancestor of v. By Lemma 2.2, the path P can
be represented as pathT (s, a)::D::pathT (b, v), where D
is a detour avoiding x. We take α to be the smallest
power of (1 + ε) greater than wt∗(D). Let us consider
the following two cases separately.

Case 1 : HDα(b) contains at most
√
n non-tree edges.

In this case HDα(b) will lie in subgraph H. Since
α ≥ wt∗(D), firstα(b) must be either equal to a or
an ancestor of a. So instead of detour D, we can
just follow the detour HDα(b). Thus the concatenation
Q = pathT (s, firstα(b))::HDα(b)::pathT (b, v) forms a
path from s to v in H \ x. Also, wt∗(Q) is at most
(1 + ε)wt∗(P ), as under the weight function wt∗, tree
edges get zero weight.

Case 2 : HDα(b) contains more than
√
n non-tree

edges.

In this case Lemma 4.1 implies that w.h.p. the last√
n vertices of σ(HDα(b)) must contain a vertex, say
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w, from set S. So the segment HDα(b)[w, b] will lie
in H because the last

√
n non-tree edges of HDα(b)

are included in H. Also, by Lemma 3.1, the prefix
HDα(b)[·, w] is a detour for vertex w. We further
consider the following subcases. (See Figure 1).

(i) If x is not an ancestor of w, then simply take
Q as pathT (s, w)::HDα(b)[w, b]::pathT (b, v). Since
wt∗(HDα(b)[w, b]) ≤ wt∗(HDα(b)) ≤ (1 + ε)wt∗(D),
we get that wt∗(Q) ≤ (1 + ε)× wt∗(P ).

(ii) We now consider the subcase when x is an ancestor
of w in T . Notice that prefix HDα(b)[·, w] is not
included in H, but we can take a further (1 + ε)-
approximation of it. Let β be the smallest power
of (1 + ε) greater than wt∗(HDα(b)[·, w]). Since
w ∈ S, HDβ(w) will lie in subgraph H. So we take
Q as pathT (s, firstβ(w))::HDβ(w)::HDα(b)[w, b]
concatenated with pathT (b, v). Notice that
HDβ(w) cannot contain x, since firstβ(w) is ei-
ther same as or an ancestor of the first vertex of
HDα(b)[·, w]. Finally wt∗(HDβ(w)::HDα(b)[w, b]) is
bounded by (1+ε)wt∗(HDα(b)) ≤ (1+ε)2×wt∗(D).
Hence, wt∗(Q) is at most (1 + ε)2 × wt∗(P ).

In all the above cases/subcases, we were able to show
that w.h.p. there exists a path Q such that wt∗(Q) ≤
(1 + ε)2 ×wt∗(P ). Now as s is ancestor of v, on adding
distG(s, v) on both sides and applying Lemma 2.1, we
get that wt(Q) ≤ (1 + ε)2 × wt(P ).

(i)                                                    (ii)

Figure 1: Approximate shortest path from s to v in H\x
in the subcases: (i) x is not an ancestor of w in T , and
(ii) x is an ancestor of w.

We conclude with the following theorem.

Theorem 4.1. Let G be a directed weighted graph on n
vertices with maximum edge weight W and s be the des-
ignated source vertex. Then we can compute in polyno-
mial time a subgraph H with O

(
n1.5 log(n) log1+ε(nW )

)

edges such that with high probability following relation
holds:

For any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)2distG\x(s, v).

4.2 Sparse subgraph with Õ(n log1+ε(nW )) edges

In the Õ(n1.5 log1+ε(nW )) size subgraph described in
the previous subsection, we constructed a 2-level hier-
archy of vertices, namely, S and V . The detour to ver-
tices in set S and the short suffixes of detours of vertices
in V could preserve every detour D up to a stretch of
(1 + ε)2. In order to further improve the size of the
subgraph, we form a finer hierarchy of subsets of ver-
tices: S1, . . . , Sk for some k > 2. As we go up in this
hierarchy, the size of these sets decreases and thus we
can afford to store longer suffixes of detours from their
vertices. In particular, for a given i ∈ [1, k], Si will have
at most n1−(i−1)/k vertices and from each vertex v ∈ Si,
we store suffixes of Õ(ni/k log1+ε(nW )) length. Similar
to the 2-level case, a combination of k types of these de-
tour suffixes will preserve every detour D up to a factor
(1 + ε)k. We now formalize this key idea by defining a
(1 + ε, t)-preserver of a detour as follows.

Definition 4.1. Let D be a detour from u to v, ε ∈
(0, 1) be some real number, and t be some positive
integer. Also let α be the smallest power of (1+ε) greater
than or equal to wt∗(D). Then a (1 + ε, t)-preserver of
D is a path in G obtained as follows. (See Figure 2).

1. If t = 1, then a (1 + ε, 1)-preserver of D is just
HDα(v).

2. If t > 1, then it is obtained by concatenating (i)
a (1 + ε, t − 1)-preserver of prefix HDα(v)[·, w],
and (ii) the suffix HDα(v)[w, v], for some vertex
w ∈ σ(HDα(v)).

Remark 4.1. For Definition 4.1 to be well defined we
require that HDα(v)[·, w] is a detour for vertex w. This
is indeed true since w ∈ σ(HDα(v)), and the proof
follows from Lemma 3.1.

