
Single source distance oracle for planar digraphs avoiding a failed node or link

Surender Baswana∗ Utkarsh Lath∗ Anuradha S. Mehta∗

Abstract

Let G = (V, E) be a directed planar graph on n = |V |
vertices, and let s ∈ V be any fixed source vertex. We
show that G can be preprocessed in O(n polylog n) time
to build a data structure of O(n polylog n) size which
can answer the following query in O(log n) time for any
u, v ∈ V :

report distance from s to v in the graph G\{u}
We also address the all-pairs version of this prob-

lem and present a data structure with O(n
√

n polylog n)
preprocessing time and space which guarantees
O(
√

n polylogn) query time.

1 Introduction

The problem of finding shortest paths in graphs is
one of the most fundamental algorithmic problems of
computer science. In the last few decades, researchers
have explored the following variant of the shortest paths
problem, called the replacement paths problem. Let
G = (V, E) be a directed weighted graph on n = |V |
vertices and m = |E| edges. For any vertices u, v, x ∈ V ,
let P (u, v, x) denote the shortest path from u to v in
the graph G\{x}. The aim is to have a compact data
structure so that the path P (u, v, x) and its length can
be reported efficiently. In addition to being a problem
of independent interest, the replacement paths problem
appears to be a natural extension of the shortest paths
problem. Efficient solution of this problem and its
variants have been useful in dynamic routing as well
[19].

The all-pairs version of the replacement paths prob-
lem (where u, v and x can be chosen arbitrarily) has
been solved quite efficiently. Bernstein and Karger
[3], improving the work of Demetrescu et al. [4], de-
signed a data structure which can report length of
P (u, v, x) for any u, v, x ∈ V in O(1) time and, it takes
O(n2 polylog n) space and O(mn polylog n) preprocess-
ing time. These bounds match, up to poly-logarithmic
factors, the best bounds known for the classical all-pairs
shortest paths problem. Duan and Pettie [6] addressed

∗Department of CSE, I.I.T. Kanpur, India. Email:
{sbaswana,utkarsh.lath,anuradha.s.mehta}@gmail.com.
Research supported by the Indo-German Max Planck Center for
Computer Science (IMPECS).

an even harder variant of the all-pairs replacement paths
problem to handle failure of any two vertices.

For the single pair version of the replacement paths
problem (where u and v are two fixed vertices and x
can be any vertex from V), no significant breakthrough
has yet been made. For this problem, the trivial upper
bound O(mn) is still the best known upper bound,
and there is a lower bound of Ω(m

√
n) established by

Hershberger et al. [11]. However, for various weaker
versions of this problem, efficient results have been
obtained in the past [1, 2, 15, 16, 17].

We address the replacement paths problem in pla-
nar graphs. Planar graphs have occupied the cen-
ter stage of the classical shortest paths problem and
many interesting and novel results have been achieved
[5, 12, 13, 20]. Emek et al. [7] designed an O(n log3 n)
time solution for the single pair version of the replace-
ment paths problem in planar graphs. Through a series
of refinements [13, 21], this bound has been improved
to O(n log n). The result has also been extended to
bounded genus graphs by Erickson and Nayyeri [8].

We consider the single source version of the replace-
ment paths problem : Given a directed weighted planar
graph and a source vertex s, design a compact data
structure to report P (s, v, x) for any v, x ∈ V . As the
central contribution of this paper, we present an ex-
tremely compact data structure for this problem. This
data structure takes O(n polylog n) space and can be
built in O(n polylog n) time. Interestingly, it takes just
O(log n) time for reporting the length of P (s, v, x) for
any v, x ∈ V , hence the name “oracle”. Moreover, the
entire path P (s, v, x) can also be reported by spending
O(loglog n) time per edge on the path. This data struc-
ture also leads to a near optimal algorithm for the single
source second shortest paths problem in planar graphs.

We also obtain the first subquadratic space and
sublinear query time solution for the all-pairs version of
the replacement paths problem in planar graphs. Let
S ∈ [n3/2, n2]. We present a data structure which
occupies O(S) space and can report P (u, v, x) for any
u, v, x ∈ V in O(n2/S polylog n) time. This data
structure is obtained, with effortless ease, by combining
our data structure for the single source replacement
paths problem with the data structure for all-pairs
shortest paths devised by Djidjev [5]. We just provide
its sketch in Appendix.

1.1 Overview of the result and new ideas Let
T be the shortest paths tree rooted at source s in G.
Sleator and Tarjan [18] gave a technique for breaking
down a tree into vertex disjoint paths. Using this
technique in a straight forward manner, it suffices if we
can solve the single source replacement paths problem
where the failing vertex belongs to a given path Q
in tree T . So we focus on the latter problem and
design a near optimal data structure for it. At the
heart of our data structure lies an efficient solution
to a related problem, we call, Shortest Paths Avoiding
Suffix Subpaths (spass). To build our data structure,
we recursively partition Q into equal halves, and build
a balanced binary tree H(Q) with O(n) nodes. Each
node ν of this tree corresponds to a subpath of Q. We
augment ν with a data structure to solve the spass

problem for its subpath. Interestingly, the replacement
path P (s, v, x), for any v ∈ V, x ∈ Q, can be computed
by querying spass data structure associated with a
single node in H(Q).

It turns out that spass can be reduced to the
Multiple Source Shortest Paths (mssp) problem. Klein
[12] designed an O(n log n) space and time algorithm
to solve mssp in planar graphs. This by itself would
complete the solution to our problem, but solving O(n)
instances of the spass problem on the given graph would
take O(n2) space and time. To circumvent this problem,
we build a relatively small sized graph for each node of
H(Q) and show that it suffices to make spass queries
on these graphs only. To build these small size graphs,
we proceed as follows.

