All-Pairs Nearly 2-Approximate Shortest Pathgiin? polylog n)
Time*

Surender Baswaria
Department of Computer Science & Engineering
[.I.T. Kanpur, India.
Email : shaswana@se.iitk.ac.in

Vishrut Goyal*
Persistent Systems Private Limited,
Pune, India.
Email : vi shr ut goyal @er si stent.co.in

Sandeep Sen
Department of Computer Science & Engineering,
[.1.T. Delhi, India.
Email :ssen@se.iitd.ernet.in

February 28, 2008

Abstract

Let G = (V, E) be an unweighted undirected graph |6ff = n vertices andE| = m edges.
Let §(u, v) denote the distance between vertiags € V. An algorithm is said to compute all-pairs
t-approximate shortest-paths/distances, for sorxe 1, if for each pair of vertices,,v € V, the
path/distance reported by the algorithm is not longerigrethant - §(u, v).

This paper presents two extremely simple randomized algos for computing all-pairaearly
2-approximate distances. The first algorithm requires etquiO (m?/3n logn + n?) time, and for
anyu,v € V reports distance no greater thadf(u, v) + 1. Our second algorithm requires expected

O(n?1og®? n) time, and for any., v € V reports distance bounded By(u, v) + 3.

1 Introduction

The all-pairs shortest paths (APSP) problem is undoubtedty of the most fundamental algorithmic
graph problems. Given a gragh = (V, E) onn(= |V|) vertices andn(= |E|) edges, the problem
requires computation of shortest-paths/distances betwaeh pair of vertices. There are various ver-
sions of this problem depending on whether the graph is @ideor undirected, edges are weighted or
unweighted, weights are positive or negative. In its mosege version, that is, for directed graph with

*Preliminary version of this result appeared in 22nd Symyoson Theoretical Aspects of Computer Science (STACS),
2005

fthe work was done while the author was a postdoctoral resenat Max-Planck Institute for computer science, 66123
Saarbriicken, Germany.

fthe work was done while the author was a masters student iegh@rtment of computer science at I.1.T. Delhi, India.

real edge-weights, the best known algorithm [14] for thislyem require<) (mn + n?log log n) time.
However, for graphs withn = ©(n?), this algorithm has a running time 6f(n3) which matches that
of the old and classical algorithm of Floyd and Warshal. Téstlknown upper bound on the time com-
plexity of this problem isO(n?/log®n) due to Chan [7], which is marginally subcubic. The existing
lower bound on the time complexity of APSP is the trivi&ln?) lower bound.

There exist subcubic algorithms for APSP problem if the sdgeights are integers in a finite range.
All these algorithms employ fast (subcubic) algorithm faxtnix multiplication. The underlying intuition
for taking this approach is the fact that computing all-paistances in a graph is related to computing
(min,+) product (calleddistanceproduct) of matrices. For the usual algebraic, i(er, x) product
of two matrices, Strassen [17] gave the first subcubic algori and many faster algorithms followed
this algorithm. Letw be the exponent of matrix multiplication, i.e., the smallegnstant for which
matrix multiplication can be performed usiiig(n“) algebraic operations - additionsbtractions and
multiplications. The fastest known algorithm for matrix itiplication due to Coppersmith and Winograd
[11] impliesw < 2.376. For undirected unweighted graphs, Seidel gave a very siraptl elegant
algorithm to solve APSP if)(n%) time. In fact he showed that APASP in undirected unweightegys
is harder than Boolean matrix multiplication by at most ayfmgarithmic factor. For APSP in undirected
graphs with edges weights frof, 1, ..., M}, Shoshan and Zwick [16] desiged @t n*) algorithm.
For unweighted directed graphs, the first truly sub-cubgoathm was designed by Alon et al. [2],
which was improved subsequently by Takaoka [18], and masntty by Zwick [22]. For directed
graphs with weights from the range-1,0,1}, the algorithm by Zwick achieve®(n2°7) running
time. This algorithm works for integer edge weights in thega{—M/, ..., M} as well, and achieves
subcubic running time providetl/ < n3-«.

An algorithm for APSP problem which is based on matrix muiltgtion is undoubtedly very im-
portant because it breaks the cubic barrier in the time cerityl of the fundamental problem of APSP.
However, there is a natural question as to whether it is ptestd design a sub-cubic algorithm for APSP
problem that does not resort to any fast matrix multiplizatsubroutines. This question becomes even
more significant given the wide practicality of APSP problanmd the fact that all the existing algo-
rithms for fast matrix multiplication are notoriously ingatical. Motivated by this question, a number
of sub-cubic algorithms have been designed in the last tarsythat are based on very simple and novel
combinatorial ideas, but comput@prozimate, instead of exact, shortest paths.

Algorithms for all-pairs approximate shortest paths : As the name suggests, an algorithm for ap-
proximate shortest-paths (or distances) would reportgpétistances) which are longer than the actual
shortest-paths (distances). The error associated witllift@nce could be either additiveufplug or
multiplicative (stretch. An algorithm is said to compute all-paissirplusk distances for somk > 0, if

for any pair of vertices,, v € V, the distance reported is at ledét,, v) and at mosé(u, v)+k. Likewise

an algorithm is said to compute all-passetcht distances for a giveh > 1, if for any pair of vertices
u,v € V the distance reported is at least,, v) and at mostd(u, v). An interesting theoretical question
is to find the possible trade-offs between the time complefisuch an algorithm and stretch/surplus of
the distance it guarantee.