The following lemma (with proof in Appendix)
shows the significance of a (1+ε, t)-preserver. The proof
of the lemma is similar to proof of Lemma 4.2.

Lemma 4.3. Let D be a detour from a to b, and H
be a subgraph of G containing tree T and a (1 + ε, t)-
preserver for D. Then for any internal vertex x lying
on pathT (a, b), the graph H \x contains a path, say Q,
from s to b whose weight (i.e. wt(Q)) is at most (1+ε)t

times wt(pathT (s, u)::D).
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Figure 2: The path highlighted in yellow color depicts
a (1 + ε, 3)-preserver of detour D. Here α, β, γ are
respectively smallest powers of (1 + ε) greater than or
equal to weight of (i) D, (ii) HDα(b)[·, w], and (iii)
HDβ(w)[·, u].

We now describe the algorithm for computing the
sparse subgraph H. The algorithm consists of k rounds
that operate on k sets, namely, S1, S2, . . . , Sk as follows.
Let S1 = V be the initial set. In any round i < k, we
first compute a uniformly random subset of V of size
O(n/ni/k), and move these vertices to Si+1. Next for
each each v ∈ Si and each α ∈ powers(1 + ε),

1. If σ(HDα(v)) does not contain any vertex from
Si+1, then the complete detour HDα(v) is added
to H.

2. Otherwise, if z is the last vertex of σ(HDα(v)) that
lies in Si+1, then only the suffix HDα(w)[z, w] is
added to H.

Finally in round k, for each each v ∈ Sk and each
α ∈ powers(1 + ε), we add HDα(v) to H. Also the
shortest path tree T is added to the graph H.

Algorithm 4.2 presents the pseudocode for this
construction. In the algorithm, we use the notation
suffix(σ,A) to denote the maximal suffix of σ that does
not contain an element of A, where σ is any sequence
of vertices and A is a subset of V . Notice that, instead
of step 1 and step 2 stated above, we can equivalently
just say that for each w ∈ suffix

(
σ(HDα(v)), Si+1

)
,

the incoming edge of w in HDα(v) is added to H.
The following lemma (with proof in Appendix)

shows that the subgraphH contains a (1+ε, k)-preserver
for each possible detour D in G.

Lemma 4.4. The graph H computed by Algorithm 4.2
contains a (1 + ε, k)-preserver for each possible detour
D in G.

Algorithm 4.2: Computation of subgraph with
Õ(n log1+ε(nW )) edges.

1 H ← T ;
2 S1 ← V (G);
3 for i = 1 to k-1 do
4 Si+1 ← A uniformly random subset of V of

size O(n/ni/k);
5 foreach v ∈ Si and α ∈ powers(1 + ε) do
6 foreach w ∈ suffix

(
σ(HDα(v)), Si+1

)
do

7 Add incoming edge of w in HDα(v)
to H;

8 foreach v ∈ Sk and α ∈ powers(1 + ε) do
9 Add HDα(v) to H;

Lemma 4.3 along with Lemma 4.4 implies that
upon failure of any vertex x, the shortest paths from
s in graph G\{x} are stretched by a factor of at most
(1 + ε)k in H\{x}. We now do the analysis of the size
of subgraph H.

Lemma 4.5. With high probability, |H| = O(k ×
n1+1/k log n× log1+ε(nW )).

Proof. It is easy to see that for any i ∈ [1, k], |Si| =

O(n
1+1/k

ni/k
). Consider the collection defined below.

C = {σ(HDα(v)) | v ∈ Si, α ∈ powers(1 + ε)}

The collection C will contain at most n2 sets as for any
vertex v we can have at most n detours corresponding to
n ancestors of v in T . From Lemma 2.3 it follows that for
each σ(HDα(v)) of size greater than ni/k log n, w.h.p.
the last ni/k log n vertices of σ(HDα(v)) will contain a
vertex from Si+1. In other words, w.h.p. for each v ∈ Si
and each α ∈ powers(1+ε), suffix

(
σ(HDα(v)), Si+1

)
is of size at most ni/k log n. So for any vertex v in Si
we add at most ni/k log n× log1+ε(nW ) edges in Step 7.

Since |Si| = O(n
1+1/k

ni/k
), and i ranges from 1 to k, w.h.p.

H contains O(k × n1+1/k log n× log1+ε(nW )) edges.

We thus get the following lemma.

Lemma 4.6. Let G be a directed weighted graph on n
vertices with maximum edge weight W and s be the
designated source vertex. Then we can compute in
polynomial time a subgraph H satisfying the following:
for any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)kdistG\x(s, v).

The size of H is O
(
kn1+1/k log(n) log1+ε(nW )

)
with

high probability.
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On substituting εnew = εold/(2k), and k = log2(n) in
Lemma 4.6 we get the following theorem.

Theorem 4.2. Let G be a directed weighted graph on n
vertices with maximum edge weight W and s be the des-
ignated source vertex. Then we can compute in polyno-
mial time a subgraph H satisfying the following relation:
for any x, v ∈ V , distH\x(s, v) ≤ (1 + ε)distG\x(s, v).

The size of H is O
(
n log3(n) log1+ε(nW )

)
with high

probability.

5 Precursor to a Compact Routing

In the last section, we showed a construction of a sparse
subgraph H that contained a (1+ε, k)-preserver of each
detour in G. In this section we slightly modify the
construction of subgraph H which will help us later in
obtaining an efficient routing scheme.