1. We make a couple of insightful observations about
spass data structures associated with various nodes
of H(Q). In particular, spass data structure at
a node bears some similarity with spass data
structure of some of its ancestor. This similarity
allows us to obtain a small sized graph for a node
by compressing the subgraph associated with some
of its ancestor. This compression involves a careful
pruning and shortcutting paths by edges.

2. We discover an interesting property about replace-
ment paths in planar graph (Theorem 3.1). This
property, which might be of independent interest,
proves to be helpful for our problem in the follow-
ing manner. In order to reduce the size of graph
associated with a node in H(Q) without destroy-
ing planarity, we need to add some edges which are
short-cuts of certain paths. Note that, addition of
edges, in general, may lead to creation of erroneous
replacement paths in a graph. The property (The-
orem 3.1) ensures that no such erroneous path gets
created if these edges are assigned weights suitably.

Organization of the paper After introducing various
notations in section 2, we describe an important prop-
erty of replacement paths in planar graphs in section 3.
Section 4 and 5 present efficient solution of a restricted
version of the single source replacement paths problem
wherein the failing vertex belongs to a given path. This
forms the core of our main result. We use this in con-
junction with a divide and conquer strategy to solve the
single source replacement paths problem in section 6.

2 Preliminaries

Let G = (V, E) be the given planar directed graph and
ω : E −→ R+ be a weight function on its edges. Let
s ∈ V be a source vertex and T be the shortest path tree
in G rooted at vertex s. Without loss of generality, we
assume uniqueness of shortest paths and replacement
paths. Throughout this paper, we will be working with
that planar embedding of G which has s lying on the
boundary of the infinite face. Let Q be any path in G.
We define the following notations.
• T (u) : the subtree of T rooted at u.
• Q(u, v) : the subpath of Q from vertex u to vertex
v. It is defined only if u, v ∈ Q, and u precedes v.
• P (u, v) : the shortest path from u to v in G.
• δ(u, v) : the length of P (u, v).
• P (u, v, Q) : the shortest path from u to v in G when
all the vertices of path Q fail.
• δ(u, v, Q) : the length of P (u, v, Q).
• first(Q) : the first vertex of Q.
• last(Q) : the last vertex of Q.

Definition 2.1. (family): Given a path Q in T , let
R be a subpath of Q. Let x be the vertex immediately af-
ter last(R) on Q. We define family(R, Q) (see Figure
1) as the set of vertices present in T (first(R))\T (x).

Q
s u v x

R

Figure 1: The vertices in the shaded region constitute
family(R, Q) where R = Q(u, v).

Definition 2.2. (G(x)): The subgraph of G induced
by vertices of T (x) and augmented by vertex s and
edges from s as follows. For each v ∈ T (x) with
neighbors outside T (x), add an edge (s, v) with weight
= min(u,v)∈E,u/∈T (x)(δ(s, u) + ω(u, v)).

It can be observed that we have to just work on G(x)
instead of G if we want to handle failure of any vertex

belonging to T (x). Notice that a replacement path
possesses optimal substructure property. This leads to
the following useful observation.

Observation 2.1. Let v be a vertex and let vertex
x ∈ P (s, v). If P (s, v, x) passes through a vertex w ∈
P (x, v), then P (s, v, x) = P (s, w, x) + P (w, v).

3 Bounded difference property of replacement
paths

Let v, w ∈ V be any two vertices and x be a failing
vertex. It is easy to observe that the difference between
the lengths of the two replacement paths P (s, v, x) and
P (s, w, x) in a general graph may be quite arbitrary.
However, for planar graphs, this difference is bounded
if v and w satisfy certain topological conditions.

Let (u, v) be an edge of G that is not present in
tree T . Let a be the lowest common ancestor of u
and v in tree T . Notice that P (a, u), edge (u, v), and
P (a, v) together form a separator in G. See Figure
2(i). In fact, ignoring the directedness of the graph,
this separator is actually the fundamental cycle defined
by (u, v) and tree T . Let w be any vertex such that s
and w belong to different regions of the plane defined by
this cyclic separator. The bounded-difference-property of
replacement paths in planar graphs claims the following
: No matter which vertex fails, the replacement path to
v can not be arbitrarily longer than the replacement
path to w. This claim holds even when an entire
subpath of T (not just a vertex) fails. The following
theorem states this property in a formal manner.

Theorem 3.1. Consider an embedding of the funda-
mental cycle defined by any non-tree edge (u, v) and tree
T . Let w be any vertex such that s and w lie on differ-
ent sides of this cycle. Then for any path Z in the tree
Twith s, v, w /∈ Z,

δ(s, v, Z)− δ(s, w, Z) ≤ δ(s, u) + ω(u, v)− δ(s, w)(3.1)

Proof. Let a be the lowest common ancestor of u and
v in T (see Figure 2(i)). If P (s, a) remains intact after
failure of Z then Equation 3.1 holds obviously. So let
us assume that the failing path Z includes a subpath of
P (s, a) (see Figure 2(ii)). Notice that the fundamental
cycle defined by (u, v) is a separator with s and w lie
on two different sides of it. So the path P (s, w, Z) must
intersect this separator at some vertex, say y. There are
only two possibilities of this path as shown in Figure
2(ii). Firstly observe that

δ(s, y) + δ(y, v, Z) ≤ δ(s, u) + ω(u, v)(3.2)

Now using triangle inequality, we can infer that
δ(s, w) ≤ δ(s, y)+δ(y, w, Z) and δ(s, v, Z) ≤ δ(s, y, Z)+

ww ss

y

y

aa

uu

vv

Z

(i) (ii)

Figure 2: (i) s and w lie on different sides of the
separator defined by (u, v), (ii) The replacement path
P (s, w, Z) intersects the separator at y.

