
Dynamic DFS in Undirected Graphs: breaking the O(m) barrier

Surender Baswana∗† Shreejit Ray Chaudhury ∗ Keerti Choudhary ∗‡ Shahbaz Khan ∗‡

Given an undirected graphG = (V,E) on n vertices and
m edges, we address the problem of maintaining a DFS tree
when the graph is undergoing updates (insertion and deletion
of vertices or edges). We present the following results for
this problem.

1. Fault tolerant DFS tree:
There exists a data structure of size Õ(m) 1 such that
given any set F of failed vertices or edges, a DFS tree
of the graph G \ F can be reported in Õ(n|F|) time.

2. Fully dynamic DFS tree:
There exists a fully dynamic algorithm for maintaining
a DFS tree that takes worst case Õ(

√
mn) time per

update for any arbitrary online sequence of updates.

3. Incremental DFS tree:
Given any arbitrary online sequence of edge insertions,
we can maintain a DFS tree in Õ(n) worst case time per
edge insertion.

These are the first o(m) worst case time results for main-
taining a DFS tree in a dynamic environment. Moreover, our
fully dynamic algorithm provides, in a seamless manner, the
first deterministic algorithm with O(1) query time and o(m)
worst case update time for the dynamic subgraph connectiv-
ity, biconnectivity, and 2-edge connectivity.

1 Introduction
Depth First Search (DFS) is a well known graph traversal
technique. Right from the seminal work of Tarjan [18], DFS
traversal has played the central role in the design of efficient
algorithms for many fundamental graph problems, namely,
biconnected components, strongly connected components,
topological sorting [18], bipartite matching [12], dominators
in directed graph [19], and planarity testing [13].

∗Dept. of CSE, I.I.T. Kanpur, India (www.cse.iitk.ac.in), email:
{sbaswana,keerti,shahbazk}@cse.iitk.ac.in, shreejit.1@gmail.com. Full
version of the paper is available at http://arxiv.org/abs/1502.02481.
†This research was partially supported by UGC-ISF (the University

Grants Commission of India & Israel Science Foundation) and IMPECS
(the Indo-German Max Planck Center for Computer Science) .
‡This research was partially supported by Google India under the Google

India PhD Fellowship Award.
1Õ() hides the poly-logarithmic factors.

Let G = (V,E) be an undirected connected graph on
n = |V | vertices and m = |E| edges. DFS traversal
of G starting from any vertex r ∈ V produces a rooted
spanning tree, called a DFS tree with r as its root. It takes
O(m + n) time to perform a DFS traversal and generate
a DFS tree. Given any rooted spanning tree of graph G,
all non-tree edges of the graph can be classified into two
categories, namely, back edges and cross edges as follows.
A non-tree edge is called a back edge if one of its endpoints
is an ancestor of the other in the tree. Otherwise it is called
a cross edge. A necessary and sufficient condition for any
rooted spanning tree to be a DFS tree is that every non-tree
edge is a back edge. Thus it can be seen that many DFS trees
are possible for any given graph. However, if the traversal
of the graph is performed according to the order specified by
the adjacency lists of the graph, the resulting DFS tree will
be unique. The ordered DFS tree problem is to compute the
order in which the vertices get visited when the traversal is
performed strictly according to the adjacency lists.

Most of the graph applications in real world deal with
graphs that keep changing with time. These changes/updates
can be in the form of insertion or deletion of vertices or
edges. An algorithmic graph problem is modeled in a dy-
namic environment as follows. There is an online sequence
of updates on the graph, and the objective is to update the
solution of the problem efficiently after each update. In par-
ticular, the time taken to update the solution has to be much
smaller than that of the best static algorithm for the problem.
Another, and more restricted, variant of a dynamic environ-
ment is the fault tolerant environment. Here the aim is to
build a compact data structure, for a given problem, that is
resilient to failures of vertices/edges and can efficiently re-
port the solution for a given set of failures. There has been
a lot of work in the last two decades on dynamic and fault
tolerant algorithms for various graph problems (see [1, 8]).

A dynamic graph algorithm is said to be fully dynamic
if it handles both insertion as well as deletion updates. A par-
tially dynamic algorithm is said to be incremental or decre-
mental if it handles only insertion or only deletion updates
respectively. In this paper, we address the problem of main-
taining a DFS tree efficiently in any dynamic environment.

1.1 Existing results on dynamic DFS In spite of the
simplicity of a DFS tree, designing any efficient parallel or
dynamic algorithm for a DFS tree has turned out to be quite
challenging. Reif [15] showed that the ordered DFS tree
problem is a P -Complete problem. For many years, this
result seemed to imply that the general DFS tree problem,
that is, the computation of any DFS tree is also inherently
sequential. However, Aggarwal and Anderson [2] proved
that the general DFS tree problem is in RNC by designing
a parallel randomized algorithm that takes O(log3 n) time.
Whether the general DFS tree problem is in NC is still a long
standing open problem.

Reif [16] and later Miltersen et al. [14] proved that
P -Completeness of a problem also implies hardness of the
problem in the dynamic setting. The work of Miltersen et
al. [14] shows that if the ordered DFS tree is updateable
in O(polylog(n)) time, then the solution of every problem
in class P is updateable in O(polylog(n)) time. In other
words, maintaining the ordered DFS tree is indeed the
hardest among all the problems in class P . In our view, this
hardness result, which is actually for only the ordered DFS
tree problem, has proved to be quite discouraging for the
researchers working in the area of dynamic algorithms. This
is evident from the fact that for all the static graph problems
that were solved using DFS traversal in 1970’s, none of their
dynamic counterparts used a dynamic DFS tree.