Recall that a (1+ε, k)-preserver in H is a concatena-
tion of at most k suffixes of detours, that were added to
H in the k distinct rounds of Algorithm 4.2. Our rout-
ing scheme upon failure of any node x will route packets
along these suffixes. In order to efficiently route along
a suffix of a (1 + ε, k) preserver, we require that each
vertex on the suffix knows its successor on the suffix.
Now if the frequency of a vertex w in all the suffixes in-
cluded in H by Algorithm 4.2 is small, then the routing
table required at w will be small. Thus as a precursor
to routing we require that the frequency of any vertex
in the suffixes added to H is bounded. More formally,
if Q1, ..., Qt are the suffixes added in a round i of Al-
gorithm 4.2, then we need that the frequency of each
vertex in {σ(Q1), .., σ(Qt)} is small.

Though Algorithm 4.2 ensures that the average
frequency of a vertex is Õ(log1+ε(nW )), it fails to
provide any bound on the maximum frequency. Recall
that in any round, say i, of Algorithm 4.2, we compute
the next subset Si+1 using random sampling. Instead of
building this hierarchy of subsets randomly, we present
in this section a deterministic algorithm that employs
more insight into the structure of the suffixes.

We now explain our algorithm for deterministically
computing the set Si+1 from the set Si. The input to
the algorithm is the collection C = {σ(HDα(v)) | v ∈
Si, α ∈ powers(1 + ε)} and a parameter d to be fixed
later on. Given a sequence σ, let first-half(σ) and
second-half(σ) respectively denote the subsequences
of σ obtained by splitting it at midpoint. Our first
step is to compute collections C1 and C2 by splitting
each σ ∈ C at midpoint, and adding first-half(σ)
to C1 and second-half(σ) to C2. Next we repeat the
following two steps as long as there exists a vertex whose
frequency in C2 is greater than d log n: (i) Pick such a
vertex (say w) and add it to set S; (ii) Remove from C2

each sequence σ in which w is present. It easy to see that
set S will be of size at most |C2|/(d log n) = |C|/(d log n).

Algorithm 5.1: Det-Construction(C, d)

1 C1 ← {first-half(σ) | σ ∈ C};
2 C2 ← {second-half(σ) | σ ∈ C};
3 S ← ∅;
4 while ∃ w ∈ V s.t. freq(w, C2) > d log n do
5 S ← S ∪ {w};
6 Remove all those σ from C2 that contains

vertex w;

7 Cnew ← ∅;
8 foreach σ ∈ C do
9 if second-half(σ) ∩ S 6= ∅ then add

suffix(σ, S) to Cnew;
10 if second-half(σ) ∩ S = ∅ then add

first-half(σ) to Cnew;

11 Return
(
S
⋃

Det-Construction(Cnew, d)
)
;

—  Collection of 
sequences in which 
frequency of every 
vertex is bounded

—  Collection of 
sequences left to be 
processed

a sequence in 

Figure 3: Divide and conquer approach: vertices in red
color represent the set S.

Consider any sequence σ ∈ C. Let us first consider
the case when second-half(σ) ∩ S is non empty.
(See Figure 3). If suffix(σ, S) has no vertex of
large frequency, then we are done with this sequence.
However, it is quite possible that suffix(σ, S) may still
have vertices of large frequency. But, in this case,
we are left to take care of only suffix(σ, S), whose
length is at most |σ|/2, for the computation of the
set Si+1. We now show how to take care of those
sequences whose second-half does not contain any
vertex from S. Let C′ denote the set of all those σ
in C for which second-half(σ) ∩ S is empty. Notice
that the frequency of each vertex in the collection
{second-half(σ) | σ ∈ C′} is bounded by d log n. So
for any σ ∈ C′, we can safely discard second-half(σ)
and consider only first-half(σ) for the computation
of Si+1. Thus, in this case also the length of sequence
has been reduced to at most half.
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The above discussion motivates us to design a recur-
sive algorithm that performs at most log n recursions to
obtain the desired set Si+1. In Algorithm 5.1 we present
the pseudocode of our construction. Since in each re-
cursive call of Det-Construction, the set S included
into Si+1 is of size at most |C|/(d log n), the size of the
set Si+1 is at most |C|/d. Also in each recursive call the
frequency of vertices increases by at most d log n, thus
the set Si+1 will satisfy the condition that frequency of
each vertex in {suffix(σ, Si+1) | σ ∈ C} is bounded by
d log2 n.

Recall that in Algorithm 4.2, |Si| ≤ n/n(i−1)/k,
and thus |C| ≤ n/n(i−1)/k log1+ε(nW ). By our
construction in Algorithm 5.1, we will have that |Si+1|
is at most |C|/d, which we required to be bounded by
n/ni/k. This shows that d must be n1/k log1+ε(nW ).
Finally notice that the frequency of each vertex v in the
set of all suffixes added during round i will be bounded
by d log2 n = n1/k log1+ε(nW ) log2 n. We thus have the
following lemma.

Lemma 5.1. Let G be a directed graph on n vertices.
There exists a construction for sets S1, S2, . . . , Sk in
Algorithm 4.2 satisfying the following conditions.

1. For any index i, |Si+1| ≤ n/ni/k.

2. For any index i, frequency of each vertex
in {suffix(σ(HDα(v)), Si+1) | v ∈ Si, α ∈
powers(1 + ε)} is at most n1/k log2 n log1+ε(nW ).