δ(y, v, Z). Combining together these inequalities and
using δ(s, w, Z) = δ(s, y, Z) + δ(y, w, Z) we get

δ(s, w) + δ(s, v, Z) ≤ δ(s, w, Z) + [δ(s, y) + δ(y, v, Z)]

Plugging the inequality from Equation 3.2, RHS is
bounded by δ(s, w, Z) + δ(s, u) + ω(u, v). Rearranging
the terms, we get the desired Equation 3.1.

4 Data structure for failure of vertices on a
path Q ⊆ T

Let Q be any path in T originating from source s. In
this section we describe a data structure to report the
replacement path from source s to any vertex in G when
the failing vertex lies on Q. This data structure will
be based on a problem called Shortest Paths Avoiding
Suffix Subpaths, or spass in short.

4.1 spass problem A subpath R of a path Q is
called a suffix subpath of Q if last(R) = last(Q).

Definition 4.1. (The spass problem) Given a short-
est path Q in T , design a compact data structure for
efficiently reporting shortest path from s to any vertex
v ∈ V avoiding (i.e. not passing through any vertex of)
any given suffix subpath of Q.

There is no known efficient solution of spass for
general graphs. However, for planar graphs, there exists
a solution of spass with O(|G(first(Q))| log n) space
and O(log n) query time. This solution is obtained by a
simple reduction to the Multiple Source Shortest Paths
(mssp) problem, for which Klein [12] gave an efficient
algorithm. We describe the reduction of spass to
mssp in Section 5. Note that Emek et al. [7] and
Wulff-Nilsen [21] also used reduction to mssp for solving
similar subproblems in their algorithms for single pair
replacement paths problem.

4.2 Handling failure of a vertex from Q We
begin with showing a nice relationship between our
replacement paths problem and spass problem. Let
Q(u, v) be a subpath of Q, and consider the failure of
any vertex x ∈ Q(u, v). Let w be any descendant of v in
T . The replacement path P (s, w, x) would either skip

the entire suffix of Q(u, v) starting from x or it definitely
passes through v (see Figure 3).

QQ
uu vv

ww

ss xx zz

(i) (ii)

Figure 3: Two cases of P (s, w, x) (shown thick) from
perspective of subpath Q(u, v).

In the first case, the replacement path to w can be
computed by a single spass query on Q(u, v). In the sec-
ond case, using Observation 2.1, P (s, w, x) can be seen
as the concatenation of the replacement path P (s, v, x)
and the shortest path P (v, w) already available in T .
Based on these ideas, we now present a data structure
H(Q) to solve replacement paths problem when the fail-
ing vertex lies on Q.
H(Q) is a balanced binary tree. The root node of

H(Q) is associated with path Q itself. If Q has only 1
vertex, thenH(Q) is a singleton tree. If Q has more than
1 vertex, we divide Q into 2 subpaths Q1 and Q2 with
(nearly) equal number of vertices. So, Q = Q1 + Q2. In
this case, H(Q) is a binary tree with H(Q1) and H(Q2)
as its left child and right child respectively.

Let ν be any node in tree H(Q). Throughout the
paper, we shall use ν synonymously with the subpath
of Q associated with ν. We will denote the left child of
ν in H by ν.L, and its right child by ν.R. See Figure 4
for a better understanding of H(Q) and these concepts.

a

a

a

b

b

b

c

c

c

d

d

d

e

e

e f

f g

g

h

h

m

m

ν
ν.L ν.R

Q

Figure 4: Binary tree H(Q) constructed on path Q.

Each node ν of H(Q) is augmented with the following
information.

(a) A data structure ν.spass which solves spass prob-
lem on ν.L. In particular, a query ν.spass(w, x),
for any x ∈ ν.L and any w ∈ family(ν, Q), will
report the length of the shortest path from s to w
avoiding the entire suffix of ν.L starting from x.

(b) For each x ∈ ν.L, store δ(s, last(ν.L), x), i.e., the

distance from s to the last vertex of ν.L avoiding x.
(Note that it will be undefined for x = last(ν.L)).

We now describe an algorithm to report δ(s, w, x) for
any failing vertex x ∈ Q and destination vertex w.
Without loss of generality assume that w is descendant
of x in T (otherwise distance to w remains intact even
after the failure of x). We introduce a notation here.
Let path-parent(w, Q) denote the vertex of Q at which
P (s, w) leaves Q; for example, it is the vertex z in Figure
3. We first compute the Lowest Common Ancestor
(lca) of path-parent(w, Q) and x in H(Q). Let it be
ν. The distance δ(s, w, x) can be retrieved from the data
structure associated with ν as described by Algorithm
1. This algorithm is based on the ideas discussed above.
In particular, the else part is captured precisely in
Figure 3 with ν.L being the subpath Q(u, v).

Let us analyse the running time of Algorithm 1.
Notice that path-parent(w, Q) is the lowest common
ancestor of w and last(Q) in tree T . Algorithm 1
makes two lca queries - one on T and one on H(Q),
which take O(1) time (see [10]). In addition, it makes
a single spass query which takes O(log n) time. Hence
Algorithm 1 takes O(log n) time.