Consider the naive approach of computing APSP in an undideatweighted graph where we build
shortest path trees on all the vertices. The total runnimg ©f this algorithm will beD(mn). The sub-
cubic algorithms for approximate shortest-paths are basdtie simple observation that minimizing the
first termm (the number of edges) and/or the second terthe number of vertices) in the expression
O(mn) would lead to subcubic running time. This objective may sbwvery simple; However, achieving
this objective with a small bound on approximation factesrplus or stretch) is quite nontrivial, and is
achieved using simple but ingenious techniques by theiegistgorithms.

Minimizing the termm in the running timeO(mn) could be achieved if we perform shortest path

computation on a sparse subgraph. Since we require a boutite@pproximation factor, it would be
necessary that the subgraph preserves all-pairs distappesximately. Such a graph is callsganner
The challenge here is to compute the spanners with smaltist(er surplus) and still having a small
size. There are a number of algorithms [3, 8, 9] that take shanner basedpproach for computing
approximate shortest paths with stretch 3 or more. Recdti#in [13] also presented an algorithm
based on this approach that achieves a tradeoff betweenithéng time, stretch, and the surplus. In
precise words, he gave the following result. Given an urté unweighted graph and arbitrarily small
constants, e, p > 0, there exists an algorithm that requir®@$mn” + n?*¢) time, and for any pair of
verticesu, v € V, reports distancé* (u, v) satisfying the inequality :

6(u,v) < 6" (u,v) < (1+€)d(u,v) +

whereg is a function of¢, €, p. If the two verticesu, v € V are separated by sufficiently long distances
in the graph, the rati% ensured by Elkin’s algorithm is quite close (tb+ ¢), but this ratio will be

quite huge for short paths singedepends o as(l/g)logl/C, depends inverse exponentially prand
inverse polynomially or.

Minimizing the termn in the running timeO(mn) could be achieved if we perform shortest path
computation on a fevepecialvertices only. This approach alone is not able to computecjpate
shortest paths, so it is combined with computation of slsopath trees on the remaining vertices in a
sparse subgraph defined in sométableway by the special vertices. Quite often, this 2-level applo
can be easily generalized televels, for any integek > 2. There is a family of algorithms based on
this hierarchical approach. First such algorithm was designed by Aingwortil.efl]. Their algorithm
computes all-pairs surplus-2 distancegifm? polylog n). Dor et al. [12], improved this algorithm to
achieve a running time ab(min(n3/2./m, n"/3) polylog n). Note that for any two vertices, surplus-2
distance is also stretch-2 distance (but not vice versassrihey are neighbors, which can be verified
in constant time. Hence the algorithm by Dor et al. [12] th@hputes all-pairs surplus-2 distances can
also report stretch-2 distances for any pair of verticeseyTélso generalized the algorithm to compute
all-pairs surplug2k distances for arbitrary integér > 1, and fork = log n, they show that the resulting
algorithm also computes all-pairs stretch 3 distances(in? polylog n) time.

In addition to the above mentioned work on undirected unfateig) graphs, a lot of work has also
been done on undirected weighted graphs including the toilesofapproximate distance oracldsy
Thorup and Zwick [20]. This result achieves subcubic rugniime as well as optimal sub-quadratic
space requirement for any streteh3. For these and related algorithms for weighted graphs [3]) vie
refer the reader to an excellent and comprehensive survé&miigk [21].

1.1 Our contribution and organization of the paper

We address the problem of computing all-pairs 2-approx@rdistances. The stretch 2 is unique in
that it is the smallest stretch one can aim to compute foraqiprate distances in time which is less
than Boolean matrix multiplication. This is because anyatgm that computes all-pairs approximate
distances with stretch strictly less than 2 can be adaptedrtgoute multiplication of any two Boolean
matrices in the same time [12]. As mentioned above, the bestk algorithm for computing all-pairs
stretch-2 distances in unweighted graphs [12] has a rurtirimgyof O (min(n?/2m'/2, n7/3) polylog n).
This bound indeed beats the existing best known bourt@(af-37%) for Boolean matrix multiplication.
However, the question is whether this time complexity ofulirs 2-approximate distances can be further
improved. Note that there existyn?) lower bound on space as well as time complexity of the problem
of all-pairs 2-approximate distances. The contributiothaf paper is to show that we can in fact compute
all-pairsnearly 2-approximate distances for unweighted undirected graptisie O (n? polylog n). We

would also like to remark that previously it was possible aonpute only all-pairs stretch-3 distances or
(surplusO(log n) distances) in this time [12].

1. We first design a data structure that, given any two vestice € V/, requires constant time to
report distance bounded By (u, v)+1, thatis, an additive error of one unit over the 2-approxenat
distance. Employing efficient randomized subroutines, asthat the expected preprocessing
time required to build this data structure @(m?/3nlogn + n?). At the cost of introducing
a surplus of one unit, this new algorithm (Algorithm |) isistly faster than the previous best
algorithm whenevem = o(n?) [12]. Moreover, for the rangen < n®/2, the new algorithm
requires expecte®(n?) time.