5.1 A sparse subgraph with bounded in-degree
We here show that the alternative construction of sets
S1, . . . , Sk also gives a bound on the in-degree of each
vertex in the sparse subgraph H. Notice that in Algo-
rithm 4.2, an incoming edge is added to a vertex w only
if w ∈ suffix

(
σ(HDα(v)), Si+1

)
, for some v in Si and

α ∈ powers(1 + ε). So the number of incoming edges
added to a vertex in round i is exactly equal to frequency
of that vertex in {suffix(σ(HDα(v)), Si+1) | v ∈
Si, α ∈ powers(1 + ε)}. Therefore, Lemma 5.1 gives
a bound of kn1/k log2 n log1+ε(nW ) on the in-degree
of each vertex in the sparse subgraph preserving dis-
tances (1 + ε)k approximately. On substituting εnew =
εold/(2k), and k = log2 n we get the following theorem.

Theorem 5.1. Let G be a directed weighted graph on
n vertices with maximum edge weight W and s be
the designated source vertex. Then in polynomial time
we can compute a sparse subgraph H satisfying the
following.

1. For any x, v ∈ V , distH\x(s, v) is less than or equal
to (1 + ε)distG\x(s, v).

2. The in-degree of each vertex in graph H is at most
O
(

log4(n) log1+ε(nW )
)
.

6 An Oracle and a Labeling Scheme

We first describe a fault tolerant oracle for reporting
approximate distances from s. Let v be the query vertex
and x be the failed vertex. If x is not an ancestor of
v, then the shortest path is the tree path pathT (s, v)
which remains intact inG\x. So let us consider the more
interesting case in which x is an ancestor of v. From
Lemma 2.2 it follows that one of the shortest paths to v
in G \ x is of the form - pathT (s, a)::D::pathT (b, v),
where D is a detour avoiding x, and its weight is
distG(s, v) + wt∗(D).

Notice that if α0 is the smallest power of (1 + ε)
for which there exists a vertex b0 ∈ pathT (x̄, v) with
HDα0

(b0) starting from an ancestor of x in T , then
the value distG(s, v) + α0 would be a (1 + ε) approx-
imation of distG\x(s, v). Thus in order to compute an
approximation of distG\x(s, v) we need to compute this
α0 efficiently. We now describe our data structure that
accomplishes this task.

For each α ∈ powers(1 + ε), we create a copy of T
and denote it by Tα. For each vertex y ∈ Tα, we set the
weight of edge (parentTα(y), y) as depthT (firstα(y)).
Thus the edge weights in any tree Tα are integers in the
range [0, n− 1]. Notice that for any α ∈ powers(1+ε),
there will exist a detour starting from an ancestor of x
and terminating at a vertex of pathT (x̄, v) with wt∗

at most α if and only if the weight of the minimum
weight edge on pathTα(x̄, v) is smaller than depthT (x).
The smallest such α can be easily computed using
the Bottleneck Edge Query (BEQ) data structure of
Demaine et al. [11] for each of the trees Tα.

Theorem 6.1. (Demaine et al. [11]) Given a tree
on n vertices with edge weights from the range [0, n] it is
possible to create in O(n) time a data structure of O(n)
size so that given any u, v ∈ V , the edge of smallest
weight on the unique path from u to v in the tree can be
found in O(1) time.

In Algorithm 6.1 we present the pseudocode for
determining approximate s− v distance in G \ x. Since
the BEQ query on a single tree can be answered in
O(1) time, the time for querying all the trees will be
O(log1+ε(nW )). However, instead of linearly checking
all the powers of (1 + ε) in the increasing order, if we
perform a binary search on powers(1 + ε), then query
time is improved to O(log2 log1+ε(nW )).

Finally notice that the space complexity is
O(n log1+ε(nW )). The following theorem stems from
the above discussion.
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Algorithm 6.1: Determining (1+ε) approximate
distance of v from s in graph G\{x}.

1 if (x is not an ancestor of v) then
2 Return distG(s, v);

3 i← depthT (x);
4 for α ∈ powers(1 + ε) in increasing order do
5 j ← BEQ(x, v, Tα);
6 if j < i then Return (distG(s, v) + α);

7 Return “Unreachable”;

Theorem 6.2. Given a directed graph G on n vertices
with maximum edge weight W and a source vertex
s ∈ V , it is possible to compute a data structure
of O(n log1+ε(nW )) size that for any failing vertex
x and any destination vertex v, reports a (1 + ε)
approximation of the distance of v from s in G \ {x}
in O(log2 log1+ε(nW )) time.

6.1 Compact labeling scheme for Oracle We
now present the labeling scheme for oracle. Let v be
a query vertex, and x be the failed vertex. Recall
Algorithm 6.1. Our first step is to check whether x
is an ancestor of v in T . One simple method to achieve
this is to perform the pre-order and the post-order
traversal of T , and store the pre-order as well as the
post-order numbering of each vertex in its label. Now
x will be ancestor of v in T if and only if the pre-order
numbering of x is smaller than that of v, and the post
order numbering of x is greater than that of v. Next we
assign i as depthT (x), extracting out this is also easy
since depth information can also be made part of the
label.

Thus the only thing that is left is to obtain a
labeling scheme for BEQ problem. Demaine et al.
[11] showed that the BEQ problem on any tree Tα is
reducible to LCA problem on a cartesian tree, say Tα,
which is related to tree Tα as follows.