Algorithm 1: Reporting δ(s, w, x) where x is a
failing vertex on path Q

ν ← lca(x,path-parent(w, Q));
if (x = last(ν.L)) then

return ν.spass(w, x)
else

return min

{

ν.spass(w, x)
δ(s, last(ν.L), x) + δ(last(ν.L), w)

Let us discuss preprocessing of the data structure
H(Q). Assuming that for each node of H(Q), part
(a) has already been computed, we can compute part
(b) for all nodes efficiently by pursuing a bottom-up
approach as follows. Consider any node µ ∈ H(Q). As
part (b) for µ, we need to compute δ(s, last(µ.L), x)
for all x ∈ µ.L. If we invoke Algorithm 1 with w =
last(µ.L), it will query node ν = lca(x, last(µ.L)).
Notice that ν is descendant of µ in H(Q) and we have
been pursuing a bottom-up approach. Therefore, the
node ν is already equipped with part (a) and (b) of
its information. Hence it will take O(log n) time to
compute δ(s, last(µ.L), x) for any x ∈ µ.L. Thus
all the nodes of H(Q) can be augmented with part
(b) in O(n log2 n) time. Leaving this overhead of
O(n log2 n), the main task in preprocessing of H(Q)
is the computation of part (a), that is, ν.spass for
each ν ∈ H(Q). If we naively use the mssp reduction
to compute and store ν.spass for each ν ∈ H, then

ν.spass will require O(|G(first(ν))| log n) space and
preprocessing time. This will lead to Θ(n2) space and
preprocessing time for the entire H(Q). In the following
section, we use novel insights to show that spass data
structures at deeper nodes in H(Q) can be built on
smaller proxy graphs instead of the original input graph
G. This leads to O(n log3 n) bound on the space and
the preprocessing time of H(Q).

5 Efficiently building the data structure H(Q)

We begin with an overview of the mssp algorithm of
Klein [12] followed by the reduction of spass to mssp.

5.1 Overview of mssp algorithm of Klein [12]
Given a directed planar graph G, and a face f in G,
mssp problem aims at preprocessing G to build a data
structure that can efficiently answer queries of the type:
report δ(s, t) for any s ∈ f, t ∈ V . Klein [12] designed
an O(n log n) time algorithm to build an O(n log n) size
data structure for the mssp problem. The query time
achieved is O(log n). Before giving an overview of this
algorithm, we begin with some well known terminologies
related to shortest path problem.

Let T be a tree rooted at a vertex s in G, and
let dT (v) denote the distance from s to vertex v in
this tree. An edge e = (x, y) ∈ E\T is called tense
if dT (y) > dT (x) + ω(e). Tree T will be the shortest
paths tree iff no (non-tree) edge is tense. Relaxation of
a tense edge e in a tree T involves removing the edge
incident to y in T and adding e to T . Hence, the task
of transforming any tree T into the shortest path tree
can be achieved through a sequence of relaxations of the
tense edges.

We now present a high-level description of mssp

algorithm of Klein [12]. Enumerate all vertices on f as
s1, s2,...,s|f | in anti-clockwise direction. The algorithm
starts with the shortest path tree T1 rooted at s1 and it
constructs the rest of the trees Ti, i > 1 incrementally
and implicitly. Given a shortest path tree Ti−1, the tree
Ti is built in the following manner: Consider the source
vertex making transition from si−1 to si in Ti−1. As a
result, there will be some non-tree edges in the graph
which become tense. Carrying out relaxation until there
is no tense edge left will provide Ti. The mssp algorithm
of Klein [12] computes the tense edges and carries out
their relaxation in a specific order such that exactly
those edges get relaxed which belong to Ti\Ti−1. In
this manner Ti−1 gets transformed to Ti (see Figure 5).

Klein [12] exploited planarity crucially to show that
during the entire movement of source from s1 to s|f |,
every edge in the graph is relaxed at most once. All the
trees Ti’s can thus be expressed by the shortest path
tree T1 and a sequence of O(n) edge relaxations as the
source moves from s1 to s|f |. If an edge e gets relaxed

si
si−1

f f

Figure 5: The dashed edges are the edges that get
relaxed as the source moves from si−1 to si.

while computing shortest path Ti from Ti−1, we record
the relaxation of e as a pair (e, i) and call i as relaxation
index of e. The sequence of edge relaxations is processed
to build an O(n log n) space persistent data structure
which implicitly stores all trees Ti. This data structure
takes O(log n) time to report the distance of any vertex
v ∈ G from any vertex si ∈ f .

5.1.1 Reduction of spass to mssp We now give
a reduction from spass to mssp. Let Q = (s =
x0, x1, . . . , xτ = t) be a given shortest path in T . Given
an edge e = (xi, y) with e /∈ Q, we say that e lies to the
left (similarly right) of Q if i ∈ {0, τ} or e occurs strictly
between (xi, xi+1) and (xi−1, xi) in the counterclockwise
(clockwise) order. Let R be the replacement path from
s to a vertex v when some suffix subpath Q(xj , t) of Q
fails. We say that R leaves Q from left (similarly from
right) if the first edge on R which is not shared by Q lies
to the left (right) of Q. We build data structure spassl,
to retrieve the paths R that leave Q from the left, by
a reduction to mssp problem as given below. A similar
data structure spassr can be built to retrieve paths R
that leave Q from the right.

s

s

f
000

2 3

3

3

3 4 45

5

5

6

7

10 12

15
∞

Figure 6: Reduction of spassl to mssp

We build a graph G′ by modifying G as follows (see
Figure 6):
• Reverse the direction of all edges on the path Q and
assign zero weight to each of them.
• For each vertex xi ∈ Q, increase the weight of all its
outgoing edges which lie to the left of Q by δ(s, xi).
• Remove all other edges incident to vertices of Q.
• Add edge (s, t) of weight ∞. This creates a face f

which has all the vertices of Q on it.
Lemma 5.1 states the relationship between spassl

on path Q in G and mssp on face f in G′.

Lemma 5.1. Length of the shortest path from s to v
avoiding 〈xi+1, . . . , xτ 〉 in G which leaves Q from left is
the same as the length of the shortest path from xi to v
in G′.

Because of this direct relation between spass and mssp

we use them interchangeably in the later sections.

5.2 Ideas leading to linear space and prepro-
cessing time for H(Q) For the sake of compactness,
in the following discussion, we use H to denote H(Q),
family(ν) to denote family(ν, Q), and G(ν) to denote
G(first(ν)).