The algorithm falls under the category of algorithms for mpjmate shortest paths that employ
hierarchical approach, and is based on a new scheme for all-pairs sestiortest paths. This
scheme, using a new idea, builds upon the earlier work ofdnand Zwick [19, 20] which deals
with the computation of all pairs approximate distancesitetch> 3.

2. We further reduce the expected preprocessing tinde(ic’ log?/? n) at the expense of increasing
the surplus ta, that is, given any pair of verticag v € V, the distancé* (u, v) reported by our
second algorithm (Algorithm II) satisfies

d(u,v) <6 (u,v) < 26(u,v) + 3

The algorithm employs the new scheme on top of a special Kisganner in order to achieve faster
time. In this way, this algorithm combines both the hierazahapproach and the spanner based
approach. The main obstacle in the design of this algorithno iemploy a spanner that should
be constructible in quadratic time and should not increbsestretch beyond 2. We can’'t employ
any additive spanner since none of them is constructibleuadratic time. On the other hand,
employing a (multiplicative) spanner with strettlwould increase the stretch of the approximate
distance reported t®¢, which is undesirable. We get around this problem in a waylairo [5].

As would become clear subsequently from the paper, theieglditror shows up only in some
restricted worst case only. In general, the algorithms behave very much like a 2-approximate
shortest path algorithm.

Without any modifications, all our data structures for rejmgr approximate distance can also be used to
report approximate shortest path in optimal time. Aftecdssing the preliminary notations and lemmas
in the following section, we present and analyze the newrsehte design efficient algorithms for stretch
nearly 2 in Section 3. In order to realize this scheme, we presentaaadlyze efficient randomized
subroutines in section 4. Finally, we present our two athars in section 5.

2 Preliminaries

In an unweighted graph, shortest path tree at a vertex isahme sas a BFS (breadth first search) tree
rooted at that vertex, and such a tree can be constructédrin) time. Now we present the notations,
definitions and important Lemmas (most of them from [20]) éoused in the rest of the paper.

For a given undirected unweighted graph= (V, E), and a set” C V, first we define the following
notations.

e /(u,v) : the distance between vertexand vertexv in the graph.

e 0(v,Y) : minyey d(v,y)

e n,(Y) : the vertex from the sét” which is nearest to, that is, at distancé(v, Y') from v. If there
are multiple vertices in sét” at distance)(v,Y") from v, we break the tie arbitrarily to ensure a
uniquen,(Y’). Moreover, ifv € Y, we definen,(Y) = v. For conciseness, we shall usg to
denoten, (YY) when the set” is clear from the context.

e R, : Asubset formed by selecting each vertex frohindependently with probability.

Given a set” C V, it is quite easy to compute,(Y) andd(v,Y) for all v € V in O(m) time as
follows. Connect a dummy vertexto all the vertices of sét’, and perform a BFS traversal on the graph
starting fromw. We can summarize this observation as the following Lemma.

Lemma 2.1 Given a sey” C V, it requiresO(m) time to compute,(Y) andd(v, Y') for all vertices
veV.

An important construct from [20] which we shall use iBall which is defined as follows.

Definition 2.1 Given a graphz = (V, E), a vertexv € V, and two subsets of verticeé§andY’, the set
Ball(v, X,Y) is defined in the following way

Ball(v, X,Y) ={x € X|0(v,z) < d(v,Y)}

In other words,Ball(v, X,Y') consists of all those vertices of the sétwhose distance from is less
than the distance between (YY) andv. The Radiusr(v) of Ball(v, X,Y) is defined ag(v,Y) — 1.

It may be noted thaBall(v, X, () is the setX itself, whereasBall(v, X, X) = (. The following
lemma from [20] suggests that if the Sétis a suitable random sample of the $&tthe expected size of
Ball(u, X,Y") will be sublinear in X|.

Lemma 2.2 [20] Given a graphG = (V, E), the expected size &fall(v, X,Y') is at mostl /p if the set
Y is constructed by either of the following two sampling métho

() Y contains each vertex from s&tindependently with probability.

(i) Y is a uniformly random sample of sizeX| from setX (where all subsets of size X| are equally
likely).

Proof: Consider the sequence;, x2, - - -) of vertices of sefX arranged in non-decreasing order of their
distance fromv.

It follows from Definition 2.1 that the vertex; will belong to Ball(v, X, Y') only if none ofzq, - - -, x;
are selected for the s&t. So if the sety” is formed by selecting each vertex of sétindependently with
probability p, thenz; € Ball(v, X,Y) with probability at most(1 — p)’. Hence using linearity of
expectation, the expected number of vertice®irl(v, X,Y) is at mosty",;(1 — p)* < 1/p.