Apart from the hardness of the ordered DFS tree prob-
lem in dynamic environment, very little progress has been
achieved even for the problem of maintaining any DFS tree.
Franciosa et al. [7] designed an incremental algorithm for
a DFS tree in a DAG. For any arbitrary sequence of edge
insertions, this algorithm takes O(mn) total time to main-
tain a DFS tree from a given source. Recently Baswana and
Choudhary [3] designed a decremental algorithm for a DFS
tree in DAG that requires expected O(mn log n) total time.
For undirected graphs, recently Baswana and Khan [4] de-
signed an O(n2) total time incremental algorithm for main-
taining a DFS tree. These algorithms are the only algorithms
known for the dynamic DFS tree problem. Moreover, none
of these existing algorithms, though designed for only a par-
tially dynamic environment, achieves a worst case bound of
o(m) on the update time. So the following intriguing ques-
tions remained unanswered till date:

• Does there exist any fully dynamic algorithm for main-
taining a DFS tree?
• Is it possible to achieve worst case o(m) update time for

maintaining a DFS tree in a dynamic environment?

Not only do we answer these open questions affirma-
tively for undirected graphs, we also use our dynamic algo-
rithm for DFS tree to provide efficient solutions for a couple
of well studied dynamic graph problems. Moreover, our re-
sults also handle vertex updates which are generally consid-
ered harder than edge updates.

1.2 Our results We consider a generalized notion of up-
dates wherein an update could be either insertion/deletion of
a vertex or insertion/deletion of an edge. For any set U of
such updates, let G+U denote the graph obtained after per-
forming the updates U on the graph G. Our main result can
be succinctly described in the following theorem.

THEOREM 1.1. An undirected graph can be preprocessed
to build a data structure of O(m log n) size such that for any
set U of k ≤ n updates, a DFS tree ofG+U can be reported
in O(nk log4 n) time.

With this result at the core, we easily obtain the follow-
ing results for dynamic DFS tree in an undirected graph.

1. Fault Tolerant DFS tree:

Given any set of k failed vertices or edges and any
vertex v ∈ V , we can report a DFS tree rooted at v
for the resulting graph in O(nk log4 n) time.

2. Fully Dynamic DFS tree:

Given any arbitrary online sequence of vertex or
edge updates, we can maintain a DFS tree in
O(
√
mn log2.5 n) worst case time per update.

3. Incremental DFS tree:

Given any arbitrary online sequence of edge insertions,
we can maintain a DFS tree in O(n log3 n) worst case
time per edge insertion.

These are the first o(m) worst case update time algo-
rithms for maintaining a DFS tree in a dynamic environ-
ment. Recently, there has been significant work [1, 8] on
establishing conditional lower bounds on the time complex-
ity of various dynamic graph problems. A simple reduction
from [1], based on the Strong Exponential Time Hypothe-
sis (SETH), implies a conditional lower bound of Ω(n) on
the update time of any fully dynamic algorithm for a DFS
tree under vertex updates. We also present an unconditional
lower bound of Ω(n) for maintaining a fully dynamic DFS
tree explicitly under edge updates.

1.3 Applications of Fully Dynamic DFS In the static
setting, a DFS tree can be easily used to answer connectivity,
2-edge connectivity and biconnectivity queries. Our fully
dynamic algorithm for DFS tree thus seamlessly solves these
problems for both vertex and edge updates. Further, our
algorithm gives the first deterministic algorithm with O(1)
query time and o(m) worst case update time for several well
studied variants of these problems in the dynamic setting.
These problems include dynamic subgraph connectivity [5,
6] and vertex update versions of dynamic biconnectivity
[10, 9] and dynamic 2-edge connectivity [11]. In particular,
our algorithm improves the deterministic worst case bounds
for these problems, thus emphasizing the relevance of DFS
trees in solving dynamic graph problems.

1.4 Main Idea Let T be a DFS tree of G. To compute a
DFS tree ofG+U for a given set U of updates, the main idea
is to make use of the original tree T itself. We preprocess the
graph G using tree T to build a data structure D. In order
to achieve o(m) update time, our algorithm makes use of D
to create a reduced adjacency list for each vertex such that
performing DFS traversal using these lists gives a DFS tree
forG+U . In fact, these reduced adjacency lists are generated
on the fly and are guaranteed to have only Õ(n|U |) edges.

1.5 Outline of the paper Section 2 describes various no-
tations that are used throughout the paper. Section 3 pro-
vides an overview of our algorithm. Our main result (The-
orem 1.1)that reports a DFS tree after any set of updates in
the graph is described in Section 5. In Section 6 we convert
this algorithm to fully dynamic and incremental algorithms
for maintaining a DFS tree using the overlapped periodic re-
building technique. The details of the data structure D are
described in Section 7. Due to space constraints the lower
bounds and the applications of dynamic DFS have not been
described in this paper. The details for the same can be found
in the full version of the paper.

2 Preliminaries
Let U be any given set of updates. We add a dummy vertex
r to the given graph in the beginning and connect it to all
the vertices. Our algorithm starts with any arbitrary DFS
tree T rooted at r in the augmented graph and it maintains a
DFS tree rooted at r at each stage. It can be observed easily
that each subtree rooted at any child of r is a DFS tree of a
connected components of the graph G + U . The following
notations will be used throughout the paper.

• T (x) : The subtree of T rooted at vertex x.

• path(x, y) : Path from vertex x to vertex y in T .

