
Fault Tolerant and Fully Dynamic DFS in
Undirected Graphs: Simple Yet Efficient
Surender Baswana
Computer Science Dept., Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany
sbaswana@hni.upb.de, sbaswana@cse.iitk.ac.in

Shiv Gupta
Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
shivguptamails@gmail.com

Ayush Tulsyan
Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
ayushtulsyan01@gmail.com

Abstract
We present an algorithm for a fault tolerant Depth First Search (DFS) Tree in an undirected graph.
This algorithm is drastically simpler than the current state-of-the-art algorithms for this problem,
uses optimal space and optimal preprocessing time, and still achieves better time complexity. This
algorithm also leads to a better time complexity for maintaining a DFS tree in a fully dynamic
environment.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Depth first search, DFS, Dynamic graph algorithms, Fault tolerant

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.66

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.01726

Funding Surender Baswana: The research work was funded by the Alexander von Humboldt
Foundation.

1 Introduction

Depth First Search (DFS) is a widely popular graph traversal method. The traversal routine,
formalized by Tarjan [44] in 1972, has played a crucial role in various graph problems including
reachability, bi-connectivity, topological sorting, and strongly connected components.

Given an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges, DFS
traversal on the graph takes O (m+ n) time and results in a DFS tree of G.

Most of the graphs in real-world applications keep changing with time. Vertices and
edges keep entering and leaving the graph at various time steps. This dynamic aspect has
motivated researchers to design algorithms that can update the solution of the corresponding
problem efficiently after each such change in the graph. There are two models used for solving
these graph problems, namely, fault tolerant algorithms and dynamic graph algorithms.

The fault tolerant version of any problem P on a graph G is to construct a compact data
structure, using which, for any given set of failed edges or vertices F , one can efficiently
report the solution of P on G \F . Many elegant fault tolerant algorithms have been designed
for problems including connectivity [13, 21, 25], shortest paths [10, 11, 16, 20, 28], and
spanners [12, 15].

The dynamic version of any problem P on G is modeled as follows. For any online
sequence of updates (insertion or deletion of an edge/vertex), one has to report the solution
of P efficiently after every update. Note that, unlike the fault tolerant version, the updates
are persistent in dynamic version, i.e., after each update, the solution has to be reported

© Surender Baswana, Shiv Gupta, Ayush Tulsyan;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 66; pp. 66:1–66:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbaswana@hni.upb.de, sbaswana@cse.iitk.ac.in
mailto:shivguptamails@gmail.com
mailto:ayushtulsyan01@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.66
https://arxiv.org/abs/1810.01726
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

taking into account all the updates made so far. Algorithms which handle both insertion and
deletion of vertices/edges are called fully dynamic graph algorithms, whereas the algorithms
that handle either insertions or deletions are called partially dynamic graph algorithms, more
specifically incremental or decremental graph algorithms, respectively. The prominent results
for dynamic graph problems include connectivity [22, 30, 32], reachability [39, 41], shortest
path [19, 29, 40], matching [6, 9, 43], spanner [8, 26, 38], min cut [45], Even-Shiloach tree [23],
minimum spanning tree [31, 35], and graph sparsifiers [1].

1.1 Previous Results on Fault Tolerant and Dynamic DFS
Franciosa et al. [24] presented an incremental algorithm for maintaining a DFS tree in a
directed acyclic graph (DAG) which takes overall O (mn) time for any sequence of m edge
insertions. For undirected graphs, Baswana and Khan [7] presented an incremental algorithm
for a DFS tree which takes overall O

(
n2) time for any sequence of edge insertions. Baswana

and Choudhary [4] designed a randomized decremental algorithm for a DFS tree in a DAG
with overall expected O (mn logn) time for any sequence of edge deletions.

None of the partially dynamic algorithms stated above achieves an o (m) bound over
the worst-case complexity of a single update. Moreover, there were no fully dynamic or
fault tolerant algorithms for DFS in undirected graphs until recently. In 2016, the first fault
tolerant algorithm was presented that takes O

(
nk log4 n

)
time to report a DFS tree for any

set of k failed vertices or edges [3]. The time complexity was further improved by Chen et
al. [17] to O

(
nk log2 n

)
. Both [3, 17] require a data structure occupying O

(
m log2 n

)
bits.

Nakamura and Sadakane [34] reduced the space occupied by the data structure to O (m logn)
bits which is indeed optimal 1. Using the standard technique of periodic rebuilding, the fault
tolerant algorithms presented in [3, 17, 34] were also extended to o (m) fully dynamic DFS
algorithms (refer to Table 1 for comparison).

Recently, Chen et al. [18] designed an O (n) time incremental algorithm for DFS tree
in undirected graphs, which is optimal if it is required to output the DFS tree after each
update. For the hardness results for the dynamic ordered DFS problem, the reader may refer
to the work of Reif [36, 37] and Miltersen et al. [33].

1.2 Familiarizing with the Fault Tolerant DFS Problem
For an undirected graph, DFS traversal results in a spanning tree rooted at the vertex from
where the DFS begins. The depth first nature of the traversal ensures the following property:

B Property 1. (DFS Property) For each vertex v ∈ V , every neighbour of v in the graph
appears either as an ancestor of v or as a descendant of v in any DFS tree.

The DFS property implies that a non-tree edge is never a cross edge - an edge whose endpoints
do not share an ancestor-descendant relationship. It is due to this reason that each non-tree
edge is called a back edge. We now define ancestor-descendant paths.

I Definition 2. (Ancestor-descendant Path) A path in a DFS tree is called an ancestor-
descendant path if its endpoints have an ancestor-descendant relationship in the tree.

In order to familiarize with the problem of fault tolerant DFS tree, we discuss another
related, but simpler problem, namely, rerooting of a DFS tree defined as follows.

1 Precisely, their data structure occupies (m+ o (m)) logn bits by using a wavelet tree.

S. Baswana, S. Gupta, and A. Tulsyan 66:3

r

s

t

u

v

w

p

x

y

z

(a) a DFS tree rooted at r.

v

u

t

s

r

w

p

x

y

z

(b) reversing path(r, v) results in trans-
forming many back edges to cross edges.