1. The vertices of Tα constitute the leaves of Tα.

2. The edges of Tα constitute the internal nodes of Tα.

3. For any two vertices u, v ∈ Tα, the least weight
edge on pathTα(u, v) is the LCA of the leaf nodes
corresponding to u and v in Tα.

Hence the bottleneck edge query for any two ver-
tices u and v in Tα can be answered by performing an
LCA query for leaves u and v in Tα. However, notice
that given the labels of u and v in tree Tα, we are not
interested in computing the label of the edge stored at

the LCA of u and v, rather we are interested in knowing
the weight of the edge stored at the LCA.

Alstrup et al. [1] established a labeling scheme for
LCA that given the labels of any two vertices u and
v in a tree, returns a predefined label associated with
the LCA of u and v in the tree. If each predefined
label consist of M -bits, then the labels in this scheme
for LCA consists of O(M log n0) bits, where n0 is the
number of nodes in the tree. In our case, the number
of nodes in Tα is O(n) only. Also the predefined labels
of internal nodes in Tα stores just the depth value, thus
M is O(log n).

Therefore, label of any vertex v stores: (i) the pre-
order and the post-order numbering of v, (ii) the depth
of v in T , and (iii) the label of v corresponding to LCA
queries in each tree Tα, where α ∈ powers(1+ε). Hence
the label of each vertex consists ofO(log2 n log1+ε(nW ))
bits. We thus have the following theorem.

Theorem 6.3. Given a directed graph G on n ver-
tices with maximum edge weight W and a source ver-
tex s ∈ V it is possible to compute vertex labels of
O(log2 n log1+ε(nW )) bits such that for any failing ver-
tex x and any destination vertex v, the (1 + ε) approxi-
mate distance of v from s in G \ {x} can be determined
by processing the labels associated with v and x only.

Notice that in the above construction, the prede-
fined label of an internal node of Tα, which corresponds
to an edge in Tα, say (parentTα(y), y), just stores the
value depthT (firstα(y)). However, we can also store
in the predefined label other relevant information asso-
ciated with either the detour HDα(y), or a (1 + ε, k)
preserver of HDα(y). Then, the result of Alstrup et al.
[1] implies the following lemma, which would be used in
the construction of the routing scheme.

Lemma 6.1. For each y in V and α ∈ powers(1 + ε),
let Φα(y) be the M -bit information associated with a
(1 + ε, k) preserver of HDα(y). Then there exists a
labeling scheme with labels of O(M log n log1+ε(nW ))
bits such that given the label of any two vertices x, v ∈
V , where x is an ancestor of v in T , the following
information can be retrieved.

(i) Smallest α ∈ powers(1 + ε) such that there
exists a vertex b ∈ pathT (x̄, v) whose HDα(b) starts
from an ancestor of x,

(ii) Vertex b stated in (i), and the M-bit informa-
tion, i.e. Φα(b), associated with the (1 + ε, k) preserver
of HDα(b).

7 A Compact Routing Scheme

Let v be a query vertex and x be a failed vertex. Let
us consider the case in which x is an ancestor of v in T .
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Let D be the detour corresponding to the shortest s-v
path in G \x, and let α be the smallest power of (1 + ε)
greater than or equal to wt∗(D). So there must exist a
vertex b ∈ pathT (x̄, v) such that HDα(b) starts from an
ancestor of x. Such a vertex can be easily extracted out
using the labels of v and x described in Section 6. Since
we can not afford to store the information of HDα(t)
explicitly for each t ∈ V , we take help of a (1 + ε, k)-
preserver of HDα(b) to route the packets to destination
v.

(i)                                                              (ii)

Figure 4: (i) Depiction of segments Q1, Q2, Q3 and
vertices b1, b2, b3, b4 in a (1 + ε, 3)-preserver of HDα(b),
(ii) A finer description of Qi showing the first non-tree
edge (ci, di).

Recall that a (1 + ε, k)-preserver of a HDα(b)
can be seen as a concatenation of at most `(≤ k)
paths, say Q`, Q`−1, Q2, Q1. (See Figure 4 (i)). If
b`+1, b`, . . . , b2, b1 are the endpoints of these paths, then

(i) For each i < `, Qi is a suffix of detour to bi that
is added in the ith round of Algorithm 4.2,

(ii) Q` is a detour to b` added in the `th round.
Also notice that for each i ∈ [1, `], vertex bi belongs to
set Si. Now for i ∈ [1, `], let us denote by (ci, di) the
first non-tree edge in Qi. (See Figure 4 (ii)). So, di is
also the first vertex in σ(Qi).

We first extend the labeling scheme described in
Section 6 to obtain a labeling scheme for routing.

7.1 Labeling scheme for routing The label of each
node consists of two subcomponents L0 and L1 as
described below.

1. In [21], Thorup and Zwick gave a construction of
labeling scheme for rooted trees with O(log n) bit
labels such that given the labels of any two nodes
w and y (with w being ancestor of y), one can
compute the port number of the child of w on

pathT (w, y). The first component of the labels,
i.e. L0, would comprise of these labels. This will
facilitate easy routing of packets along the tree
paths. Also the component L0 would store the
pre-order number, the post-order number, and the
depth of vertex in T , so that ancestor descendant
relationships can be easily verified. Thus the label
L0 consists of O(log n) bits.