• distT (x, y) : The number of edges on the path from x
to y in T .

• LCA(x, y) : The lowest common ancestor of x and y
in tree T .

• N(w) : The adjacency list of vertex w in the graph
G+ U .

• L(w) : The reduced adjacency list of vertex w in the
graph G+ U .

• T ∗ : The DFS tree rooted at r computed by our
algorithm for the graph G+ U .

• par(w) : Parent of w in T ∗.

A subtree T ′ is said to be hanging from a path p if the
root r′ of T ′ is a child of some vertex on the path p and
r′ does not belong to the path p. Unless stated otherwise,
every reference to a path refers to an ancestor-descendant
path defined as follows:

DEFINITION 2.1. (ANCESTOR-DESCENDANT PATH) A
path p in a DFS tree T is said to be ancestor-descendant
path if its endpoints have ancestor-descendant relationship
in T .

We now state the operations supported by the data
structure D (complete details of D are in Section 7). Let U
below refer to a set of updates that consists of vertex and
edge deletions only. For any three vertices w, x, y ∈ T ,
where path(x, y) is an ancestor-descendant path in T the
following two queries can be answered usingD inO(log3 n)
time.

1. Query(w, x, y) : among all the edges from w that are
incident on path(x, y) in G+ U , return an edge that is
incident nearest to x on path(x, y).

2. Query(T (w), x, y) : among all the edges from T (w)
that are incident on path(x, y) inG+U , return an edge
that is incident nearest to x on path(x, y).

3 Overview
DFS traversal has the following flexibility : when the traver-
sal reaches a vertex, say v, the next vertex to be traversed can
be any unvisited neighbor of v. In order to compute a DFS
tree for G + U efficiently, our algorithm exploits this flexi-
bility, the original DFS tree T , and the following property of
DFS traversal.

r

w

v

C1

C2

e1

e′1

e2

e′2

Figure 1: Edges e′1 as well as e′2 can be ignored during the
DFS traversal.

LEMMA 3.1. (COMPONENTS PROPERTY) Let T ∗ be the
partially grown DFS tree and v be the vertex currently vis-
ited. Let C be any connected component in the subgraph
induced by the unvisited vertices. Suppose two edges e and
e′ from C are incident respectively on v and some ancestor
(not necessarily proper) w of v in T ∗. Then it is sufficient to
consider only e during the rest of the DFS traversal, i.e., the
edge e′ need not be scanned. (Refer to Figure 1).

Skipping e′ during the DFS traversal, as stated in the
components property, is justified because e′ will appear as

a back edge in the resulting DFS tree. The components
property can be exploited to compute reduced adjacency lists
of small size for building a DFS tree as follows. Let p0 be
the path from the root to v in the partially built DFS tree
T ∗. From each component C of the unvisited graph, we only
need to find an edge incident to the lowest vertex on p0. Let
this edge be (x, y) where x ∈ p0 and y ∈ C. We can just add
y to the reduced adjacency list L(x) of x and ignore all other
edges incident from C to p0. However, as the reader may
also observe, maintaining the connected components of the
unvisited graph and obtaining the lowest edge incident from
each of them to p0 is a non-trivial task. Nevertheless, we are
able to accomplish this task by exploiting the original DFS
tree T of G as follows.

For a given set U of updates, we compute a partitioning
of T into a disjoint collection of ancestor-descendant paths
and subtrees such that none of these subtrees and paths
contain any failed edge or vertex. An important property
of this partitioning is that there are no edges from G lying
between any two subtrees in T . We refer to this partitioning
as a disjoint tree partitioning. Note that this partitioning
depends upon only the vertex and edge failures in the set
U . It turns out that each component C of the unvisited
graph during a DFS traversal can be represented as a union
of subtrees and ancestor-descendant paths of the original
DFS tree T . The lowest edges from the subtrees and the
ancestor-descendant paths can be obtained by querying the
data structure D.

Let the initial disjoint tree partitioning consists of a set
of ancestor-descendant paths P and a set of subtrees T .
The algorithm for computing a DFS tree of G + U can be
summarized as follows:

Perform the static DFS traversal on the graph with the
elements of P ∪ T as the super vertices. Visiting a super
vertex v∗ by the algorithm involves extracting an ancestor-
descendant path p0 from v∗ and attaching it to the partially
grown DFS tree T ∗. The remaining part of v∗ is added back
to P ∪ T as new super vertices. Thereafter, the reduced
adjacency list of the vertices on path p0 is computed using
the data structure D. The algorithm then continues to find
the next super vertex using the reduced adjacency lists.

4 Disjoint Tree Partitioning
We formally define disjoint tree partitioning as follows.

DEFINITION 4.1. Given a DFS tree T of an undirected
graph G and a set U of failed vertices and edges, let A be a
vertex set in G+U . The disjoint tree partitioning defined by
A is a partition of the subgraph of T induced by A into

1. A set of paths P such that (i) each path in P is an
ancestor-descendant path in T and does not contain
any deleted edge or vertex, and (ii) |P| ≤ |U |.

2. A set of trees T such that each tree τ ∈ T is a subtree

of T which does not contain any deleted edge or vertex.

Note that for any τ1, τ2 ∈ T , there is no edge between τ1
and τ2 because T is a DFS tree.

The disjoint tree partitioning for set A = V \{r} can be
computed as follows. Let Vf and Ef respectively denote the
set of failed vertices and edges associated with the updates
U . We initialize P = φ and T = {T (w) | w is a child of r}.
We refine the partitioning by processing each vertex v ∈ Vf
as follows (see Figure 2 (i)).