Figure 1 Non-triviality of rerooting problem.

B Problem 3. Preprocess an undirected graph G = (V,E) to build a compact data structure
so that given any vertex v ∈ V , we can report the DFS tree rooted at v efficiently.

Let T be an initial DFS tree, rooted at a vertex, say r (see Figure 1(a)). We use T (q) to
represent the subtree of T rooted at the vertex q. Also, let path (a, b) denote the path from
vertex a to b in T . For computing a DFS tree rooted at any vertex v, the first natural idea
is to just reverse the direction of the path from r to v in T . However, this may result in
transforming many back edges to cross edges and hence a violation of the DFS property (see
Figure 1(b)). To fix this problem, we may need to reroot various subtrees hanging from the
reversed path. Along these lines, [3] presented an algorithm that takes O

(
n log3 n

)
time to

compute a DFS tree rooted at any vertex.
In order to see how rerooting a DFS tree is related to the problem of fault tolerant DFS

tree, consider the failure of vertex u in Figure 1(a). The subtree T (v) is connected to the
remaining tree through many back edges, and the back edge (p, t) is incident closest to u
on the path (r, u). If we reroot the subtree T (v) at vertex p and hang it from the remaining
tree through the edge (p, t), the resulting tree will indeed be a valid DFS tree of G\{u}.

The fault tolerant DFS tree problem becomes more complex in the presence of multiple
faults. However, the distribution of faults plays an important role as follows. If the failing
vertices do not have any ancestor-descendant relationship in the DFS tree, they can be
handled independently. For example, the simultaneous failure of vertices u and x in the DFS
tree shown in Figure 1(a) requires rerooting the respective subtrees T (v) and T (y) at vertices
p and z respectively. So, even for arbitrarily large number of faults, if no two of them appear
on the same root to leaf path, we have to just reroot the corresponding disjoint subtrees of T
to report the DFS tree avoiding those failures. However, if two or more faults indeed appear
on a single root to leaf path, the problem becomes more complex. For this case, [3] presents
an algorithm which is quite different from their rerooting algorithm.

1.3 Overview of the Previous Results
We now begin with an overview of the existing algorithms for fault tolerant DFS tree. For
any set of k failures, the algorithm presented in [3] first partitions the original DFS tree
into a pool of connected components. This pool consists of k paths (specifically, ancestor-
descendant paths) and potentially a large number of subtrees. The algorithm treats each of

MFCS 2019

66:4 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

these components as a super vertex and uses them to grow the DFS tree T ∗ that avoids all the
failures. At a high level, the algorithm can be visualized as a traversal on these super vertices.
Each traversal extracts a path from the super vertex, attaches it to T ∗, and places the
remaining portion of the super vertex back into the pool. In order to pursue DFS traversal
further in an efficient manner, the algorithm needs to compute minimal adjacency lists for
the vertices of the traversed path (referred to as reduced adjacency lists). The algorithm
makes use of the following crucial property of DFS traversal.

B Property 4. (Components Property [3]) Consider any DFS Traversal on any undirected
graph G = (V,E). When the traversal reaches a vertex v ∈ V , let the set of connected
components induced by the unvisited vertices be C. If from any component c ∈ C, there
exists two edges - e to vertex v and e′ to any of the visited vertices (including v), then for
building a valid DFS tree, it is sufficient to consider only the edge e during the rest of DFS
traversal, that is, e′ can be ignored.

In order to use the above property to populate the reduced adjacency list, the algorithm
needs a data structure to answer the following queries repeatedly.

Query(w, x, y): among all the edges from w that are incident on the path(x, y) in T ,
return an edge that is incident nearest to x on the path(x, y).
Query(T (w), x, y): among all the edges from T (w) that are incident on the path(x, y) in
T , return an edge that is incident nearest to x on the path(x, y).

It is quite obvious from the description given above that these queries are quite non-trivial,
and so a sophisticated data structure is designed in [3] to answer these queries efficiently. In
addition to the complex data structure, the complete difference in the processing of a path
and a subtree obfuscates the algorithm and its analysis.

The subsequent results [17, 34] keep the algorithm unchanged and replace the data
structure used in [3] with alternate data structures. Chen et al. [17] model the two queries
mentioned above as Orthogonal Range Successor/Predecessor(ORS/ORP) queries and this
improves the query processing time. Nakamura and Sadakane [34] compressed the data
structure used in [17] using Wavelet Trees [27] to achieve optimal space. Despite these
improvements, the core of the fault tolerant algorithm remains intricate and the data
structure still remains complex. Recently, in an empirical study [5], it was found that this
algorithm, for incremental updates, performs even worse than the static DFS algorithm for
certain classes of graphs. This naturally raises the question whethere there exists a simpler
algorithm for this fundamental problem.

In addition to being complex, all these algorithms fail to exploit the distribution of the
faults to achieve efficiency. The running time of these algorithm is O (nk polylog(n)) time
irrespective of how the k faults are distributed in the DFS tree. In the extreme case, when
no two faults share the ancestor-descendant relaitonship, there is a simple O (n polylog(n))
time algorithm as described in Section 1.2. This raises the question whether it is possible to
have a fault tolerant DFS algorithm whose time complexity depends upon the maximum
number of faults lying on any ancestor-descendant path instead of the total number of faults.

1.4 Our Contribution
We take a much simpler approach as compared to the previous algorithms. We first present
a new and simple rerooting algorithm based on the following ideas. After building an initial
DFS tree, say T , we decompose T into a disjoint collection P of ancestor-descendant paths.
Similar to [3], each of these paths are treated like super vertices. At a high level, the algorithm
can still be viewed as a traversal on these super vertices. However, as the reader may also

S. Baswana, S. Gupta, and A. Tulsyan 66:5

verify, the algorithm turns out to be lighter and quite different at the core. Interestingly, the
original DFS tree alone acts as a powerful data structure to be used for rerooting or for the
computation of another valid DFS tree in the presence of faults. The algorithm crucially
exploits an implicit hierarchy among the ancestor-descendant paths in P. This hierarchy
along with the DFS property of T enables us to use much simpler queries. In particular, each
query will ask only for an edge from a vertex to one of its ancestor paths in the hierarchy.
The hierarchy allows us to represent T as another tree structure, called shallow tree. In a
nutshell, our algorithm can be viewed as an efficient DFS traversal guided by this shallow
tree.