2. The second component of the labels, that is L1,
will comprise of the labels described in Lemma
6.1, with Φα(y) of a vertex y storing the at most
k + 1 vertices and k non-tree edges associated
with a (1 + ε, k) preserver of HDα(y), described
above. (See Figure 4). So given the labels of v
and x, we can extract out the value α equal to
the smallest power of (1 + ε) for which there exists
a vertex b ∈ pathT (x̄, v) with HDα(b) starting
from an ancestor of x in T . Also we can compute
the L0 label of vertices b`+1, b`, . . . , b1, and edges
(c`, d`), . . . , (c1, d1) associated with the (1 + ε, k)-
preserver of HDα(b). Finally, notice that Φα(y)
consists of O(k log n) bits of information, thus the
label L1 consists of O(k log2(n) log1+ε(nW )) bits.

7.2 Description of routing table We now give the
construction of the routing table of a vertex w ∈ V . The
routing table of w stores: (i) the label L0(w), and (ii)
k segments, where ith segment corresponds to ith round
of Algorithm 4.2. Below we describe these k segments.

Let us fix an i ∈ [1, k]. Consider the detour HDα(u)
for some vertex u ∈ Si and an α ∈ powers(1 + ε).
Let u′ ∈ Si+1 be the last vertex in σ(HDα(u)) ∩
Si+1, if it exists, else let u′ be firstα(u). Then
the suffix HDα(u)[u′, u] is added to H in the ith

round of Algorithm 4.2. Now let us suppose w ∈
σ
(
HDα(u)[u′, u]

)
and let (y, z) be the first non-tree edge

appearing after w on HDα(u). So z is the successor of
w in the sequence σ(HDα(u)). Through our routing
table we need to ensure that if a packet reaches w then
it can easily find the route to vertex z. This route
will be just the concatenation pathT (w, y)::(y, z). So
corresponding to the triplet (i, u′, u) in the routing table
of w we need to store the label of the edge (y, z).

Finally notice that in Lemma 5.1 we showed that
the frequency of each vertex in the set of all suffixes
added in a round is O(n1/k log2(n) log1+ε(nW )). To
store a non-tree edge (y, z), it suffices to store just
the labels L0(y) and L0(z) that are of O(log n) bits.
Thus the size any of the k segments of the routing
table of vertex w will be O(n1/k log3(n) log1+ε(nW ))
bits, and the size of the routing table will be
O(kn1/k log3(n) log1+ε(nW )) bits.
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7.3 Routing algorithm We now describe the rout-
ing algorithm. Let j ∈ [1, `] be the maxi-
mal index such that x is an ancestor of vertices
b1, . . . , bj . It follows from the proofs of Lemma 4.3
and Lemma 4.4, that the concatenation P =
〈pathT (s, bj+1)::(Qj , . . . , Q1)::pathT (b, v)〉 is a path
from s to v in H \ x whose length is at most (1 + ε)k

times the length of the shortest s-v path in G\x. In our
routing scheme, the packets from s to v will traverse
this path P .

Before starting the routing process we use the labels
of x and v to compute the vertices b1, . . . , bj and the
edges (c1, d1), . . . , (cj , dj), also this information is added
to the header of the packet. Now path P can be seen as
a sequence of segments of tree paths joined through non-
tree edges. So, whenever we reach any vertex w ∈ σ(P ),
our first step is to calculate the next non-tree edge,
say (y, z), appearing after w in P . Once this edge is
computed, we traverse the tree path from w to y using
L0 labels. Once we reach y, the packet traverses the
edge (y, z). On reaching any vertex w ∈ σ(P ), the next
non-tree edge, say (y, z), on the path P can be computed
as follows.

1. If w is an internal vertex of some Qi, i ∈ [1, j], then
we can just use the routing table stored at w to find
the edge (y, z).

2. If w = bi for some 1 < i ≤ j, the next non-tree edge
will be (ci−1, di−1) lying in segment Qi−1. This
information can be retrieved from the header of the
packet itself.

Till now we described that if we are at a vertex
w in σ(P ) then how to navigate to the next vertex in
σ(P ). Notice that (cj , dj) is the first non tree edge
in P . So to reach the first vertex dj in σ(P ), path
pathT (s, cj)::(cj , dj) can be traversed using L0 labels.
Finally when we reach the last vertex in σ(P ), that
is b1, then again we use L0 labels to traverse path
pathT (b1, v) to reach vertex v. The pseudocode of this
routing procedure is described in Algorithm 7.1.

Notice that the size of each label is
O(k log2(n) log1+ε(nW )) bits, and the size of each

routing table is O(kn1/k log3(n) log1+ε(nW )) bits.
Also the size of header attached to the packets is
O(k log n) bits and the stretch achieved is (1 + ε)k. On
substituting εnew = εold/(2k) and k = log2(n) we get
the following theorem.

Theorem 7.1. For a directed network, there exists a
fault tolerant scheme for routing packets from a fixed
source vertex s with the following properties.