It also follows from Definition 2.1 that the size @all(v, X,Y") is bounded by the index of the
first vertex of setY” in the sequencgz,zs,---). It follows from elementary probability that if we
selectnp numbers uniformly from[1, n], then the expected value of the smallest number selected is
(n+1)/(np+ 1). So if we select a sample of sizg uniformly from setX, then the expected size of
Ball(v, X,Y) is bounded byn +1)/(np+1) — 1 < 1/p. O

Definition 2.2 Given a graphG = (V, E), and two subsetX’, Y of vertices, we definelusterC(z,Y),
foranyz € X as the se{v € V|x € Ball(v, X,Y)}.

Clusters can be viewed as inverses of Balls. Given any tweetsalX, Y of vertices, the following
important equality between the size of Balls and clustersbeaeasily verified using Definition 2.2.

Y IC(,Y)| = > |Ball(v,X,Y)| (1)

zeX veV

LetRCV.

1. Global distance information
For each vertex € R, build a BFS tree to compute distance freno every vertex
in the graph.

2. Local distance information
For each vertex. € V'\ R, compute distance to all the verticesB&!l(u, V, R) and
its nearest vertex,,.

3. Keep a data structure to determine, in constant time, ety two Balls overlap
(share a common vertex).

Figure 1. New scheme for nearly 2-approximate distances

3 A New Scheme for nearly 2-Approximate distances

The new scheme is described in Figure 1. The scheme may agipekar to the 3-approximate distance
oracle of Thorup and Zwick [20] except the third step. Howeitas this step that proves to be crucial
in achieving nearly 2 stretch. The query proced@:, v) for reporting approximate distance between
anyu,v € V using this scheme is described in Figure 2. The query Proee@(u, v) explores the
following three possible cases in the above fixed order.t,Firainy of the two vertices lie in the Ball
rooted at the other, we report the exact distance betwemmdv. Otherwise, if the Balls rooted at the
two vertices overlap, and leb be a vertex common to both the Balls, then we report the surheof t
distance fromu to w and distance fromy to w. In both the cases, we manage to report distance using
only local distance information stored at vertiaeandv. The only case that is left is, when the two Balls
are non-overlapping. In this case, we use the global distaxformation stored at,, andn,. Note that
our scheme keeps track of the exact distance fmgnto v as well as fromm,, to u. We compute the sum
of distance fromu to n,, and distance from,, to v; likewise, we compute sum of distance franto n,,
and distance from,, to u, and report the minimum of the two sums as an approximatartistbetween
u andov.

Theorem 3.1 Given a graphG = (V, E) and any two vertices,v € V, the approximate distance
between: andv as reported by the query procedu@ u, v) is bounded bd(u, v) + 1.

Proof: Leta andb be the radii ofBall(u, V, R) andBall(v, V, R) respectively. The approximation fac-
tor associated with the distance depends on the step ofguoe@(u,v) in which it (the approximate
distance) is reported. We analyze the three cases as follows

Case 1. The distance is reported in the first step@fu, v).

Without loss of generality, let us assume thdies in Ball(u,V, R) (see Figure 3, Case-1). Here we
report theexactdistance between andwv.

Case 2: The distance is reported in the second ste@ (i, v).

Since the query procedure failed to report the distancedtfitht step, therefore, the distance between
andv is more than the radius dball(u, V, R) andBall(v, V, R). In other words¢(u, v) is greater than
a as well ash. (see Figure 3, Case-2). Letbe a vertex lying in bottBall(u, V, R) and Ball(v, V, R).
Clearly,§(u, w) < a andd(v, w) < b. Therefore, the distance reported in this step is bounded-by,

6

Q(u,v) : We answer a distance query betweeandwv in the following order.

e If v € Ball(u,V,R) oru € Ball(v,V,R):

reportd(u, v)

e Elseif Ball(u,V, R) andBall(v, V, R) overlap:

reporté(u, w) + 6(v, w) for somew € Ball(u,V, R) N Ball(v,V, R)

e Else:

reportminimum of (0(u,ny) + 6(ny,v)) and (§(v,ny) + 0(ny, u))

Figure 2: Answering distance query using new scheme

which is at mosRd(u, v) as explained above.

Case 3: The distance is reported in the third step@fu, v).

Since the query procedure failed to report the distancesiséitond steg3all(u, V, R) andBall(v, V, R)
are separated by distanae> 1 (see Figure 3, Case-3). So the shortest path betweand v can
be viewed as consisting of three sub-paths : the first subigatie portion of the path lying inside
Ball(u,V, R) and has length, the second sub-path is the portion of the path lying outsidéwo Balls
and has lengthr, and the third sub-path is the portion of the path lying iasighll(v, V, R) and has
lengthb. Hence, the distance betweemndv is a + = + b for somex > 1.

In the third step, we report minimum ¢6(u, n,) + d(n,,v)) and(é(v, ny) + d(ny,u)). It can be
noted thaty(u,n,) = a + 1 andd(v,n,) = b+ 1. Now considering the path from,, to v passing
throughu, we can observe thé({n,,, v) is at mosa + = + b+ 1. Similarly, analyzing the path from,
to u passing through, we can observe tha(n,,, u) is at mos2b + = + a + 1. Therefore, the distance
reported byQ(u, v) can be bounded from above as follows.

min((0(u, nu) +0(nu,v)) 5 (6(0,10) + (1, u)))
min(3a+z+b+2,3b+z+a+2)

min(3a + b,3b + a) + z + 2

3b+a+x+2 {without loss of generality assunae> b}

< 2a+2b+x+2 {sincea > b}
< 2a+x+b)+1 {sincex > 1}
= 26(u,v) +1
Hence, the distance betweenv as reported by (u, v) is bounded byRd(u,v) + 1. O

Remark: It is worth noting that the distance between any two verticasc V, as reported by (u, v),
is bounded by2d(u, v) even in the Case 3, if at least one of the following conditibakl:

(1) = > 1,thatis, the two Balls are separated by a path longer tharedge.