We introduce a notation here. For a node ν ∈ H,
define l-parent(ν) as the nearest ancestor µ of ν in H
such that ν appears in the left subtree of µ. Conversely,
ν is said to be a l-child of µ. See Figure 7.

µµ

µ.L

ν

H

Figure 7: A node µ and its l-children in H.

Notice that ν is a suffix subpath of µ.L and
family(ν) is a subset of family(µ). As a result,
spass(µ) and spass(ν) have certain common features
as follows. Consider any vertex w ∈ family(ν) and
x ∈ ν.L and let us analyse the structure of the path
ν.spass(w, x). Note that µ.spass(w, x) avoids entire
suffix of µ.L starting from x. However, ν.spass(w, x)
can potentially use some portion of µ.L; in particular,
it can use ν.R. This slight distinction between ν and
µ leads us to the following observations. If the path
ν.spass(w, x) does not use any vertex of ν.R, then it is
the same as µ.spass(w, x) (see Figure 8 (i)). If not, let
v be the first vertex of the path ν.spass(w, x) which lies
on ν.R. One possibility is that the subpath from v to w
uses only vertices of family(ν). This is shown in Figure
8 (ii). Otherwise, let a be the last vertex of the path
that does not belong to family(ν). At first glance, it
may appear that the portion of ν.spass(w, x) between
v and a may be quite arbitrary. However, notice that
the path P (v, a), which is already in T , is intact even
when any suffix subpath of ν.L fails. Therefore, using

Observation 2.1 the subpath of ν.spass(w, x) from v to
a is just P (v, a). Figure 8 (iii) depicts this case.

Considering all these cases, observe that any
ν.spass query can be answered by building spass data
structure on a graph which, in addition to having all
vertices and edges of family(ν), satisfies the following
properties.

1. For all vertices w ∈ family(ν)\ν.R, it has the path
µ.spass(w, x) for all x ∈ ν.L. This will take care of
ν.spass(w, x) shown in Figure 8 (i).

2. For vertices w ∈ ν.R, it has the path µ.spass(y, x)
for all y such that (y, w) is an edge in G. Note
that y may not necessarily be present in family(ν).
This property, along with property 1, will take care
of ν.spass(w, x) shown in Figure 8 (ii).

3. For all edges (a, b) such that a /∈ family(ν) and
b ∈ family(ν), the graph has a path of length
δ(last(ν), a) + ω(a, b) from last(ν) to b. This
property, along with property 1 and 2, will take
care of ν.spass(w, x) shown in Figure 8 (iii).

For each ν, we construct a small sized graph
Greduced(ν), or Gr(ν) in short, which satisfies the above
three properties. Before providing the complete details
of construction of Gr(ν), we provide a sketch here. We
start with Gr(µ) and sparsify it by keeping only those
edges which are either incident to some vertex of the
set family(ν) or belong to some path µ.spass(w, x),
x ∈ ν.L. This graph will satisfy the first two properties
mentioned above. We then reduce its size by removing
some vertices and shortcutting some paths by edges.
We call this graph G∗(ν). Thereafter, we modify G∗(ν)
and construct Gr(ν) so that it also satisfies the third
property. A trivial way to construct Gr(ν) from G∗(ν)
would be the following. For every edge (a, b) such that
a /∈ family(ν) and b ∈ family(ν), add an edge from
last(ν) to b of required length. However, if we do so,
the resulting graph may no longer be planar. To over-
come this problem, we employ the bounded difference
property of replacement paths in planar graphs (Theo-
rem 3.1).

5.3 Construction of Gr(ν) We construct the graphs
Gr(ν) in a top-down manner on the tree H. The
nodes of H which have no l-parent are the ones that
represent some suffix subpath of Q. If ν is one such
node, then we set Gr(ν) = G(ν). For example, for
ν = Q, Gr(ν) = G. For other nodes ν we assume
that the three properties mentioned in the previous
section hold for Gr(µ), where µ = l-parent(ν). We
then construct Gr(ν) using Gr(µ), ensuring that the
properties hold for Gr(ν). Thus, by induction, we
ensure that for all ν ∈ H, Gr(ν) satisfies the required
properties.

ww

w yy

a

family(ν)

b
vv xxx

ννν
µ.L (i) (ii) (iii)

Figure 8: Possible structures of the path ν.spass(w, x).

5.3.1 Construction of G∗(ν) We require G∗(ν)
to satisfy the first two properties mentioned above.
Though Gr(µ) can serve as G∗(ν), we need a smaller
subgraph for our purpose. Let T µ(x) denote the short-
est path tree rooted at s in the graph Gr(µ)\R, where R
is the suffix subpath of µ.L starting at x. It is sufficient
to have the edges of the set ∪x∈ν.LT µ(x) only. These
edges can also be viewed as: the edges of T µ(first(ν))
and the edges that get relaxed as the source moves from
first(ν) to last(ν.L) while executing mssp on Gr(µ).

Let us assign red or blue color to the edges of
∪x∈ν.LT µ(x). Assign red color to all those edges which
have at least one end-point in family(ν). Also assign
red color to all those edges that are relaxed when the
source moves from first(ν) to last(ν.L) during mssp

on Gr(µ). The remaining edges are colored blue. We
assign colors to the vertices as follows. The end-points of
all red edges are colored red and the remaining vertices
are colored blue.

T µ(first(ν))

(i)

u u

v′

(ii)

v v

Figure 9: Transformation of T µ(first(ν)) to remove all
blue vertices (shown hollow). As shown in (ii), only red
vertices (shown solid) remain. The thick edges are red
edges, the thin edges are blue edges.