Algorithm 7.1: Route(w, v, j, 〈b`, .., b1, c`, .., c1, d`, ..,
d1〉, nextEdge)

1 if (w = v) then Return “Packet received”;
2 if (j = 0 or w = b1) then
3 wnew ← child of w on pathT (w, v);
4 Route(wnew, v, 0, <>,null);

5 if (nextEdge = null) then
6 if (w = bj) then
7 nextEdge ← (cj−1, dj−1);
8 j ← j − 1;

9 else
10 nextEdge ←

Routing-Table-Look-Up(w, j, bj+1, bj);

11 (y, z)← nextEdge;
12 if (w 6= y) then
13 wnew ← child of w on pathT (w, y);
14 else
15 wnew = z;
16 nextEdge = null;

17 Route(wnew, v, j, 〈b`, .., b1, c`, .., c1, d`, .., d1〉,
nextEdge);

1. The label of each vertex consists of
O(log4(n) log1+ε(nW )) bits and the routing

table consists of O(log5(n) log1+ε(nW )) bits.

2. While routing, each packet has to have extra
O(log2 n) bits as a header.

3. To route packets from s to a destination v under
failure of a vertex x, s should know labels (identity)
of both v and x.

4. The route taken by packets have a stretch of at most
(1 + ε) times that of the shortest path possible in
G \ x.

8 Lower Bounds

Let ε,W , n be such that ε lies in interval (0, 1), and
W , n > 1. We first show the construction of a graph G
on O(n) vertices with edge weights in range [1, 2W ] such
that its (1 + ε)-distance preserving subgraph requires at
least Ω

(
n ·min{n, log1+ε W }

)
edges.

8.1 A lower bound on the size of subgraph Let
L, ` be integers to be fixed later on. We construct a
graph G on n+L− ` vertices as follows. The vertex set
of G is {u`+1, u`+2, . . . , uL, v1, . . . , vn}, and the edge set
of G is the union of the following two sets (see Figure 5).

1. E1 = {(uL, uL−1), . . . , (ui, ui−1), . . . , (u`+2, u`+1)},
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2. E2 = {(ui, vj) | i ∈ [`+ 1, L], j ∈ [1, n]}.

Figure 5: The path highlighted in yellow color repre-
sents path Pi,1.

We set s := uL as the designated source vertex.
We now define our weight over the edges of graph
G. For each e ∈ E1, we set wt(e) = 1. For each
e ∈ E2, if ui is the originating vertex of e, then we
set wt(e) = i + (1 + 2ε)i. It is easy to see that the set
E1 ∪ {(u`+1, vj) | j ∈ [1, n]} constitute the edges of the
unique shortest path tree from s.

Now for any i ∈ [` + 1, L] and j ∈ [1, n], let Pi,j
denote the path pathT (s, ui)::(ui, vj) (see Figure 5).
Then for any j and any i > log1+2ε(L),

wt(Pi+1,j)

wt(Pi,j)
=
L+ (1 + 2ε)i+1

L+ (1 + 2ε)i
> (1 + ε)

We set L := min{n, blog1+2ε W c} and ` :=
blog1+2ε(L)c. Thus G contains at most 2n vertices and
all edge weights are in the range [1, 2W ].

Since i is always greater than ` = blog1+2ε(L)c, it
follows that if vertex ui−1 fails then the only (1 + ε)-
approximate route to vertex vj (j ∈ [1, n]) is path Pi,j .
Hence each vj must keep all its incoming edges in the
subgraph preserving approximate distances. There are
L−` = Ω(L) = Ω

(
min{n, log1+ε W }

)
edges for each vj .

Thus, we are able to show that there exists a graph on
O(n) vertices with edge weights in range [1, 2W ] such
that its (1 + ε)-distance preserving subgraph requires at
least Ω

(
n · min{n, log1+ε W }

)
edges. So we have the

following theorem.

Theorem 8.1. For any positive integers n,W and any
ε > 0, there exists an n-vertex directed graph with a
source vertex s and edge weights in range [1,W ], whose
1-fault tolerant subgraph preserving distances upto (1+ε)
factor from s must have Ω

(
n ·min{n, log1+ε W }

)
edges.

8.2 A lower bound on the size of oracle We now
modify the construction of G (used in Subsection 8.1) to
obtain a lower bound on the size of (1 + ε)-approximate
distance reporting oracle. Let Z1, . . . , Zn be any arbi-
trary n vectors in {0, 1}L−`. We modify the weights of
edges lying in the set E2 as follows. For each i ∈ [`+1, L]
and each j ∈ [1, n], we increase wt(ui, vj) to value
(i+ W ), if the (i− `)th bit of vector Zj is one.

Consider failure of a vertex ui−1 for some index
i, (`+ 1 < i < L). The following two statement holds.

1. If the (i − `)th bit of Zj is one, then the length of
the shortest path from s to vj in G \ ui−1 will be
at least L+ (1 + 2ε)i+1.

2. If the (i − `)th bit of Zj is zero, then path Pi,j
will be the unique shortest-path from s to vj in
G \ ui−1. So, in this case the (1 + ε)-approximate
distance of vj from s in G \ ui−1 will be at most
(1 + ε)× (L+ (1 + 2ε)i) which is strictly less than
L+ (1 + 2ε)i+1.

This shows that by querying a (1 + ε)-approximate
distance oracle we can extract out all (L − `) bits
of arbitrarily chosen vectors Z1, . . . , Zn. Thus the
oracle must contain at least n(L − `) bits or (n(L −
`)/ log n) words. Hence, we get a lower bound of
Ω
(
n ·min{n, log1+ε W }/ log n

)
on the size of the oracle.

We conclude with the following theorem.