• If v is present in some T ′ ∈ T , we add the path from
par(v) to the root of T ′ to P . We remove T ′ from T
and add all the subtrees hanging from this path to T .

• If v is present in some path p ∈ P , we split p at v into
two paths. We remove p from P and add these two
paths to P .

Edge deletions are handled as follows. We first remove edges
from Ef that don’t appear in T . Processing of the remaining
edges from Ef is quite similar to the processing of Vf as
described above. For each edge e ∈ Ef ; just visualize
deleting an imaginary vertex lying at mid-point of the edge e
(see Figure 2 (ii)). It takes O(n) time to process any v ∈ Vf
and e ∈ Ef .

r

a

b

c

d

e

f

g

h

i j

x

y z

u

v w

k

l

m

n

s t

o

p q

(i)

r

a

b

c

d

e

f

g

h

i j

x

y z

u

v w

k

l

m

n

s t

o

p q

(ii)

Figure 2: Disjoint tree partition for V \ {r}: (i) Initializing
T = {T (a), T (h)} and P = ∅, (ii) Final disjoint tree
partition obtained after deleting vertex g and edges (c, d) and
(m,n).

Note that each update can add at most one path to P . So
the size of P is bounded by |U |. The fact that T is a DFS
tree ofG ensures that no two subtrees in T will have an edge
between them. So P ∪T satisfies all the conditions stated in
Definition 4.1.

LEMMA 4.1. Given an undirected graph G with a DFS tree
T and a set U of failing vertices and edges, we can find a
disjoint tree partition of set V \ {r} in O(n|U |) time.

5 Fault tolerant DFS Tree
We first present a fault tolerant algorithm for a DFS tree. Let
U be a given set of failed vertices or edges in G. In order
to compute the DFS tree T ∗ for G + U , our algorithm first
constructs a disjoint tree partition (T ,P) for V \{r} defined
by the updates U (see Lemma 4.1). Thereafter, it can be
visualized as the static DFS traversal on the graph whose
(super) vertices are the elements of P ∪ T . Note that our
notion of super vertices is for the sake of understanding only.

Consider the stack-based implementation of the static
algorithm for computing a DFS tree rooted at a vertex r in
graph G (refer to Figure 3(i)). Our algorithm for computing
DFS tree for G + U (refer to Figure 3(ii)) is quite similar
to the static algorithm. The only points of difference are the
following.

• In the static DFS algorithm whenever a vertex is visited,
it is attached to the DFS tree and pushed into the stack
S. In our algorithm when a vertex u in some super
vertex vs ∈ P ∪ T is visited, a path starting from u
is extracted from vs and attached to the DFS tree, and
this entire path is pushed into the stack S.

• Instead of scanning the entire adjacency list N(w) of a
vertex w, the reduced adjacency list L(w) is scanned.

When a path is extracted from a super vertex vs, the
remaining unvisited part of vs is added back to T ∪ P .
However, we need to ensure that the properties of disjoint
tree partitioning are satisfied in the updated T ∪ P . This
is achieved using Procedure DFS-in-Path and Procedure
DFS-in-Tree, which also build the reduced adjacency list
for the vertices on the path. The construction of a sparse
reduced adjacency list is inspired by Lemma 3.1 (Component
property) which can be reformulated in the context of our
algorithm as follows.

PROPERTY 5.1. When a path p is attached to the partially
constructed DFS tree T ∗ during the algorithm, for every
edge (x, y), where x ∈ p and y belongs to the unvisited
graph the following condition holds. Either y is added to
L(x) or y′ is added to L(x′) for some edge (x′, y′) where x′

is a descendant (not necessarily proper) of x in p and y′ is
connected to y in the unvisited graph, .

We now describe how the properties of disjoint tree
partitioning and hence Property 5.1 are maintained by our
algorithm when a vertex v ∈ vs is visited by the traversal.

1. Let vs = path(x, y) ∈ P . Exploiting the flexibility
of DFS, we traverse from v to the farther end of
path(x, y). Now path(x, y) is removed from P and
the untraversed part of path(x, y) (with length at most
half of |path(x, y)|) is added back to P . We refer to
this as path halving. This technique was also used by

Aggarwal and Anderson [2] in their parallel algorithm
for computing DFS tree in undirected graphs. Notice
that |P| remains unchanged or decreases by 1 after this
step.

2. Let vs = τ ∈ T . Exploiting the flexibility of a DFS
traversal, we traverse the path from v to the root of τ
(say x) and add it to T ∗. Thereafter τ is removed from
T and all the subtrees hanging from this path are added
to T . Observe that every newly added subtree is also a
subtree of the original DFS tree T . So the properties of
disjoint tree partitioning are satisfied after this step as
well.

Let path(v, x) be the path extracted from vs. For
each vertex w in this newly added path, we compute L(w)
ensuring Property 5.1 as follows.

(i) For each path p ∈ P , among potentially many edges
incident on w from p, we just add any one edge.

(ii) For each tree τ ′ ∈ T , we add at most one edge to
L as follows. Among all edges incident on τ ′ from
path(v, x), if (w, z) is the edge such thatw is nearest to
x on path(v, x), then we add z to L(w). However, for
the case vs ∈ T , we have to consider only the newly
added subtrees in T for this step. This is because the
disjoint tree partitioning ensures the absence of edges
between vs and any other tree in T .

Figure 4 provides an illustration of how T ∪P is updated
when a super vertex in T ∪ P is visited.