This rerooting algorithm extends to the fault tolerant algorithm with very little and
obvious modifications. While preserving simplicity, the fault tolerant algorithm turns out to
be faster than all the previous algorithms. Moreover, our algorithm is the first to implicitly
incorporate the distribution of faults to gain efficiency. We summarize our result in the
following theorem.

I Theorem 5. An undirected graph G can be preprocessed in O (m+ n) time to build a DFS
tree, say T , and a data structure of O (m+ n) words2 such that for any set F of k failed
vertices or edges, a DFS tree of G \ F can be reported in O (n (k′ + logn) logn) time, where
k′ ≤ k is the maximum number of faults on any root-leaf path in the tree T .

We now present the highlights of our algorithm.
Drastically simpler algorithm: Our algorithm is drastically simpler and more intuitive than
the previous algorithm. We feel confident to defend that it can be taught even in an un-
dergraduate course on algorithms. The pseudo-codes in Algorithm 1 and Algorithm 2 are
concise and very close to the corresponding implementations.

Faster time complexity: Our algorithm takes O (n (k′ + logn) logn) time, where k′ is the
maximum number of failures on any ancestor-descendant path of the DFS tree when k

edges/vertices fail. In the worst-case k′ can be as large as k. However, k′ can be o (k) as
well. In the latter case, our result improves all the existing results significantly. Moreover,
even in the case k′ = k, our time complexity is superior to the previous best by a log factor.

Optimal preprocessing time: Our preprocessing relies upon DFS traversal only, taking
O (m+ n) time. Given a graph, in order to report the initial DFS tree, one anyway has to
run a static DFS. Hence, our preprocessing time is optimal.

Optimal space and elementary data structure: In contrast to the heavy data structure used
by [3, 17], our algorithm makes use of very elementary data structures which are compact
as well. Each vertex keeps an array storing edges incident on it from ancestors sorted
according to their levels. This data structure uses just m + n words and still achieves
O
(
n (k′ + logn) log2 n

)
time to report a DFS tree upon failure of any k vertices or edges.

By using fractional cascading [14], we get rid of one log factor while still keeping space
requirement to be O (m+ n) words.

Faster Fully Dynamic Algorithm: Using Theorem 5 and periodic rebuilding technique used
in [3], we also get the fastest algorithm for fully dynamic DFS.

2 One word stores dlogme bits.

MFCS 2019

66:6 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

Table 1 Comparison of the existing and the new results. Note that k is the total number of
faults, whereas k′ is the maximum number of faults lying on any root-to-leaf path of the DFS tree.

[3] [17] [34] New

Space (in bits) O(m log2 n) O(m log2 n) O(m logn) O(m logn)

Preprocessing O(m logn) O(m logn) O
(
m

√
logn

)
O (m+ n)

Fault tolerant O(nk log4 n) O(nk log2 n) O(nk log3 n
log log n

) O (n(k′ + logn) logn)

Dynamic DFS O(
√
mn log2.5 n) O(

√
mn log1.5 n) O(

√
mn log1.75 n√

log log n
) O(

√
mn logn)

I Theorem 6. Given an undirected graph, one can maintain a DFS tree for any online
sequence of insertions and deletions of vertices/edges in O

(√
mn logn

)
worst-case time per

update.

The new fully dynamic algorithm can be used to solve the dynamic subgraph problems
discussed in [3] and improves upon their time complexity as well. Due to space constraint,
we do not discuss these problems here. These can be accessed in the full version of the paper.

Table 1 offers a comparison of our results with all the previous results.

1.5 Organisation of the Paper
Section 2 introduces the notations and some well-known techniques/properties used through-
out the paper. Section 3 defines the shallow tree representation, a concise structure which
encapsulates the hierarchy of paths in the initial DFS tree. Section 4 is the core of our
work. Here, we describe how a DFS tree can be rerooted efficiently. Section 5 describes how
with some minor modifications to the data structure, rerooting procedure extends to a fault
tolerant algorithm. We present the fully dynamic algorithm in Section 6.

2 Preliminaries

2.1 Notations
Following notations will be used throughout this paper.

T : Any DFS tree of the original graph G.
dfn (x): The depth first number, i.e., the discovery time of the vertex x during the DFS
traversal.
v (i): the vertex x ∈ V such that dfn(x) = i.
dist (x, y): distance between the vertices x and y in the DFS tree T .

For the sake of ease of explanation, we shall assume that the graph remains connected at
all times. This assumption is without loss of generality because of the following standard
way of transforming the original graph right in the beginning - Introduce a dummy vertex r
and connect it to all vertices of the graph. Henceforth, we maintain a DFS tree rooted at r
for this augmented graph. It is easy to observe that the augmented graph remains connected
throughout and the DFS tree rooted at r will be such that the subtrees rooted at the children
of r constitute a DFS forest of the original graph.

S. Baswana, S. Gupta, and A. Tulsyan 66:7

2.2 Heavy-Light Decomposition
Sleator and Tarjan, in their seminal result on dynamic trees [42] introduced a technique of
partitioning any rooted tree called Heavy-light decomposition. Given any rooted tree, this
technique splits it into a set of vertex-disjoint ancestor-descendant paths. It marks all the
tree edges either dashed or solid - a tree edge is marked solid iff the subtree of the child
vertex is heaviest (in terms of number of vertices) among the subtrees of all its siblings and
dashed otherwise. A maximal sequence of vertices connected through solid edges constitutes
the required ancestor-descendant path. This decomposition can be carried out using DFS
traversal in O (n) time.

2.3 Fractional Cascading
Given n sorted arrays and a value x, suppose we need to find the predecessor/successor of
x in each of them. A naive way is to make a binary search on each array. Chazelle and
Guibas [14] introduced a novel tool called fractional cascading using which this problem
can be solved more efficiently. Also, Chen et al.[18] used this tool for arriving at an O (n)
algorithm for incremental updates. We adapt a customized version of their method.