It can be seen that the vertices that belong to
or are neighboring to family(ν) will be colored red.
So in order to compute G∗(ν) of small size, we mod-
ify ∪x∈ν.LT µ(x) such that distance between any two
red vertices is preserved, but all blue vertices are re-
moved. Notice that each blue edge is an edge of the
tree T µ(first(ν)). So we first remove all blue edges
and then connect every red vertex with its nearest red
ancestor in the tree T µ(first(ν)) (if not already con-

nected) by a new blue edge whose length is equal to the
distance between them in the tree. After this procedure,
the blue vertices are isolated and can be removed. See
Figure 9.

5.3.2 Transforming G∗(ν) into Gr(ν) We first in-
troduce some notations. An edge e = (a, b) is a crossing
edge if a /∈ family(ν) and b ∈ family(ν), and a re-
verse crossing edge if a ∈ family(ν) and b /∈ family(ν).
Consider an imaginary line L passing through last(ν)
which splits every crossing and reverse crossing edge. L
will act as a separator for G∗(ν), separating the vertices
of family(ν) from those that lie beyond family (see Fig-
ure 10). Starting from vertex v0 = last(ν), we traverse
along L in any one direction (the same will be done in
the other direction as well). Suppose we encounter edges
e1 = (a1, b1), e2 = (a2, b2), . . ., in that order, during the
traversal. For each edge el, do the following:

• At the point of intersection of el with L, create
a new vertex vl and add an edge from vl−1 to vl.
Remove the edge (al, bl) and add edges (al, vl) and
(vl, bl).

• Assign weights to the new edges as follows.
(i) ω(vl−1, vl) = δ(s, al)− δ(s, al−1).
(ii) ω(al, vl) = 0.
(iii) ω(vl, bl) = ω(el).

family(ν)

G∗(ν) Gr(ν)
L

ss

a1

a2

b1

b2

Figure 10: Transforming G∗(ν) into Gr(ν) by adding
new vertices along (reverse) crossing edges. The dashed
edge shows the false path added between a1 and b2.

The transformation described above ensures the fol-
lowing. If el is a crossing edge, then the length of the

new path from last(ν) to bl will be δ(last(ν), al) +
ω(el). Hence Gr(ν) satisfies the third property men-
tioned earlier. Furthermore, if el is a reverse crossing
edge, the new path from last(ν) to bl will have length
no less than δ(s, bl)− δ(s, last(ν)) = δ(last(ν), bl).

However, a problem with this transformation is
that it introduces some “false paths” in the resulting
graph: For every pair of edges el1 and el2 , l1 < l2,
now there is a new path from al1 to bl2 which was
not present in the original graph (see Figure 10). We
have to ensure that this “false path” does not affect the
shortest path avoiding suffix path from s to the vertex
bl2 . The bounded difference property of replacement
paths (Theorem 3.1) proves to be crucial here as follows.

Notice that in Gr(ν), el2 is not present in the
shortest path tree rooted at s, and P (s, al2), el2 , and
P (s, bl2) form a separator in Gr(ν) that separates s
and al1 . Thus, by bounded difference property of
replacement paths (Theorem 3.1), for any path Z in
T not containing s and bl2 ,

δ(s, bl2 , Z)− δ(s, al1 , Z) ≤ δ(s, al2) + ω(el2)− δ(s, al1)

It can be verified that the RHS of the above inequality
is the same as the length of the “false path” introduced
between al1 and bl2 . Hence, the presence of the “false
path” in Gr(ν) will not alter δ(s, bl2 , Z) for any Z.

5.4 Analysis We first provide a bound on
∑

ν∈H

∑

v∈family(ν) deg(v). Any vertex v will
belong to family of at most one node at any level of H
because whenever a node ν ∈ H is partitioned into two
halves L and R, every vertex v ∈ family(ν) goes either
into the family of ν.L or into family of ν.R, but not
both. There are O(log n) levels in H, hence v belongs
to family of at most log n nodes. Therefore,

∑

ν∈H

∑

v∈family(ν)

deg(v) ≤ log n
∑

v∈G

deg(v) = O(n log n)

(5.3)
Now, we provide a bound on the sum of sizes of Gr(ν)
for all ν ∈ H. Consider any edge of Gr(ν). It is of one
of the 4 types:

1. A red edge that was incident to some vertex v ∈
family(ν). The number of such edges is at most
the sum of degrees of all the vertices of family(ν).
Such edges will be called red edges of type 1. The
total number of such edges summed over all Gr(ν)
is O(n log n) due to Equation 5.3.

2. A red edge that was not incident to any vertex of
family(ν). This edge must be one of those edges
that were relaxed when the source moved from
first(ν) to last(ν.L) during mssp on Gr(µ) where
µ = l-parent(ν). We call it red edge of type 2.

3. A blue edge. Note that at most one blue edge
will be incident to any vertex. Moreover, any blue
edge is between two red vertices, therefore, we can
safely say that number of blue edges is no more
than number of red edges. We will ignore counting
blue edges henceforth.

4. An edge that was added when Gr(ν) was con-
structed from G∗(ν). Only 3 new edges are
added for every edge whose one endpoint lies in
family(ν). The number of such edges can be
bounded by O(n lg n) due to equation 5.3. These
edges will also be called as red edges of type 1.

We only need to bound the total number of red edges of
type 2. Any red edge of type 2 in Gr(ν) must be present
in Gr(µ). If it was a red edge of type 2 in Gr(µ), then it
must have been passed from µ’s l-parent. Otherwise,
it was either a blue edge or a red edge of type 1 in Gr(µ).
We can ensure that no blue edge of Gr(µ) gets passed
down from µ to ν as a red edge of type 2 in Gr(ν) (see
Appendix for details). In that case, every red edge of
type 2 in Gr(ν) must have been a red edge of type 1 in a
graph Gr(λ) for some ancestor λ of ν; and it must have
been “passed on” from there to Gr(ν) through a series
of “l-ancestors” of ν such that it was a red edge of
type 2 at all those ancestors. This suggests that for each
red edge of type 1 at a node in H, we need to count the
number of its descendants in H where it appears as a
red edge of type 2.