5.1 Implementation of our Algorithm We now describe
our algorithm in full detail. Firstly we delete all the failed
edges in U from the data structure D. Now, the algorithm
begins with a disjoint tree partition (T ,P) which evolves as
the algorithm proceeds. The state of any unvisited vertex in
this partition is captured by the following three variables.
-INFO(u): this variable is set to tree if u belongs to a tree in
T , and set to path otherwise
-ISROOT(v): this variable is set to True if v is the root of a
tree in T , and False otherwise.
-PATHPARAM(v): if v belongs to some path, say path(x, y),
in P , then this variable stores the pair (x, y), and null oth-
erwise.

Procedure Dynamic-DFS : For each vertex v, status(v) is
initially set as unvisited, and L(v) is initialized to ∅. First a
disjoint tree partition is computed for the DFS tree T based
on the updates U . The procedure Dynamic-DFS then inserts
the root vertex r into the stack S. Now while the stack is
non-empty, the procedure repeats the following steps. It
reads the top vertex from the stack. Let this vertex be w. If
L(w) is empty then w is popped out from the stack, else let

Procedure Static-DFS(G, r): Static algo-
rithm to compute a DFS tree of G rooted at
r.

1 Stack S ← ∅;
2 Push(r);
3 status(r)← visited;
4 while S 6= empty do
5 w ← Top(S);
6 if N(w) = ∅ then Pop(w);
7 else
8 u← First vertex in N(w);
9 Remove u from N(w);

10 if status(u) = unvisited then

11 par(u)← w;
12 status(u)← visited;
13 Push(u);

14 end

15 end

16 end

(i)

Procedure Dynamic-DFS(G,U, r): Algorithm
for updating the DFS tree T rooted at r for the
graph G+ U .

1 Stack S ← ∅; (T ,P)← Partition(T,U);
2 Push(r);
3 status(r)← visited; L(r)← N(r);
4 while S 6= empty do
5 w ← Top(S); u0 ← w;
6 if L(w) = ∅ then Pop(w);
7 else
8 u← First vertex in L(w);
9 Remove u from L(w);

10 if status(u) = unvisited then
11 if info(u) = tree then
12 {u1, ..., ut} ← DFS-in-Tree(u);
13 else if info(u) = path then
14 {u1, ..., ut} ←DFS-in-Path(u);
15 end
16 for i = 1 to t do
17 par(ui)← ui−1;
18 status(ui)← visited;
19 Push(ui);

20 end

21 end

22 end

23 end

(ii)
1

Figure 3: The static (and dynamic) algorithm for computing (updating) a DFS tree. The key differences are shown in blue.

u be the first vertex in L(w). If vertex u is unvisited till now,
then depending upon whether u ∈ T or u ∈ P , Procedure
DFS-in-Tree or DFS-in-Path is executed. A path p0 is then
returned to Procedure Dynamic-DFS where for each vertex
of p0 parent is assigned and status is marked visited. The
whole of this path is then pushed into stack. The procedure
proceeds to the next iteration of While loop with the updated
stack.

Procedure DFS-in-Tree : Let vertex u is present in tree, say
T (v), in T (the vertex v can be found easily by scanning the
ancestors of u and checking their value of ISROOT). The
DFS traversal enters the tree from u and leaves from the
vertex v. Let path(u, v) = 〈w1 = u,w2 . . . , wt = v〉. The
path(u, v) is pushed into stack and attached to the partially
constructed DFS tree T ∗. We now update the partition
(P, T) and also update the reduced adjacency list for each
wi present on path(u, v) as follows.

1. For each vertex wi and every path path(x, y) ∈ P , we
perform Query(wi, x, y) on the data structure D that
returns an edge (wi, z) such that z ∈ path(x, y). We
add z to L(wi).

2. Recall that since subtrees in T do not have any cross
edge between them, therefore, there cannot be any
edge incident on path(u, v) from trees which are
already present in T . An edge can be incident only
from the subtrees which was hanging from path(u, v).
T (v) is removed from T and all the subtrees of T (v)
hanging from path(u, v) are inserted into T . For
each such subtree, say τ , inserted into T , we perform
Query(τ, u, v) on the data structure D that returns an
edge, say (y, z), such that z ∈ τ and y is nearest to u
on path(u, v). We insert z into L(y).

Procedure DFS-in-Path : Let vertex u visited by the DFS
traversal lies on a path(v, y) ∈ P . Assume distT (u, v) >

r

a

b

c

d

e i

j

kl

m

f

g h

n

o

p

q

s

t

(i)

r

e

d

c

b

a

f

gh

i

j

kl

m

q

p

o

n

s

t

(ii)

Figure 4: Visiting a super vertex from T ∪ P . (i) The
algorithm visits T (a) ∈ T using the edge (r, e) and the
path(n, t) ∈ P using the edge (r, q). (ii) Traversal extracts
path(e, a) and path(q, n) and augment it to T ∗. The
unvisited segments are added back to T and P .

distT (u, y). The DFS traversal travels from u to v (the
farther end of the path). The path path(v, y) in set P is
replaced by its subpath that remains unvisited. The reduced
adjacency list of each w ∈ path(u, v) is updated in similar
way as in the procedure DFS-in-Tree except that in step 2,
we perform Query(τ, u, v) for each τ ∈ T .

This completes the description of the fault tolerant algo-
rithm for DFS tree. This algorithm maintains Property 5.1 at
each stage by construction given that the properties of dis-
joint tree partitioning are satisfied.