I Lemma 7. Fractional cascading: Given n sorted arrays {Ai}i∈[n] each with li = |Ai|
elements and total

∑n
i li = m elements. There exists a data structure of O (m+ n) words,

which can be built in O (m+ n) time, such that for any given x, i, and k satisfying i, k ∈ [n]
and i+ k ≤ n, we can search for x (or its predecessor/successor) in all arrays Ai, . . . , Ai+k

using the data structure in O (k + logm) time.

3 Shallow Tree Representation

We now introduce the shallow tree representation for DFS tree T that plays a key role in our
algorithm. Using heavy-light decomposition, T is broken down into a set of vertex-disjoint
ancestor-descendant paths. Let’s denote this set with P. Observe that these paths are
connected through dashed edges in T . These dashed edges introduce a hierarchy among
paths in P and the shallow tree defined below captures this hierarchy.

I Definition 8. Given a DFS tree T of an undirected graph G, let P be the set of paths
obtained through heavy-light decomposition of T . Let H be the set of edges marked dashed
during the decomposition. For tree T , its shallow tree S is a rooted tree formed by collapsing
each element of P into a single node (super vertex). Note that, for each edge (y, z) ∈ H with
y = parent(z), the node in S that contains y is the parent of the node containing z.

Figure 2 demonstrates how a DFS tree is decomposed to form a set of ancestor-descendant
paths P which is subsequently used to form the shallow tree S.

To avoid ambiguity, we address the vertices in the shallow tree as ‘nodes’ and the vertices
in the DFS tree as ‘vertices’. node (x) denotes the shallow tree node corresponding to the
path in P containing vertex x.

The construction of S described above ensures the following simple but crucial properties.
As a result of heavy-light decomposition of a tree T with n vertices, there can be at most
logn dashed edges on any root to leaf path in T . Recall that each edge in S corresponds
to a dashed edge. Thus, the depth of any node in tree S can’t be larger than logn. It is
because of this small depth that we choose the name shallow tree for S.
From the DFS property, neighbours of any vertex v ∈ V in the graph are either ancestors
or descendants of v in T . Consider any such neighbour u. Let p1 be the path in P

MFCS 2019

66:8 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

a

b

c

d e

f

g

h

i

j k

l

(a)

a

b

c

d e

f

g

h

i

j k

l

p1

p2

p3 p4

p5

p6

(b)

p1

p2 p3 p4

p5

p6

(c)

Figure 2 (a) A DFS tree T . (b) Heavy light decomposition of T and the resulting paths in P.
(c) The corresponding shallow tree.

containing v and p2 be the path in P containing u. u and v may also lie in the same path
in P. From the construction of S, the nodes corresponding to p1 and p2 will share an
ancestor-descendant relation in S. So we can state the following lemma.
I Lemma 9. For a DFS tree T of an undirected graph G = (V,E) with shallow tree S,
any vertex v ∈ V which lies in node µ ∈ S can have edges only to vertices lying in the
nodes which are ancestors or descendants of µ in S.

We require that the vertices of each solid path have consecutive dfn. This enables us to
represent each path p ∈ P in a compact manner using just the smallest and largest dfn of
vertices on p. For each path p, we store this pair as PathEndPoints at the corresponding
node of the shallow tree S. Assigning consecutive dfn to each solid path can be accomplished
easily - we carry out another DFS on T where for each vertex, the next vertex to be visited
is its child hanging through a solid edge. Thus, the processing of T to make the shallow tree
S requires only DFS on T and takes O (n) time.

4 Rerooting DFS Tree T

Given a DFS tree T for a graph G = (V,E) and a vertex r′ ∈ V , the objective is to compute
a DFS tree T ∗ rooted at r′ for the same graph G. First we compute the shallow tree
representation S of T . We now describe the rerooting procedure.

4.1 Reroot Procedure
The tree T ∗ is empty in the beginning and is grown gradually starting from r′. To build this
tree efficiently, we use the following two ideas. The first idea is to re-use the paths from P.
Observe that while rerooting, if we use the original adjacency list for scanning the neighbours,
we need O (m+ n) time. So the second idea is to populate for each vertex only a subset of
its adjacency list which is small and yet sufficient to compute a DFS tree (this idea was used
by [3] in the fault tolerant DFS problem). These lists we refer as reduced adjacency lists. We
take a lazy and frugal approach to populate them.

The intuition sketched above is materialized by carrying out a DFS traversal guided by
the shallow tree S. Note that a node of the shallow tree corresponds to a path in P. To

S. Baswana, S. Gupta, and A. Tulsyan 66:9

compute T ∗, our algorithm performs a sequence of steps. Each step begins with entering a
node of S through some vertex present on the path stored at the node and leaving it after
traversing the path along one direction. The first node to be visited is node(r′). We now
provide complete details of the computation involved in each step. Consider any node ν ∈ S.
Let path(y, z) be the path corresponding to ν. When the DFS traversal enters ν through a
vertex, say x, the following 3 simple operations are carried out.
1. Move towards the farther end of the path.

We determine the vertex from {y, z} farther from x. Let this vertex be y. DFS traversal
proceeds from x to y and path(x, y) is attached to the tree T ∗. Next, we update the
PathEndpoints (ν) such that it stores the endpoints of the untraversed part of path(y, z).
This choice of direction ensures that at least half of the path is traversed (referred to as
path halving technique, also used in [2, 3]).

2. Populate the reduced adjacency list of the path just traversed.
For vertices on path(x, y), we populate the reduced adjacency list L using ancestors and
descendants of ν in the shallow tree S. This will be explained below in Section 4.1.1.

3. Continue traversal.
Using the reduced adjacency list L of the traversed path computed in step 2 above, we
continue the DFS traversal along the unvisited neighbours of the vertices in the order
from y to x (opposite to the direction of traversal, due to the recursive nature of DFS).