Theorem 8.2. For any positive integers n,W and any
ε > 0, there exists an n-vertex directed graph with a
source vertex s and edge weights in range [1,W ], whose
1-fault tolerant oracle reporting (1 + ε) stretched dis-
tances from s must have Ω

(
n ·min{n, log1+ε W }/ log n

)
edges.
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A Proofs of lemmas from Section 4

Reminder of Lemma 4.3 Let D be a detour from a
to b, and H be a subgraph of G containing tree T and a
(1 + ε, t)-preserver for D. Then for any internal vertex
x lying on pathT (a, b), the graph H \x contains a path,
say Q, from s to b whose weight (i.e. wt(Q)) is at most
(1 + ε)t times wt(pathT (s, u)::D).

Proof. In order to prove the lemma it suffices to show
that the following claim holds.

Claim: Let D be a detour from a to b, and H be
a subgraph of G containing tree T and a (1 + ε, t)-
preserver for D. Then for any internal vertex x lying
on pathT (a, b), the graph H \ x contains a path, say
Q, from s to b such that wt∗(Q) is at most (1 + ε)t ×
wt∗(pathT (s, u)::D).

We prove the claim by applying induction on integer
t. Let us denote by P the path pathT (s, u)::D, then
wt∗(P ) = wt∗(D). Now let α be the smallest power
of (1 + ε) greater than or equal to wt∗(D). Since
α ≥ wt∗(D), the first vertex on HDα(b), i.e., firstα(b)
must be either a or an ancestor of a. We first prove that
the base case holds true, and later using induction give
the proof for the generic case.

Base case. If t = 1, then HDα(b) will lie in H.
So path Q = pathT (s, firstα(b))::HDα(b) forms a
path from s to v in H \ x. Also wt∗(Q) is at most
(1 + ε)× wt∗(P ).

Generic case. If t > 1, then there will exist a
vertex w ∈ σ(HDα(b)) for which H contains both the
suffix HDα(b)[w, b] and a (1 + ε, t − 1)-preserver of the
prefix HDα(b)[·, w]. We have the following two subcases
depending upon whether or not x is an ancestor of w.

(i) Let us first consider the scenario when x is
an ancestor of w. Though the prefix HDα(b)[·, w]
does not lie in H, it can be seen that H contains a
(1+ε, t−1)-preserver of it. Since x is an internal vertex
of pathT (firstα(b), w), by induction hypothesis, H \x
must contain a path Q0 such that wt∗(Q0) is at most
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(1 + ε)t−1wt∗
(
pathT (s, firstα(b))::HDα(b)[·, w]

)
. We

choose Q to be the path Q0::HDα(b)[w, b]. It is easy to
see that Q is a path from s to b in H avoiding x. Also,

wt∗(Q) = wt∗(Q0) + wt∗(HDα(b)[w, b])

≤ (1 + ε)t−1wt∗
(
pathT (s, firstα(b))::HDα(b)[·, w]

)
+ wt∗(HDα(b)[w, b])

≤ (1 + ε)t−1wt∗
(
pathT (s, firstα(b))::HDα(b)

)
≤ (1 + ε)twt∗(pathT (s, u) :: D)

Thus in this subcase we are able to show that wt∗(Q)
is at most (1 + ε)twt∗(P ).

(ii) If x is not an ancestor of w in T , then we can
simply take Q to be pathT (s, w)::HDα(b)[w, b]. Notice
that wt∗(HDα(b)[w, b]) ≤ wt∗(HDα(b)) which is at
most(1 + ε)wt∗(D). Thus in this subcase wt∗(Q) is at
most (1 + ε)wt∗(P ) ≤ (1 + ε)twt∗(P ). This completes
our proof.

Reminder of Lemma 4.4 The graph H computed by
Algorithm 4.2 contains a (1 + ε, k)-preserver for each
possible detour D in G.

Proof. In order to prove the lemma it suffices to show
that the following claim holds.

Claim: Let i be any index in [1, k]. Then for any
v ∈ Sk−i+1, the graph H contains a (1 + ε, i) preserver
of each detour terminating at v.

We prove the above claim by applying induction on
index i. To prove the base case, i.e. i = 1, consider
any vertex v ∈ Sk. Since H contains HDα(v) for each
α ∈ powers(1 + ε), it is easy to see that H contains a
(1 + ε, 1) preserver of each detour terminating at v.

Now consider any index i ∈ [2, k]. Let us assume
that the claim holds true for all indices j < i. Let v be
a vertex in Sk−i+1 and D be a detour terminating at v.
We need to show that H contains a (1+ε, i) preserver of
D. Let α be the smallest power of (1 + ε) greater than
or equal to wt∗(D). Consider the detour HDα(v). If
σ(HDα(v))∩Si+1 = ∅, then H will contain the complete
detour HDα(v) which is a (1 + ε, 1) preserver of D.
And, we know that a (1 + ε, 1)-preserver of D is also
a (1 + ε, i)-preserver of D. If σ(HDα(v)) ∩ Si+1 6= ∅,
then H will contain the suffix HDα(v)[z, v], where z
is the last vertex in σ(HDα(v)) that lies in set Si+1.
Also by induction hypothesis, H will contain a (1 +
ε, i − 1) preserver of prefix HDα(v)[·, z], say P . Now
by Definition 4.1 it follows that P ::HDα(v)[z, v] is a
(1 + ε, i) preserver of detour D, which is contained in
H. This shows that the claim holds for index i as well.
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