5.2 Correctness It can be seen that the following two
invariants hold for the while loop in the Procedure Static-
DFS described in Figure 3 (i). It is easy to see that these
invariants imply the correctness of the algorithm, i.e., the
generated tree is a rooted spanning tree where every non-tree
edge is a back edge.

I1: The sequence of vertices in the stack from bottom to
top constitutes an ancestor-descendant path from r in
the DFS tree computed.

I2: For each vertex v that is popped out, all vertices in the
set N(v) have already been visited.

These two invariants I1 and I2 also hold for Procedure
Dynamic-DFS described in Figure 3 (ii) as follows. Invariant
I1 holds by construction as described in our algorithm.
Since our algorithm follows Property 5.1 by construction,
the invariant I2 holds (for formal proof see Lemma A.1 in

Appendix). Hence our algorithm indeed computes a valid
DFS tree for G+ U .

5.3 Time complexity analysis As described earlier the
disjoint tree partitioning and the components property play
a key role in the efficiency of our algorithm. They allow us
to limit the size of the reduced adjacency lists L, that are
built during the algorithm. Our algorithm computes T ∗ by
performing a DFS traversal on the reduced adjacency list L.
Thus, the time complexity of our algorithm is O(n + |L|)
excluding the time required to compute L.

We first establish a bound on the size of L. In each step
our algorithm extracts a path from vs ∈ P ∪ T and attaches
it to T ∗. Let Pt and Pp denote the set of such paths that
originally belonged to some tree in T and some path in P ,
respectively. For every path p0 ∈ Pt ∪ Pp our algorithm
performs the following queries on D.

(i) For each vertex w in p0, we query each path in P for an
edge incident on the vertex w. Thus the total number of
edges added to L by these queries is O(n|P|).

(ii) If p0 belongs toPp, then we query for an edge from each
τ ∈ T to p0. It follows from the path halving technique
that each path in P reduces to at most half of its length
whenever some path is extracted from it and attached to
T ∗. Hence the size of Pp is bounded by |P| log n.

(iii) If p0 belongs to Pt, then we query for an edge from
only those subtrees which were hanging from p0. Note
that these subtrees will now be added to set T . Hence
the total number of trees queried for this case will be
bounded by number of trees inserted to T . Since each
subtree can be added to T only once, these edges are
bounded by O(n) throughout the algorithm.

Thus the size of L is bounded by O
(
n(1 + |P|) log n

)
.

Since each edge added to L requires querying the data
structure D which takes O(log3 n) time, the total time taken
to compute L is O

(
n(1 + |P| log n) log3 n

)
. Thus we have

the following lemma.

LEMMA 5.1. An undirected graph can be preprocessed to
build a data structure of O(m log n) size such that for any
set U of k failed vertices or edges (where k ≤ n), the DFS
tree of G+U can be reported in O(n(1 + |P| log n) log3 n)
time.

From Definition 4.1 we have that |P| is bounded by |U |.
Thus we have the following theorem.

THEOREM 5.1. An undirected graph can be preprocessed
to build a data structure of O(m log n) size such that for any
set U of k failed vertices or edges (where k ≤ n), the DFS
tree of G+ U can be reported in O(nk log4 n) time.

It can be observed that Theorem 5.1 directly implies a data
structure for fault tolerant DFS tree.

5.4 Extending the algorithm to handle insertions In
order to update the DFS tree, our focus has been to restrict
the number of edges that are processed. For the case when
the updates are deletions only, we have been able to restrict
this number to O(nk log n), for a given set of k updates
(failure of vertices or edges). We now describe the procedure
to handle vertex and edge insertions. Let VI be the set of
the vertices inserted, and EI be the set of edges inserted.
(including the edges incident to the vertices in VI). If there
are k vertex insertions, the size of EI is bounded by nk. So
even if we add all the edges in EI to the reduced adjacency
lists, the size of L would still be bounded by O(nk log n).
Hence, we perform the following two additional steps before
starting the DFS traversal.

• Initialize L(v) to store the edges in EI instead of ∅.
That is, L(v)← {y | (y, v) ∈ EI}

• Each newly inserted vertex is treated as a singleton path
and added to P . That is, P ← P ∪ {x|x ∈ VI}.

In order to establish that our algorithm, after incorporat-
ing the insertions, correctly computes a DFS tree of G + U ,
we need to ensure that all the edges essential for DFS traver-
sal as described in Property 5.1 are added to L. All the es-
sential edges from G are added to L during the algorithm
itself. In case an essential edge belongs to EI , the edge has
already been added to L during its initialization. Note that
the time taken by our algorithm remains unchanged since the
size of L remains bounded by O(nk log n). This completes
the proof of our main result stated in Theorem 1.1.

Let us consider the case when U consists of edge
insertions only. In this case P will be an empty set. As
discussed above, we initialize the reduced adjacency lists
using EI whose size is equal to |U |. Hence Lemma 5.1
implies the following theorem.

THEOREM 5.2. An undirected graph can be preprocessed
to build a data structure of O(m log n) size such that for any
set U of k edge insertions (where k ≤ n), the DFS tree of
G+ U can be reported in O(n log3 n) time.

6 Fully dynamic DFS
We now describe the overlapped periodic rebuilding tech-
nique to convert our algorithm for computing a DFS tree af-
ter k updates to fully dynamic and incremental algorithms
for maintaining a DFS tree. Similar technique was used by
Thorup [20] for maintaining fully dynamic all pairs shortest
paths.

In the fully dynamic model, we need to report the DFS
tree after every update in the graph. Given the data structure
D built using the DFS tree of the graph G, we are able to
report the DFS tree of G + U after |U | = k updates in
Õ(nk) time. This becomes inefficient if k becomes large.