Algorithm 1 presents the complete pseudocode of the rerooting procedure based on the
above 3 steps. All vertices are marked unvisited initially and the reduced adjacency list L is
empty. Invoking Reroot(r′) produces the DFS tree rooted at r′.

Algorithm 1: Recursive procedure to reroot the DFS Tree T

1 Function Reroot (x)
2 (y, z)← PathEndpoints (node (x)) ;
3 if dist(x, z) > dist(x, y) then Swap (y, z); /* compute dist using dfns */
4 Attach path (x, y) to T ∗;
5 if x 6= z then
6 w ← Neighbour of x on path(y, z) nearest to z ;
7 PathEndpoints (node (x))← (w, z) ; /* untraversed path */
8 end
9 L ← ReducedAL (L, (x, y)) ; /* Update L for vertices on path(x, y) */

10 for i = dfn(y) to dfn(x) do status(v(i))← visited ;
11 for i = dfn(y) to dfn(x) do
12 foreach vertex u ∈ L(v(i)) do
13 if status(u) = unvisited then {add (v (i) , u) to T ∗; Reroot(u)} ;
14 end
15 end

4.1.1 Populating Reduced Adjacency Lists
Here we define a query Q (u, (ps, pe)), where u, ps, pe ∈ V satisfy the following constraints:

ps and pe are the endpoints of an ancestor-descendant path in T .
u is a descendant of the highest vertex on path (ps, pe), but does not lie on the path.

This query finds an edge from the vertex u that is incident to path(ps, pe) closest to pe. It
returns null if no such edge exists, otherwise it returns the endpoint other than u.

MFCS 2019

66:10 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

Consider any node ν ∈ S, and let path(y, z) be its corresponding path in P. When the
DFS traversal enters ν through x and proceeds towards y, we populate the reduced adjacency
lists of vertices on path(x, y) using Lemma 9 as follows.

Processing Ancestors of vertices on path(x, y).
For each u ∈ path(x, y) and for each ancestor µ of ν, we add Q (u, PathEndpoints (µ))
to L (u).
Processing Descendants of vertices on path(x, y).
Using the shallow tree S, one can list all the vertices that are descendants of vertices
on path(x, y) in T . From all these vertices, we query for an edge to path(x, y) which is
incident closest to y. For any descendant u, if the query Q (u, (x, y)) returns a non-null
value, say w, then we add u to L (w).

I Remark 10. In Algorithm 1, after visiting x, if we moved towards the leaf node, then the
untraversed part of ν has to be treated as an ancestor path while populating the reduced
adjacency lists of path (x, y), and as a descendant path, otherwise.

Algorithm 2: Populating reduced adjacency lists of vertices on path(x, y).

1 Function ReducedAL (L, (x, y))
2 µ← parent (node (x));
3 while µ 6= NULL do /* edges to ancestor paths */
4 for i = dfn(y) to dfn(x) do
5 L (v (i))← L (v (i)) ∪ {Q(v (i) , PathEndPoints (µ))};
6 end
7 µ← parent(µ) ;
8 end
9 if dfn (x) < dfn (y) then z ← x else z ← y; /* z is ancestor among two */

10 C ← DescT (z) \ {v (dfn (x)) , . . . , v (dfn (y))};
11 foreach u ∈ C do /* each descendant of path (x, y) */
12 w ← Q (u, (x, y)) ; /* ensure w is closest to y */
13 if w 6= NULL then L (w)← L (w) ∪ {u} ;
14 end
15 return L

In Algorithm 2, we used query Q (u, (ps, pe)) as a black box. This query can be answered very
easily as follows. The constraints of Q (u, (ps, pe)) imply that the returned edge is always an
edge from u to an ancestor of u. For answering this query, we use a data structure D which
stores the following information for each vertex u.

I Definition 11. D (u) is an array that stores each ancestor of u in T to which u is a
neighbour and it stores them in the increasing order of distance from the root of T .

This data structure enables us to answer query Q (u, (ps, pe)) using a binary search on
array D (u) and it takes O (logn) time only. Interestingly, the data structure D can be
preprocessed very easily in O (m+ n) time as follows. We visit vertices in the increasing
order of their depth first numbers. Note that for each vertex v, the neighbours of v which
have dfn larger than that of v are its descendants. For each such descendant u, we append
v to D(u). Iterating in increasing order of dfn ensures that all arrays in D are sorted as
needed.

S. Baswana, S. Gupta, and A. Tulsyan 66:11

I Theorem 12. Given a DFS Tree T of an undirected graph G, it takes O (m+ n) time
to build a data structure consisting of exactly (m + n) words which can answer the query
Q (u, (ps, pe)) in O (logn) time.

4.2 Time Complexity Analysis
During preprocessing, we construct the shallow tree S for the DFS tree T and build D. This
processing as shown earlier can be completed in O (m+ n) time. The time complexity of the
Reroot procedure is bounded by the time required to populate the reduced adjacency lists L.
This in turn, is bounded by the number of calls to query Q. To analyse the number of calls
made from any vertex w, let ν be the node in the shallow tree S, containing w. In general, if
the bound on height of S is d, ReducedAL makes worst-case d queries from w to ancestors
of ν. Also when an ancestor of ν in S, say µ, is visited during Reroot procedure, ReducedAL
makes a query from w to µ. The path halving technique (line 3 in Algorithm 1) ensures that
any node in S (or a path in P) is visited at most logn times. This implies that any such
ancestor µ may be visited at most logn times. Thus, we can have worst-case d (logn+ 1)
queries from w to its ancestor paths throughout the Reroot procedure. Summing over all
the vertices, there can be at most nd (logn+ 1) calls to query Q. Therefore, populating
the reduced adjacency lists L takes overall O

(
nd log2 n

)
time. From Section 3, we know

d ≤ logn. Thus, using Theorem 12, we can state the following lemma.

I Lemma 13. Given a DFS Tree T of an undirected graph G, it takes O (m+ n) time to
build a data structure of (m+ n) words using which we can compute a DFS Tree of G rooted
at any given vertex in O

(
n log3 n

)
time.