(11) a # b, that is, the radii of the two Balls differs.

7

o
Case 1 °o\o ° oo ° Case 2
o OOO.,L? o o © °o o
o © o o o o
© o * o
°© o ° o o ©
o
o o © o i o
. o 4 o o
o
OOO’]’LO 5 ° 45 o o OooooooO
o © u o © o o e O ° o
o o
o o o o 0 °
oqu?)]‘o OO ° o oooOO
@ Ooo o o o [o ° ©
o "l - s . vertex of setR
° oY% oo o boo
o OO o 4 o © 5 +1
o © o ©
o ° o
o ° . °o o o o R
© ° o o v o o
°© o o o °
o o
o o o .
® ° © o o o © o o ©
Case 3

Figure 3: Three cases in reporting distance betweandv

o Sampled vertex
— tree edge

Figure 4: To computdall(u, V, R,), it suffices to explore adjacency list of vertices lying uglistance
r(u) — 1 only.

4 Efficient Sub-Routines for Realization of the New Scheme

In order to design efficient algorithm based on our new schiemall-pairs nearly 2-approximate dis-
tances, we shall now present sub-routines for efficient eadgatjpn of Balls as well as efficient detection
of overlap of any two Balls.

4.1 An Efficient Algorithm for Computing Balls

We shall now present an algorithm for computiBgll(u, V, R,), for all w € V\R,,. Recall thatR,, is
the set formed by selecting each vertex independently wabhability p < 1.

It follows from Definition 2.1 that the vertices ddall(u,V, R,) and their distances from can be
computed by building a BFS treeaup to level (distance) equal to the radit(s) of the Ball. Therefore,
prior to the computation oBall(u,V, R,), we computer(u). It follows from Lemma 2.1 that we can
compute radii of all Balls irO(m) time by a single BFS traversal.

If r(u) =0, Ball(u,V, Ry,) consists of vertex, only and we are done. For the case wheén) > 1,

we build a BFS tree up to levelu) to computeBall(u,V, R,), and the computation time required in
doing so is of the order of the number of edges explored. Simegraph is undirected, an edge will be
explored at most twice (once by each of its end-point), andwweld charge the cost of exploring an
edge to that end-point which explores it first. Let(= u), vo,---,v,) be a sequence of vertices of the
given graph arranged in non-decreasing order of their mcgtdrom«. Note that computing BFS tree
up to levelr(u) requires exploring the adjacency list of vertices up tolle@) — 1 only (see Figure
4). Therefore, in the computation @ali(u,V, R,), we shall explore adjacency list of only if the
following two events happen:

&l There is no vertex in the s¢b;|j < i} which is selected in the sample,.

&L : There is no vertex fronduv;|j > i} that is adjacent te; and also a sampled vertex.

The eventsti and &% are independent since the vertices are selected indepgnderform R,,.
Following our charging scheme mentioned above, explorajgaency list of vertex; would contribute
O(d'(v;)) to the computation time aBall(u, V, R,), whered' (v;) is the number of edges incident on
from vertices{v;|j > i}. So the expected time for computidignll(u, V, R,) is

(Pr(e]) - Pr(&)) - d'(v)) = Y ((1=p) (1= p)*™d ()

1 i=1

2

AN
[~]=
—
—~
—
|
ch
=
—
&
s
—
—
|
=
e
|
—
~

<y (a-pyi0) < o< L

- b= p
i=1 =1
Combining this discussion with Lemma 2.1, we can state theviong theorem.

Theorem 4.1 Given an undirected unweighted graph= (V, E) andp < 1, let R, be a set formed
by selecting each vertex independently with probability There exists an algorithm for computing
Ball(u,V, Rp) for all u € VAR, in expected)(m + z) time.

It follows from the proof of Theorem 4.1 that if we have a $&0 R,, the time required to compute
Ball(u, V, R) is not greater than the time required to compBi€i(u, V, R,,) for anyu € V. So we can
state the following corollary.

Corollary 4.1 Given an undirected unweighted graph= (V, E) andp < 1, let R, be a set formed
by selecting each vertex independently with probabjity 1. For any setkR O R, it takes expected
O(m + %) time to compute3all(u, V, R), for all u € V\R.

4.2 Computing Overlap Matrix O

To determine for a pair of verticas v € V, whether there exists a vertex common to bBi#ll(u, V, R)
andBall(v,V, R), we compute a matrig) such tha[u, v] is null if Ball(u,V, R)NBall(v,V, R) =0,
otherwiseO|u, v] stores a vertex that belongs to both the Balls. To build thiim@ efficiently, we form
theclustersC (v, R) (see Definition 2.2). It is easy to observe that we can formGét, R), Vv € V by
a single scan of seBall(u, V, R),Yu € V. Now once we hav€'(v, R),Vv € V, we can compute the
matrix O as follows.