Consider a node µ of H and let ν1, ν2, . . . , νk be its
l-children (see Figure 7). Consider any red edge e in
Gr(µ). Recall that while executing mssp on Gr(µ), an
edge gets relaxed at most once. Therefore, if x ∈ µ.L
be such that e got relaxed while computing T µ(x) and
x ∈ νi.L, then e will be present as a red edge of
type 2 only in Gr(νi). Hence, any red edge of type
1 present in Gr(µ) will be passed on to at most one
of its l-children as a red edge of type 2. Also, this
l-child will in turn pass it on to at most one of its
l-children and this sequence will go on till we reach
a leaf of the tree H. So any red edge of type 1 present
at µ will be present as a red edge of type 2 at no more
than log n nodes of H. Hence, the total number of red
edges of type 2, summed over all nodes of H will be at
most log n times the total number of red edges of type
1 summed over all nodes of H. Hence,

∑

ν∈H |Gr(ν)| =
O(n log2 n). The spass data structure on a n vertex
graph occupies O(n log n) space, so the total space
requirement of data structure associated with H(Q) is
∑

ν∈H O(|Gr(ν)| log n) = O(n log3 n). Building spass

on n vertex graph takes O(n log n) time. Gr(ν) can
be built from Gr(µ) in O(|Gr(µ)|) time. However, a
node µ is l-parent of at most log n nodes of H, so the

preprocessing time of H(Q) is:
∑

ν∈H,µ=l-parent(ν)

O(|Gr(ν)| log n+|Gr(µ)|) = O(n log3 n)

We can thus state the following theorem.

Theorem 5.1. For any path Q present in the shortest
path tree T rooted at vertex s in G, a data structure of
O(n log3 n) size can be built in O(n log3 n) time that can
report δ(s, v, x) in O(log n) time for any x ∈ Q, v ∈ V .

6 Data structure for the single source
replacement paths problem

In order to solve the single source replacement paths
problem, we use Theorem 5.1 and pursue a divide and
conquer approach. We compute a path Q in tree T using
heavy path decomposition technique given by Sleator
and Tarjan [18] as follows. Starting from s, we traverse
down the tree T and keep extending Q along that edge
from which the largest (in terms of no. of nodes) subtree
hangs. We stop when we reach a leaf node. The path Q
created in this manner has the following nice property.

Let v1, ..., vk be the roots of the subtrees of T
connected to the path Q with an edge. Each of T (vi)’s
are disjoint and each T (vi) has fewer than n/2 vertices.

First we build a data structure for handling failure
of any vertex from Q according to Theorem 5.1. Then,
for each 1 ≤ i ≤ k, we recursively solve the single source
replacement paths problem for G(vi) (see Definition
2.2). It follows from the property mentioned above that
G(vi) has at most n/2 vertices. So the depth of the
recursion will be O(log n) only. We can thus state the
following theorem.

Theorem 6.1. Given a directed planar graph G =
(V, E) on n vertices and a source vertex s, a data
structure of O(n log4 n) size can be built in O(n log4 n)
time which can report δ(s, v, x) in O(log n) time for any
v, x ∈ V .

7 Conclusion

We presented a single source distance oracle for planar
digraphs avoiding any single failed vertex. Its size and
construction time are optimal up to poly-logarithmic
factors. It can be adapted to handle edge failure as
well by introducing a vertex at the center of each edge.
We would like to conclude with an open problem: Is it
possible to design a compact distance oracle for a planar
digraph which can handle multiple failures ?

References

[1] S. Baswana and N. Khanna. Approximate shortest
paths avoiding a failed vertex: Optimal size data
structures for unweighted graphs. In STACS, pages
513–524, 2010.

[2] A. Bernstein. A nearly optimal algorithm for approxi-
mating replacement paths and k shortest simple paths
in general graphs. In SODA, pages 742–755, 2010.

[3] A. Bernstein and D. Karger. A nearly optimal oracle
for avoiding failed vertices and edges. In STOC, pages
101–110, 2009.

[4] C. Demetrescu, M. Thorup, R. A. Chowdhury, and
V. Ramachandran. Oracles for distances avoiding a
failed node or link. SIAM J. Comput., 37(5):1299–
1318, 2008.

[5] H. N. Djidjev. Efficient algorithms for shortest path
queries in planar digraphs. In WG, pages 151–165,
1996.

[6] R. Duan and S. Pettie. Dual-failure distance and
connectivity oracles. In SODA, pages 506–515, 2009.

[7] Y. Emek, D. Peleg, and L. Roditty. A near-linear time
algorithm for computing replacement paths in planar
directed graphs. In SODA, pages 428–435, 2008.

[8] J. Erickson and A. Nayyeri. Computing replacement
paths in surface embedded graphs. In SODA, pages
1347–1354, 2011.

[9] G. N. Frederickson. Fast algorithms for shortest paths
in planar graphs, with applications. SIAM J. Comput.,
16(6):1004–1022, 1987.

[10] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[11] J. Hershberger, S. Suri, and A. Bhosle. On the diffi-
culty of some shortest path problems. ACM Transac-

tion on Algorithms, 3:123–139, 2007.
[12] P. N. Klein. Multiple-source shortest paths in planar

graphs. In SODA, pages 146–155, 2005.
[13] P. N. Klein, S. Mozes, and O. Weimann. Shortest

paths in directed planar graphs with negative lengths:

a linear-space O(n log2 n)-time algorithm. ACM

Transactions on Algorithms, 6(2), 2010.
[14] R. J. Lipton and R. E. Tarjan. A separator theorem

for planar graphs. SIAM J. App. Math., 36(2):177–189,
1979.