4.2.1 Getting rid of a log factor
Consider the moment when the Reroot procedure enters a path (y, z) through the vertex
x and reaches the endpoint y. In Algorithm 2, for each descendant w of path (x, y), we
perform query Q (w, (x, y)) separately. Instead, using Fractional Cascading, we can perform
all these queries together in an efficient manner. Among x and y, let x be the vertex closer
to the root of T . As described earlier, all the vertices of path(x, y) have consecutive dfn,
and so do the vertices of subtree T (x). Let last (x) be the vertex in T (x) with the largest
dfn. Since vertices on path (x, y) have already been visited, we need to query for edges only
from vertices with dfn between dfn (y) + 1 and dfn (last (x)). Finding edges to path (x, y)
from these vertices can be done with a single query to the fractionally cascaded D (Lemma
7). It takes O (logm+ dfn (last (x))− dfn (y)) time to execute this query. We charge the
logm part of the query time to the vertices on path (x, y) and the dfn (last (x))− dfn (y) is
distributed among the descendant vertices. Thus, each descendant vertex incurs a constant
charge.

Note that, queries to the ancestors of path (x, y) are answered using the original D itself.
Therefore, in a shallow tree of height d, each vertex v ∈ V incurs following charges during
Reroot procedure - O (d logn) when v acts as a descendant in the queries made while visiting
ancestors of v, and O (d logn+ logm) while visiting v itself. Overall the charge on any vertex
is O (d logn) and, therefore, the time complexity of Reroot procedure reduces to O (nd logn).
So we can state the following lemma.

I Lemma 14. Given an undirected graph G, the DFS tree T and corresponding shallow tree
of height d, it takes O (m+ n) time to build a data structure occupying O (m+ n) words
using which the Reroot algorithm executes in O (nd logn) time.

MFCS 2019

66:12 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

4.3 Correctness of Reroot Procedure
As is evident from the pseudocode of Algorithm 1, besides populating the reduced adjacency
lists, Reroot imitates a usual DFS traversal. So in order to show that Reroot computes a
valid DFS tree, we need to prove the following. Each edge e that is not added to reduced
adjacency list is indeed redundant and will appear as a back edge in the resulting DFS tree.
We can show this as follows.

During Reroot procedure, consider the moment when we attach some path, say path(x, y)
to T ∗. Lemma 9 implies that all the neighbours of vertices on the path(x, y) will lie either
in ancestors or in descendants of path(x, y) in the shallow tree. For each descendant vertex
v of path(x, y), we add an edge from v incident on path(x, y) closest to y (lines 12,13 of
Algorithm 2). For each ancestor path of path(x, y), say µ, we add an edge from each vertex
of path(x, y) to µ (line 5 of Algorithm 2). These ensure that at the moment path (x, y)
is visited and attached to T ∗, from each connected component in the graph induced by
unvisited vertices, the edge incident on path(x, y) closest to vertex y is added to L (if exists).
Using Components Property, it follows that all those edges incident on path(x, y), that are
not added to L, will appear as back edges in the resulting DFS tree. Hence, the traversal
performed using the reduced adjacency lists indeed results in a valid DFS tree.

5 Extension to Fault Tolerant DFS Tree

Given an undirected graph G, we build a DFS tree of G, say T , the corresponding shallow
tree S, and the fractionally cascaded D. Let F be the set of failures (edges/vertices) in G,
with |F | = k. Here, we describe how with some elementary modifications to the shallow tree
of T , procedure Reroot can be utilized to report a DFS tree of G \ F . For the given set F ,
we update the set P and the shallow tree S as follows.
1. Each vertex maintains a state: active or failed. For a failed vertex x ∈ F , we toggle x’s

state to failed. Let p ∈ P be the path containing x. We remove x from p. The resulting
smaller paths are added to P and p is removed from P.

2. For each failed edge e = (u, v), we mark the corresponding entries in the adjacency lists
of u and v as failed. Here, we do not make any changes to fractionally cascaded D. If
failed edge e is a tree-edge and was marked solid during heavy-light decomposition, P
is updated as follows. Path p ∈ P containing e is split into two smaller paths. These
smaller paths are added to P and p is removed from P.

3. After updating P, shallow tree S is updated as follows. For any path p ∈ P, let the
vertex in p closest to root of T be x. The parent of node corresponding to p in S will be
the node containing the nearest active ancestor of x.

Given the set F , we can update P and S in O (n) time as follows - Make a DFS traversal
through T while ensuring vertices are visited in increasing order of their dfn. Update P
and S as discussed above. For each failure, the number of nodes in S increases by at most
one. After k updates, S can have at most k new nodes and may not be shallow anymore.
However, the depth of a node ν in S doesn’t increase due to any failure which does not lie
on the path from ν to root of S. Thus, if the maximum number of failures on any root-leaf
path in T is k′, the height of the shallow tree will be at most k′ + logn.

To ensure that no deleted vertices/edges are traversed during Reroot procedure, we make
the following modifications. Since no changes are made to fractionally cascaded D, the result
of some query Q (v, (ps, pe)) may be an endpoint of a failed edge. In such a case, we iterate
in D (v) starting from the failed edge towards ps until we find an edge present in G \ F .
However, if we cross ps in doing so, it implies that there is no edge between vertex v and

S. Baswana, S. Gupta, and A. Tulsyan 66:13

path (ps, pe), we stop and return null. During the procedure Reroot, we spend overall O (k)
time in such iterations. Also note that each node of the updated S corresponds to a path
consisting of active vertices only. So Q (v, (ps, pe)) never returns a failed vertex. It follows
from the changes in the query and the shallow tree described above that Reroot procedure
reports a valid DFS tree of G \ F . Using Lemma 14, we can conclude the following theorem.

I Theorem 15. An undirected graph G can be preprocessed in O (m+ n) time to build a
DFS tree, say T , and a data structure of O (m+ n) words such that for any set F of k failed
vertices or edges, a DFS tree of G \ F can be reported in O (n (k′ + logn) logn) time, where
k′ ≤ k is the maximum number of faults on any root-leaf path in the tree T .