Rebuilding D after every update is also inefficient as it takes
Õ(m) time to build D. Thus it is better to rebuild D after
every |U ′| = c updates for a carefully chosen c. Let D′
be the data structure built using the DFS tree of the updated
graph G+ U ′ with |U ′| = c. D′ can thus be used to process
the next c updates efficiently (see Figure 5 (a)). The cost of
building D′ can thus be amortized over these c updates.

To achieve an efficient worst case update time, we divide
the building of D′ over the first c updates. This D′ is then
used by our algorithm in the next c updates, during which a
new D′′ is built in a similar manner and so on (see Figure
5 (b)). The following lemma describes how this technique
can be used in general for any dynamic graph problem. For
notational convenience we denote any function f(m,n) as
f .

LEMMA 6.1. Let D be a data structure that can be used
to report the solution of a graph problem after a set of U
updates on an input graph G. If D can be build in O(f)
time and the solution for graph G + U can be reported in
O(h+|U |×g) time, thenD can be used to report the solution
after every update in worst case O(

√
fg + h) update time,

given that
√
f/g ≤ n.

(a) (b)

u1u1 ucuc u2cu2c

Build Build

BuildBuildBuild Build

UseUse UseUseUse

D0

D0 D0

D0

D1

D1

D1 D1

D2

D2

D2

Figure 5: (a) Fully dynamic algorithm with amortized update
time. (b) De-amortization of the algorithm.

Proof. We first present an algorithm that achieves amortized
O(
√
fg + h) update time. It is based on the simple idea of

periodic rebuilding. Given the input graphG0 we preprocess
it to compute the data structureD0 over it. Now let u1, ..., uc
(c ≤ n) be the sequence of first c updates on G0. To
report the solution after ith update we useD0 to compute the
solution forG0+{u1, ..., ui}. This takesO(h+(i×g)) time.
So the total time for preprocessing and handling the first c
updates is O(f +

∑c
i=1 h+ (i× g)). Therefore, the average

time for the first c updates isO(f/c+c×g+h). Minimizing
this quantity over c gives the optimal value c0 =

√
f/g

which is bounded by n. So, after every c0 updates we rebuild
our data structure and use it for the next c0 updates (see
Figure 5(a)). Substituting the value of c0 gives the amortized
time complexity as O(

√
fg + h).

x

DFS tree T

z

w

s t

y

u

v

TB
x z w s t y u v

(x,s) (z,w) (w,s) (s,w) (t,w)

(z,t) (w,t)

x z w s t y u v ← List L

Figure 6: (i) The highest edge from subtree T (w) on path(x, y) is edge (x, s) and the lowest edges are edge (z, w) and
(z, t). (ii) The vertices of T (w) are represented as union of two subtrees in segment tree TB.

The above algorithm can be de-amortized as follows.
Let G1, G2, G3, . . . be the sequence of graphs obtained after
c0, 2c0, 3c0, .. updates. We use the data structure D0 built
during preprocessing to handle the first 2c0 updates. Also
after the first c0 updates we start building the data structure
D1 over G1. This D1 is built in c0 steps, thus the extra time
spent per update is f/c0 = O(

√
fg) only. We use D1 to

handle the next c0 updates on graph G2, and also in parallel
compute the data structure D2 over the graph G2. (See
Figure 5(b)). Since the time for building each data structure
is now divided in c0 steps, we have that the worst case update
time as O(

√
fg + h).

The above lemma combined with Theorems 1.1 and 5.2
directly implies the following results for the fully dynamic
DFS tree problem and the incremental DFS tree problem,
respectively.

(For the theorem below we use f = m log n, g =
n log4 n and h = 0.)

THEOREM 6.1. There exists a fully dynamic algorithm for
maintaining a DFS tree in an undirected graph that uses
O(m log n) preprocessing time and can report a DFS tree
after each update in the worst case O(

√
mn log2.5 n) time.

An update in the graph can be insertion / deletion of an edge
as well as a vertex.

(For the theorem below we use f = m log n, g = log n
and h = n log3 n, since O(n log3 n) = O(k × g + h) for
k ≤ n).

THEOREM 6.2. There exists an incremental algorithm for
maintaining a DFS tree in an undirected graph that uses
O(m log n) preprocessing time and can report a DFS tree
after each edge insertion in the worst case O(n log3 n) time.

7 Data Structure
The efficiency of our algorithm relies heavily on the data
structure D. Its construction employs a combination of two

well known techniques, namely, heavy-light decomposition
[17] and suitable augmentation of a binary tree (segment
tree) as follows.

1. Perform a pre-order traversal of the tree T with the
following restriction: Upon visiting a vertex v ∈ T ,
the child of v that is visited first is the one storing the
largest subtree. Let L be the list of vertices ordered by
this traversal.

2. Build a segment tree TB whose leaf nodes from left to
right represent the vertices in list L.

3. We augment each node z of TB by a binary search tree
E(z) storing all the edges (u, v) ∈ E where u is a leaf
node in the subtree rooted at z in TB. These edges are
sorted according to the position of the second endpoint
in L.

The construction of D described above ensures the
following properties which are helpful in answering a query
Query(T (w), x, y) (see Figure 6).

• T (w) is present as an interval of vertices in L (by step
1). Moreover, this interval can be expressed as a union
ofO(log n) disjoint subtrees in TB (by step 2). Let these
subtrees be T1, . . . , Tq .