[15] K. Malik, A. K. Mittal, and S. K. Gupta. The k most
vital arcs in the shortest path problem. Operation

Research Letters, 4:223–227, 1989.
[16] E. Nardelli, G. Proietti, and P. Widmayer. Finding the

most vital node of a shortest path. Theor. Comput.

Sci., 296(1):167–177, 2003.
[17] L. Roditty and U. Zwick. Replacement paths and k-

simple shortest paths in unweighted directed graphs.
In ICALP, pages 249–260, 2005.

[18] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. JCSS, 26:362–391, 1983.

[19] M. Thorup. Fortifying OSPF/IS-IS against link-
failure. manuscript, 2001.

[20] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004.

[21] C. Wulff-Nilsen. Solving the replacement paths prob-
lem for planar directed graphs in O(n log n) time. In
SODA, pages 756–765, 2010.

Appendix

Avoiding the passing of blue edges as red edge
of type 2

First we describe the situation under which a blue edge
in Gr(ν) could be passed as a red edge of type 2 to
some l-child of ν. Consider an edge (u, v) in Gr(ν)
which is either a red edge of type 2 or a blue edge.
Notice that both u and v lie outside family(ν). The
construction of G∗(ν) from Gr(µ) implies that there
exists at least one vertex, say x, in ν.L such that (u, v)
belongs to T µ(x); let w be the first such vertex from ν.L.
If w = first(ν), then (u, v) is a blue edge, otherwise it
will be a red edge of type 2. In the latter case, it means
that (u, v) gets relaxed in the shortest path tree when
the source vertex moves to w while executing mssp in
graph G∗(ν). The graph G∗(ν) is later transformed into
Gr(ν). Notice that difference between Gr(ν) and Gr(µ)
is that the vertices of ν.R can be used by any suffix
avoiding shortest path. This can prepone or postpone
the relaxation of edge (u, v) while executing mssp on
Gr(ν) as follows : when the source reaches vertex w,
the shortest path to v could pass through some vertices
of ν.R (see Figure 11). However, as the source further
moves down ν.L, on reaching some vertex w′, a shorter
path to v is available which uses the edge (u, v). It will
be at this point that the edge (u, v) would get relaxed.
So the relaxation of edge (u, v) gets postponed (in a
similar fashion, it can be preponed). If (u, v) was a
blue edge in Gr(ν), then this postponing of relaxation
of (u, v) will enforce it to be passed on as a red edge of
type 2 to some of the l-children of ν. However, this
can be avoided altogether as discussed below.

u v
x

ν.family

ν
w w′

Figure 11: Relaxation of edge (u, v) gets postponed due
to presence of ν.R in Gr(ν).

Though mssp on Gr(ν) solves spass for destination
vertices lying in Gr(ν), actually we need to solve spass

for destination vertices from family(ν) only. This key
observation motivates us to take the following simple-
minded approach. For each blue edge or red edge of
type 2 whose relaxation got preponed or postponed in
Gr(ν), we restore its relaxation index back to the index
as specified by Gr(µ) (see Subsection 5.1). As a result,
a blue edge at ν will be passed only as a blue edge
to its l-children in H. Interestingly this restoration

of the relaxation indices does not affect ν.spass(w, x)
for any w ∈ family(ν) due to the following reason. If
ν.spass(w, x) does not pass through any vertex of ν.R,
then ν.spass(w, x) is the same as µ.spass(w, x). In this
case, the restoration of relaxation index of any edge does
not affect ν.spass(w, x). If ν.spass(w, x) indeed passes
through some vertex of ν.R, then ν.spass(w, x) will not
even pass through any blue or red edge of type 2 (see
Figure 8).

All-pairs replacement paths in planar digraphs

Lipton and Tarjan [14] showed that every planar graph
G on n vertices has a set of O(

√
n) vertices whose

removal splits the graph into connected components
each of maximum size 2n/3. Such a set S is called a
balanced separator of G. This result can be exploited to
construct a tree data structure T (G) as follows. First
compute a balanced separator S of G. Let G1, ..., Gk

be the connected components (ignoring direction of the
edges) of G\S. The root node of T (G) stores G and S,
and its children are T (Gi)’s built recursively for each
1 ≤ i ≤ k. For any node α in T (G), let Gα be Sα

respectively the subgraph and the separator stored in
it. It follows from the construction of T (G) that for
each vertex v ∈ V , there is a unique node α ∈ T (G)
such that v ∈ Sα. Also observe that T (G) has O(log n)
height. The data structure for all-pairs replacement
paths problem is obtained by a suitable augmentation
of T (G) as follows.

For each vertex s ∈ Sα, we build a data structure
D(s) for the single source replacement paths in Gα,
and also a similar data structure, Dr(s), in the graph
obtained by reversing the edge directions in Gα. Notice
the following key observation about this data structure.
For any u, v, x ∈ V , there exists a unique node α in
T (G) such that P (u, v, x) is present in Gα and it passes
through some vertex s ∈ Sα. Hence the data structures
D(s) and Dr(s) together store P (u, v, x). In particular,
δ(s, v, x) + δr(s, u, x) = δ(u, v, x). We can use this
observation to answer the query of δ(u, v, x) as follows.

For all nodes β from lca(u, v) to the root in
T (G), and for each s ∈ Sβ , we query D(s) and
Dr(s) to compute δ(s, v, x) + δr(s, u, x), and report
the minimum. The total number of such queries will
be O(

√
n), and each query takes O(log n) time. Thus it

takes O(
√

n log n) time to compute δ(u, v, x).
The space occupied by the data structure described

above is O(n3/2 log4 n). This can be easily generalized
to achieve O(S) space and O(n2/S polylog n) query time
for any S ∈ [n3/2, n2] using ǫ-division of planar graphs
designed by Frederickson [9].