6 Fully Dynamic DFS

We first describe how the fault tolerant DFS algorithm can handle incremental updates.
Following that, we use the overlapped periodic rebuilding technique to arrive at a fully dynamic
DFS algorithm. The ideas utilized in both of these steps were used by Baswana et al. [3].

Let U be the set of updates in any undirected graph G. For the edge insertions, we
directly add them to the reduced adjacency lists of the endpoints of the edges. To handle
insertion of a vertex, we add the new vertices in V and treat their edges as edge insertions.
Observe that these modifications are sufficient to handle incremental updates. The size of the
reduced adjacency lists after |U | updates is at most n (|U |+ logn) (logn+ 1) (from Section
4.2). So the worst-case time complexity of our algorithm is O (n (|U |+ logn) logn).

We can use the Reroot procedure to report a DFS tree after every update. But as |U |
increases, the algorithm slows down. Therefore, we need to rebuild the data structures
(denoted collectively using A) periodically to maintain the efficiency. We rebuild them after,
let’s say, every c updates. It takes O (m+ n) time to rebuild the data structures. The cost
of rebuilding is amortized among the c updates. This results in an amortized runtime fully
dynamic algorithm.

To get a worst-case bound, the rebuilding is done in an overlapped fashion as follows.
The original data structures A0 are used till first 2c updates. At the end of kc updates (for
k ≥ 1), we start building Ak, the data structures for the graph after incorporating the first
kc updates. The computation of building Ak is distributed evenly over the next c updates to
the graph (from (kc+ 1) to (k + 1)c updates). However, during these updates we use Ak−1
to report the updated DFS Tree. This ensures |U | is never larger than 2c. After (k + 1)c
updates, we have Ak ready for use and we can discard Ak−1. This helps us manage our
data structures in O (m+ n) space. For this overlapped periodic rebuilding framework, the
following lemma from [3] provides the worst-case bound on the update time we can derive.

I Lemma 16. (Overlapped Periodic Rebuilding: Lemma 6.1 in [3]) Let D be a data structure
that can be used to report the solution of a graph problem after a set of U updates on an input
graph G. If D can be built in O (f) time and the solution for graph G+U can be reported in
O (h+ |U | · g)time, then D can be used to report the solution after every update in worst-case
O
(√
fg + h

)
update time, given that f/g ≤ n.

Substituting f = m, g = n logn and h = n log2 n, we obtain, O
(√
fg + h

)
= O

(√
mn logn

)
.

Hence we conclude with the following theorem.

I Theorem 17. An undirected graph can be preprocessed in O (m+ n) time to build a data
structure occupying O (m+ n) words, using which one can maintain a DFS tree for any
online sequence of insertions and deletions of vertices/edges in O

(√
mn logn

)
worst-case

time per update.

MFCS 2019

66:14 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 335–344, 2016. URL: https://doi.org/10.1109/FOCS.2016.44.

2 Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel depth-first search in
general directed graphs. SIAM J. Comput., 19(2):397–409, 1990. URL: https://doi.org/10.
1137/0219025.

3 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in undirected graphs: breaking the O(m) barrier. In Symposium on Discrete Algorithms,
SODA, pages 730–739, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch52.

4 Surender Baswana and Keerti Choudhary. On dynamic DFS tree in directed graphs.
In MFCS, Proceedings, Part II, pages 102–114, 2015. URL: https://doi.org/10.1007/
978-3-662-48054-0_9.

5 Surender Baswana, Ayush Goel, and Shahbaz Khan. Incremental DFS algorithms: a theoretical
and experimental study. In Symposium on Discrete Algorithms, SODA, pages 53–72, 2018.
URL: https://doi.org/10.1137/1.9781611975031.4.

6 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(log n) update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. URL:
https://doi.org/10.1137/16M1106158.

7 Surender Baswana and Shahbaz Khan. Incremental algorithm for maintaining DFS tree
for undirected graphs. In ICALP, Proceedings, Part I, pages 138–149, 2014. URL: https:
//doi.org/10.1007/978-3-662-43948-7_12.

8 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized
algorithms for graph spanners. ACM Trans. Algorithms, 8(4):35:1–35:51, 2012. URL: http:
//doi.acm.org/10.1145/2344422.2344425.

9 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018. URL:
https://doi.org/10.1137/140998925.

10 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS, pages 18:1–18:14, 2016.

11 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant approximate
shortest-path trees. Algorithmica, 80(12):3437–3460, 2018. URL: https://doi.org/10.1007/
s00453-017-0396-z.

12 Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive and
(µ, α)-spanners. Theor. Comput. Sci., 580:94–100, 2015. URL: https://doi.org/10.1016/j.
tcs.2015.02.036.

13 Timothy M. Chan, Mihai Patrascu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. In Symposium on Foundations of Computer Science, FOCS, pages
95–104, 2008. URL: https://doi.org/10.1109/FOCS.2008.29.

14 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1(2):133–162, 1986. URL: https://doi.org/10.1007/BF01840440.

15 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM J. Comput., 39(7):3403–3423, 2010. URL: https://doi.org/10.1137/
090758039.

16 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles
and routing schemes. Algorithmica, 63(4):861–882, 2012. URL: https://doi.org/10.1007/
s00453-011-9543-0.

17 Lijie Chen, Ran Duan, Ruosong Wang, and Hanrui Zhang. Improved algorithms for maintaining
DFS tree in undirected graphs. CoRR, abs/1607.04913, 2016. URL: http://arxiv.org/abs/
1607.04913v2.

https://doi.org/10.1109/FOCS.2016.44
https://doi.org/10.1137/0219025
https://doi.org/10.1137/0219025
https://doi.org/10.1137/1.9781611974331.ch52
https://doi.org/10.1007/978-3-662-48054-0_9
https://doi.org/10.1007/978-3-662-48054-0_9
https://doi.org/10.1137/1.9781611975031.4
https://doi.org/10.1137/16M1106158
https://doi.org/10.1007/978-3-662-43948-7_12
https://doi.org/10.1007/978-3-662-43948-7_12
http://doi.acm.org/10.1145/2344422.2344425
http://doi.acm.org/10.1145/2344422.2344425
https://doi.org/10.1137/140998925
https://doi.org/10.1007/s00453-017-0396-z
https://doi.org/10.1007/s00453-017-0396-z
https://doi.org/10.1016/j.tcs.2015.02.036
https://doi.org/10.1016/j.tcs.2015.02.036
https://doi.org/10.1109/FOCS.2008.29
https://doi.org/10.1007/BF01840440
https://doi.org/10.1137/090758039
https://doi.org/10.1137/090758039
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1007/s00453-011-9543-0
http://arxiv.org/abs/1607.04913v2
http://arxiv.org/abs/1607.04913v2

S. Baswana, S. Gupta, and A. Tulsyan 66:15

18 Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang. An improved
algorithm for incremental DFS tree in undirected graphs. In SWAT, pages 16:1–16:12, 2018.
URL: https://doi.org/10.4230/LIPIcs.SWAT.2018.16.