• It follows from the heavy-light decomposition used in
step 1 that path path(x, y) can be divided intoO(log n)
subpaths path(x1, y1), . . . , path(x`, y`) such that each
subpath path(xi, yi) is an interval in L.

• Let zj be the root of subtree Tj in TB. Then it follows
from step 3 that any query Query(Tj , xi, yi) can be
answered by a single predecessor or successor query on
the BST E(zj) in O(log n) time.

To answer Query(T (w), x, y), we thus find the edge
closest to x among all the edges reported by the queries

{Query(Tj , xi, yi)|1 ≤ j ≤ q and 1 ≤ i ≤ `}. Thus
Query(T (w), x, y) can be answered in O(log3 n) time.
Notice that Query(w, x, y) can be considered as a special
case where q = 1 and T1 is the leaf node of TB representing
w. The space required by D is O(m log n) as each edge is
stored at O(log n) levels in TB. Now, the segment tree TB
can be built in linear time. Further, for every node u, the
sorted list of edges in E(u) can be computed in linear time
by merging the sorted lists of its children. Thus the binary
search tree E(u) for each node u ∈ TB can be built in time
linear in the number of edges in E(u). Hence the total time
required to build this data structure is O(m log n). Thus we
have the following theorem.

THEOREM 7.1. The queries Query(T (w), x, y),
Query(w, x, y) on T can be answered in O(log3 n)
worst case time using a data structure D of size O(m log n),
which can be build in O(m log n) time.

Note: Our algorithm also requires deletion of edges fromD.
An edge can be deleted fromD by deleting the edge from the
binary search tree stored at its end points and their ancestors
in TB. Since a deletion in binary search tree takes O(log n)
time, an edge can be deleted from D in O(log2 n) time.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular
conjectures imply strong lower bounds for dynamic problems.
In FOCS, pages 434–443, 2014.

[2] Alok Aggarwal and Richard J. Anderson. A random NC
algorithm for depth first search. Combinatorica, 8(1):1–12,
1988.

[3] Surender Baswana and Keerti Choudhary. On dynamic DFS
tree in directed graphs. In MFCS, Proceedings, Part II, pages
102–114, 2015.

[4] Surender Baswana and Shahbaz Khan. Incremental algorithm
for maintaining DFS tree for undirected graphs. In ICALP,
Proceedings, Part I, pages 138–149, 2014.

[5] Timothy M. Chan, Mihai Patrascu, and Liam Roditty. Dy-
namic connectivity: Connecting to networks and geometry.
In FOCS, pages 95–104, 2008.

[6] Ran Duan. New data structures for subgraph connectivity. In
ICALP, Proceedings, Part I, pages 201–212, 2010.

[7] Paolo Giulio Franciosa, Giorgio Gambosi, and Umberto
Nanni. The incremental maintenance of a depth-first-search
tree in directed acyclic graphs. Inf. Process. Lett., 61(2):113–
120, 1997.

[8] Monika Henzinger, Sebastian Krinninger, Danupon
Nanongkai, and Thatchaphol Saranurak. Unifying and
strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In STOC, pages
21–30, 2015.

[9] Monika Rauch Henzinger. Fully dynamic biconnectivity in
graphs. Algorithmica, 13(6):503–538, 1995.

[10] Monika Rauch Henzinger. Improved data structures for fully
dynamic biconnectivity. SIAM J. Comput., 29(6):1761–1815,
2000.

[11] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001.

[12] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J. Com-
put., 2(4):225–231, 1973.

[13] John E. Hopcroft and Robert Endre Tarjan. Efficient planarity
testing. J. ACM, 21(4):549–568, 1974.

[14] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vit-
ter, and Roberto Tamassia. Complexity models for incremen-
tal computation. Theor. Comput. Sci., 130(1):203–236, 1994.

[15] John H. Reif. Depth-first search is inherently sequential. Inf.
Process. Lett., 20(5):229–234, 1985.

[16] John H. Reif. A topological approach to dynamic graph
connectivity. Inf. Process. Lett., 25(1):65–70, 1987.

[17] Daniel Dominic Sleator and Robert Endre Tarjan. A data
structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362–
391, 1983.

[18] Robert Endre Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[19] Robert Endre Tarjan. Finding dominators in directed graphs.
SIAM J. Comput., 3(1):62–89, 1974.

[20] Mikkel Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In STOC, pages 112–119, 2005.

A Appendix
A.1 Proof of I2 using Property 5.1

LEMMA A.1. If Property 5.1 is maintained by the procedure
Dynamic-DFS, then invariant I2 will hold true at each stage
of the algorithm.

Proof. We give a proof by contradiction as follows. Assume
that x is the first vertex that is popped out of the stack before
some vertex y ∈ N(x) is visited. Consider the time when
a path p containing x was pushed in the stack. Clearly
y /∈ L(x), hence using Property 5.1 we know that some
y′ ∈ L(x′) is connected to y in the unvisited graph where
x′ is a descendant (not necessarily proper) of x in p. Let p∗

be a path between y′ and y in the unvisited graph.
Now consider the time when x is popped out of the

stack. Clearly all its descendants have been popped out, so
y′ has been visited by the traversal. Thus p∗ can be divided
into two non-empty sets A and B denoting visited and
unvisited vertices of p∗ respectively. Here y′ ∈ A and y ∈ B,
thus clearly for some vertex in A invariant I2 is not satisfied.
This contradicts our assumption that x is the first vertex that
is popped out of the stack for which I2 is not satisfied. Thus
maintenance of Property 5.1 ensures the invariant I2 in our
algorithm.