Algorithm for computing overlap matrix O

For eactw € V\R do
For eachu € C(v, R) do
For eachw € C(v, R) do
Olu,w] «— v

ProcedureAugment(V’, R,) {

R — Ry,

While (V' # ()
Let A be a uniform sample of sizep from V'
R+— AUR
For everyu € V\ R, computeBall(u, V, R);
For everyv € V\R do

C(v,R) —{u eV |ve Ball(u,V,R)};

Vi {ve V' ||C(v, R)| > 4/p};
End While ;

ReturnR;

Figure 5: Augmenting the sét, to ensurdC(v, R)| = O(1/p), Yo € V

The running time of the above algorithm for computing theragmatrix© is of the order of", oy |C (v, R)|*+
n2. In order to bound this running time Wy (n/p? 4+ n?) (which also matches the time required to com-
pute Balls), we need to find a sBtC V which would ensure thdC'(v, R)| = O(1/p), for eachv € V.

It should be noted that the equality 1 and Lemma 2.2 can’trer@(l/p) bound on the expected size
of C(v,R) if R is chosen to b&?,. Moreover, due to quadratic dependence of the running timhe (
the above algorithm) ofC'(v, R)|, merely a bound on its expected size won't suffice; insteadvauald
require the deviation ifiC' (v, R)| to be small. We shall employ the algorithm by Thorup and Zwik%

to build the desired sek such thaiC(v, R)| = O(1/p) for all vertices. Beginning witlR = R, let

V' be the set obadverticesv such thaiC(v, R,)| > 4/p. The algorithmAugment(V”’, R,), described

in Figure 5, turns a fraction of bad vertices irgood vertices (with cluster sizeC 4/p) iteratively by
augmenting the se®. For every iteration in this algorithmR? > R, so it follows from Corollary 4.1
that each iteration will require expectém + n/p?) time. Furthermore, since the sktis augmented
over the iterations, the valu€'(v, R)| will never increase for any vertex € V. Hence once a ver-
tex becomegjood it will never becomebad in future. Now for bounding the number of iterations, the
following lemma will be crucial.

Lemma 4.1 In each iteration, the number of bad vertices reduces by tofaaf 2 with probability at
least 1/2.

Proof: Let V; be the set of bad vertices (the $&% at the end ofth iteration. The iteration begins with
augmenting the existing sé&t by a uniform sample ofp vertices fromV;. The expected sum of sizes of
the clusters around each vertex frafnwith respect to the augmented getan be bounded as follows

E | [C(v,R)

veV;

= E [Z | Ball(u, V;, R)|1 {using Equality 3

ueV

IA

E [Z |Ball(u,VZ~,A)|1 {sinceAC R}
ueV

. il
pn

= |Vil/p

N

{using Lemma 2.2ii) }

10

Algorithm |

Preprocessing
Let R be the set of vertices as defined by Theorem 4.2.

1. For each: € V\R, computeBall(u,V, R).
2. Compute overlap matri®.

3. Foreachy € R, build a full BFS tree rooted atin the graph.

Reporting distance between,v € V
Q(u,v)

Figure 6: Algorithm |

In other words, starting withV;| bad vertices in iteration, the expected sum of sizes of all clusters
around these vertices at the end of the iteratioi¥;ji5'p. Now, using Markov Inequality, the probability
that this sum is bounded yV;|/p is at least 1/2, and in that case there can’t be more|tigr2 vertices

in V; with the cluster size greater thayip. ThereforePr|[|V; 11| < |V;|/2] > 1/2. 0

It follows from Lemma 4.1 that after expectédg n iterations, V' would be reduced t@. Each
iteration addsp vertices to the sample s&. Thus the expected size of the final samplevould be
nplogn, and the terminating condition of the algorithm ensures @@, R) is bounded b)O(%), for
eachv € V. Hence we can state the following Lemma.

Lemma 4.2 Given an undirected unweighted graph= (V, E) andp < 1, we can compute a sample
setR of expected sizeplog n such thaiC'(v, R)| is bounded b)O(]lJ), for eachv € V.

Combining Corollary 4.1 and Lemma 4.2, we can conclude theviing theorem.

Theorem 4.2 Given an undirected unweighted gragh = (V,E) andp < 1, a setkR C V of size
O(nplogn) can be computed in expectédm logn + I% log n) time ensuring that

e It takes a total o0 (m + n/p?) time to computeéBall(u, V, R),Yu € V\R.

o IlttakesO(n” +) time to build the overlap matri©.