19 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. URL: http://doi.acm.org/10.1145/1039488.1039492.

20 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.
URL: https://doi.org/10.1137/S0097539705429847.

21 Ran Duan. New data structures for subgraph connectivity. In ICALP, Proceedings, Part I,
pages 201–212, 2010. URL: https://doi.org/10.1007/978-3-642-14165-2_18.

22 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997. URL:
http://doi.acm.org/10.1145/265910.265914.

23 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
URL: https://doi.org/10.1145/322234.322235.

24 Paolo Giulio Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental maintenance
of a depth-first-search tree in directed acyclic graphs. Inf. Process. Lett., 61(2):113–120, 1997.
URL: https://doi.org/10.1016/S0020-0190(96)00202-5.

25 Daniele Frigioni and Giuseppe F. Italiano. Dynamically switching vertices in planar graphs.
Algorithmica, 28(1):76–103, 2000. URL: https://doi.org/10.1007/s004530010032.

26 Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners
and geometric routing. In Symposium on Discrete Algorithms, SODA, pages 591–600, 2008.
URL: http://dl.acm.org/citation.cfm?id=1347082.1347148.

27 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Symposium on Discrete Algorithms, SODA, pages 841–850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

28 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP, pages 127:1–
127:15, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.127.

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. J. ACM, 65(6):36:1–36:40,
2018. URL: https://dl.acm.org/citation.cfm?id=3218657.

30 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. URL: http://doi.acm.
org/10.1145/320211.320215.

31 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. URL: http://doi.acm.org/10.1145/502090.502095.

32 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Symposium on Discrete Algorithms, SODA, pages 1131–1142, 2013.
URL: https://doi.org/10.1137/1.9781611973105.81.

33 Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
Complexity models for incremental computation. Theor. Comput. Sci., 130(1):203–236, 1994.
URL: https://doi.org/10.1016/0304-3975(94)90159-7.

34 Kengo Nakamura and Kunihiko Sadakane. A space-efficient algorithm for the dynamic DFS
problem in undirected graphs. In In International Workshop on Algorithms and Computation,
pages 295–307, 2017. URL: https://doi.org/10.1007/978-3-319-53925-6_23.

35 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 950–961, 2017. URL: https://doi.org/
10.1109/FOCS.2017.92.

MFCS 2019

https://doi.org/10.4230/LIPIcs.SWAT.2018.16
http://doi.acm.org/10.1145/1039488.1039492
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1007/978-3-642-14165-2_18
http://doi.acm.org/10.1145/265910.265914
https://doi.org/10.1145/322234.322235
https://doi.org/10.1016/S0020-0190(96)00202-5
https://doi.org/10.1007/s004530010032
http://dl.acm.org/citation.cfm?id=1347082.1347148
http://dl.acm.org/citation.cfm?id=644108.644250
https://doi.org/10.4230/LIPIcs.ICALP.2017.127
https://dl.acm.org/citation.cfm?id=3218657
http://doi.acm.org/10.1145/320211.320215
http://doi.acm.org/10.1145/320211.320215
http://doi.acm.org/10.1145/502090.502095
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1016/0304-3975(94)90159-7
https://doi.org/10.1007/978-3-319-53925-6_23
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1109/FOCS.2017.92

66:16 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

36 John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,
1985. URL: https://doi.org/10.1016/0020-0190(85)90024-9.

37 John H. Reif. A topological approach to dynamic graph connectivity. Inf. Process. Lett.,
25(1):65–70, 1987. URL: https://doi.org/10.1016/0020-0190(87)90095-0.

38 Liam Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4):1073–1087, 2012.
URL: https://doi.org/10.1007/s00453-011-9504-7.

39 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. URL: https://doi.org/10.1137/060650271.

40 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput., 41(3):670–683, 2012. URL: https://doi.org/10.1137/090776573.

41 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In Symposium on Foundations of Computer Science, FOCS, pages 509–517, 2004. URL:
https://doi.org/10.1109/FOCS.2004.25.

42 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. URL: https://doi.org/10.1016/0022-0000(83)
90006-5.

43 Shay Solomon. Fully dynamic maximal matching in constant update time. In Symposium on
Foundations of Computer Science, FOCS, pages 325–334, 2016. URL: https://doi.org/10.
1109/FOCS.2016.43.

44 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. URL: https://doi.org/10.1137/0201010.

45 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. URL: https:
//doi.org/10.1007/s00493-007-0045-2.

https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1016/0020-0190(87)90095-0
https://doi.org/10.1007/s00453-011-9504-7
https://doi.org/10.1137/060650271
https://doi.org/10.1137/090776573
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1137/0201010
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2

	Introduction
	Previous Results on Fault Tolerant and Dynamic DFS
	Familiarizing with the Fault Tolerant DFS Problem
	Overview of the Previous Results
	Our Contribution
	Organisation of the Paper

	Preliminaries
	Notations
	Heavy-Light Decomposition
	Fractional Cascading

	Shallow Tree Representation
	Rerooting DFS Tree T
	Reroot Procedure
	Populating Reduced Adjacency Lists

	Time Complexity Analysis
	Getting rid of a log factor

	Correctness of Reroot Procedure

	Extension to Fault Tolerant DFS Tree
	Fully Dynamic DFS