5 Algorithms for Nearly 2-Approximate Shortest Paths

5.1 Algorithm |

Ouir first algorithm for computing nearlg-approximate distances is a realization of the scheme men-
tioned in Section 2 and is described in Figure 5.1. Let us noalyse its time complexity. Computing
BFS tree from vertices of the sét requiresO(m|R|) = O(mnplogn) expected time. By applying
Theorem 4.2, it follows that the total expected time for pogessing the graph in Algorithm 1 is of the
order of

2/3

O(mlogn +n? + %logn—l—mnplogn) = 0(n?+m*3nlogn) {forp= %}
p m

11

Theorem 5.1 An undirected unweighted gragh = (V, E) can be preprocessed in expect@tn?/*nlog n+
n?) time to build a data structure of siz&(n?) which can report*(u, v) in O(1) time for anyu,v € V/
such that

0(u,v) < 6" (u,v) < 26(u,v) +1

5.2 Algorithm II

The preprocessing time of the first two steps in Algorithmdatéed above can be bounded®yn? log n)
with a suitable choice op. The third step that computes BFS trees from vertices ofisetquires
O(m|R]) time, which is certainly noO(n?logn) when the graph is dense. To improve its preprocess-
ing time toO(n? polylog n), one idea is to perform BFS frofi on a spanner (having(n?) edges) of the
original graph. A spanner is a subgraph that is sparse Bupstserves approximate distance between
vertices in the graph.

Definition 5.1 Givena > 1,3 > 0, a subgraph(V, E’), E' C E'is said to be an«, 3)-spanner of
G = (V, E) if for each pair of vertices;,v € V, the distances(u, v) in the spanner is bounded by
ad(u,v) + .

The sparsity of a spanner comes along with the stretchingeodlistances in the graph. So one has to be
careful in employing an«, 5)-spanner (withe > 1) in the third step, lest one should end up computing
nearly2«-approximate distances instead of nearly 2-approximatizd¢es. To explore the possibility of
using spanner in our algorithm, let us revisit our distaregorting schem&@(u, v). The full BFS trees
rooted at the vertices of sét serve to provide global distance information in the schepdie, v), and
they are required only wheBall(u,V, R) and Ball(v, V, R) are non-overlapping. In the analysis of
this case, we partitioned the shortest path betweandw into three sub-paths (see FigCase-3: the
sub-paths of lengths andb covered byBall(u, V, R) and Ball(v, V, R) respectively, and the sub-path
of lengthx lying between the two Balls and not covered by either of théve.showed that the distance
0*(u,v) as reported byQ(u,v) is bounded by2a + 2b + = + 2. A comparison of this expression of
0*(u,v) with §(u,v) = a + = + b suggests that there is a possibility of stretching the ueV sub-
path (of lengthr) between the Balls by a factor @fand still keeping the distance reported to be nearly
2-approximate. So we may employ am, 3)-spanner in the third step of our algorithm, providedthe
multiplicative stretch) is not greater than 2 and more intgatty, for each vertex. € V'\ R, the shortest
path fromn,, to v as well as the shortest paths franto all the vertices oBall(u, V, R) are preserved in
the spanner. To ensure these additional features, we shplbg the parameterized spanner introduced
in [5].

Definition 5.2 Given a graphGG = (V, E), and a parameteX C V, a subgraph(V, E’) is said to be a
parameterized?2, 1)-spanner with respect t& if

(@) (V,E')is a(2,1)-spanner.

(i7) Every edge whose at least one endpoint is not adjacent teengx from the seX is surely present
in the spanner too.

A parameterized2, 1)-spanner for a givetX C V (as a parameter) can be constructedifm +
n) time [5]. To ensure that the spanner is a parameter{2ed)-spanner, the algorithm satisfies the
following property.

Lemma 5.1 [5] For an edgee(u, v) not present in the spanner, there is a veriex X adjacent tou in
the spanner such that there is a path frerno v in the spanner of length at most 2.

12

Algorithm I

Preprocessing
Let R be the set of vertices as defined by Theorem 4.2.

1. For eachs € V\R, computeBall(u,V, R).
2. Compute overlap matri.

3. (a) Let(V, E’) be a parameterize(2, 1)-spanner with respect t& for the given
graphG = (V, E).

(b) Foreachy € R, compute a full BFS tree rooted atn the graph'V, E' UE(v)).
(E(v) denotes the edges incident oim the original graptG = (V, E))

Reporting distance between,v € V
Q(u,v)

Figure 7: Algorithm Il

Property(ii) of the parameterize(®, 1)-spanner implies that if we choode as the parameter, all the
edges lying inside a Ball are present in the parameterizadrsy, and hence all the shortest paths that
completely lie within a Ball are also preserved. Now obsehag the shortest path from, to u lies
fully inside Ball(u,V, R) except the first edge of this path which is incidentrgn So to ensure that
the shortest path from,, to « is also preserved, it would suffice if we augment the spanritér ail the
edges in the original graph that are incidentron The algorithm 1l is described in Figure 5.2.
From the discussion above, it follows that for any pair oftieesu, v € V, the distance reported in
Case-3 byQ(u, v) will be
0*(u,v) <2(a+b)+ (2x + 1) +2 {sincex is stretched t@x + 1 }
=2(a+x+b)+3 = 26(u,v)+3.

To analyse the running time of Algorithm I, observe that wexfprm BFS on a(2, 1)-spanner.

Therefore, a bound on the size of the spanner is required.haleuse the following lemma from [5].

Lemma 5.2 [5] Let R, be a set formed by selecting each vertex independently vatiapility p. For
any setkR O R,, the expected size of parameterizedl)-spanner will beO(|R|n + n/p).

It follows from Lemma 4.2 that the expected sizefdfs O(pnlogn). This fact in conjunction with the
previous Lemma implies that the size @, 1)-spanner iO(n/p + n?plogn). Hence using Theorem
4.2 the expected preprocessing time of Algorithm Il is

1
Vvny/logn

Theorem 5.2 An undirected unweighted grapi = (V, E) can be preprocessed i@ (n> log®/? n)
expected time to build a data structure of s&@:?) which can reports* (u, v) in constant time for any
u,v € V such that

}

(0] (m logn + % logn + (nQplogn + 2) nplogn) = O(n? log% n) {forp=
p p

0(u,v) <6 (u,v) <26(u,v) +3

13

6 Conclusion and Open Problems

Given an undirected unweighted graph= (V, E) on |V| = n vertices, we can compute nearly 2-
approximate distances 0(n? polylog n) time. A natural question is whether the same bound is achiev-
able for undirected weighted graphs as well. Subsequetetsubmission of this paper, Baswana and
Kavitha [4], and Berman and Kasivishwanathan [6] indepatidenswered this question in affirmative.
They showed that an undirected weighted gréps (V, E) can be preprocessed @n(n? log n) time to
computes* such that for each pair,v € V

d(u,v) < 6" (u,v) < 28(u,v) + Wpax (u, v)

wherewp,.« (u, v) is the weight of the maximum weight edge on the shortest paitivdenu andw.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fastieation of diameter and shortest
paths(without matrix multiplication)SIAM Journal on Computing8:1167-1181, 1999.

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of tHe@airs shortest paths problerdournal
of Computer and System Sciende$.255-262, 1997.

[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Neardineme construction of sparse neigh-
borhod coversSIAM Journal on Computing8:263—-277, 1998.

[4] S. Baswana and T. Kavitha. Faster algorithms for appnaté distance oracles and all-pairs small
stretch paths. IfProceedings of the 47th Annual IEEE Symposium on FoundatbiComputer
Science (FOCSpages 591-602, 2007.

[5] S. Baswana and S. Sen. Approximate distance oraclesnfoeighted graphs ilf)(nQ) time. In
Proceedings of the 15th ACM-SIAM Symposium on Discreterifiigts (SODA) pages 271-280,
2004.

[6] P. Berman and S. P. Kasiviswanathan. Faster approamafi distances in graphs. Proceedings
of 10th Workshop on Algorithms and Data Structureslume 4619 ofLNCS pages 541-552.
Springer, 2007.

[7] T. M. Chan. More algorithms for all-pairs shortest pathsveighted graphs. Ifroceedings of
39th Annual ACM Symposium on Theory of Computirages 590-598, 2007.

[8] E. Cohen. Fast algorithms for constructingpanners and paths with stretchSIAM Journal on
Computing 28:210-236, 1999.

[9] E. Cohen. Polylog-time and near-linear work approximatscheme for undirected shortest paths.
Journal of Association of Computing Machine#yr:132—-166, 2000.

[10] E. Cohen and U. Zwick. All-pairs small stretch patlsurnal of Algorithms38:335-353, 2001.

[11] D. Coppersmith and S. Winograd. Matrix multiplicatiera arithmetic progressionsJournal of
Symbolic Computatiqrd:251-280, 1990.

[12] D. Dor, S. Halperin, and U. Zwick. All pairs almost shest paths.Siam Journal on Computing
29:1740-1759, 2000.

14

[13] M. Elkin. Computing almost shortest patiSCM Transactions on Algorithm4:282-323, 2005.

[14] S. Pettie. A new approach to all-pairs shortest patheahweighted graphg.heoretical Computer
Science312:47-74, 2004.

[15] L. Roditty, M. Thorup, and U. Zwick. Deterministic cansction of approximate distance ora-
cles and spanners. Proceedings of 32nd International Colloquim on Automatanguages and
Programming volume 3580 oL.NCS pages 261-272. Springer, 2005.

[16] A. Shoshan and U. Zwick. All pairs shortest paths in vedied graphs with integer weights. In
Proceedings of the 36th Annual Symposium on Foundation®wipGter Science (FOC)ages
605-615, 1999.

[17] V. Strassen. Gaussian elimination is not optindilimerische Mathematit3:354—-356, 1969.

[18] T. Takaoka. Subcubic cost algorithms for the all palrsrgest path problemAlgorithmicg 20:309—
318, 1998.

[19] M. Thorup and U. Zwick. Compact routing schemes.Piloceedings of 13th ACM Symposium on
Parallel Algorithms and Architecturgpages 1-10, 2001.

[20] M. Thorup and U. Zwick. Approximate distance oracle¥ournal of Association of Computing
Machinery 52:1-24, 2005.

[21] U. Zwick. Exact and approximate distances in graphsuraey. InProceedings of the 9th Annual
European Symposium on Algorithms (ES#gges 33-48, 2001.

[22] U. Zwick. All-pairs shortest paths using bridging satsl rectangular matrix multiplicatiordour-
nal of Association of Computing Machined:289-317, 2002.

15

