
All-Pairs Nearly 2-Approximate Shortest Paths inO(n2 polylog n)

Time∗

Surender Baswana†

Department of Computer Science & Engineering
I.I.T. Kanpur, India.

Email : sbaswana@cse.iitk.ac.in

Vishrut Goyal‡

Persistent Systems Private Limited,
Pune, India.

Email : vishrut goyal@persistent.co.in

Sandeep Sen
Department of Computer Science & Engineering,

I.I.T. Delhi, India.
Email : ssen@cse.iitd.ernet.in

February 28, 2008

Abstract

Let G = (V, E) be an unweighted undirected graph on|V | = n vertices and|E| = m edges.
Let δ(u, v) denote the distance between verticesu, v ∈ V . An algorithm is said to compute all-pairs
t-approximate shortest-paths/distances, for somet ≥ 1, if for each pair of verticesu, v ∈ V , the
path/distance reported by the algorithm is not longer/greater thant · δ(u, v).

This paper presents two extremely simple randomized algorithms for computing all-pairsnearly
2-approximate distances. The first algorithm requires expectedO(m2/3n log n + n2) time, and for
anyu, v ∈ V reports distance no greater than2δ(u, v) + 1. Our second algorithm requires expected
O(n2 log3/2 n) time, and for anyu, v ∈ V reports distance bounded by2δ(u, v) + 3.

1 Introduction

The all-pairs shortest paths (APSP) problem is undoubtedlyone of the most fundamental algorithmic
graph problems. Given a graphG = (V,E) on n(= |V |) vertices andm(= |E|) edges, the problem
requires computation of shortest-paths/distances between each pair of vertices. There are various ver-
sions of this problem depending on whether the graph is directed or undirected, edges are weighted or
unweighted, weights are positive or negative. In its most generic version, that is, for directed graph with

∗Preliminary version of this result appeared in 22nd Symposium on Theoretical Aspects of Computer Science (STACS),
2005

†the work was done while the author was a postdoctoral researcher at Max-Planck Institute for computer science, 66123
Saarbrücken, Germany.

‡the work was done while the author was a masters student in thedepartment of computer science at I.I.T. Delhi, India.

1

real edge-weights, the best known algorithm [14] for this problem requiresO(mn + n2 log log n) time.
However, for graphs withm = Θ(n2), this algorithm has a running time ofΘ(n3) which matches that
of the old and classical algorithm of Floyd and Warshal. The best known upper bound on the time com-
plexity of this problem isO(n3/ log2 n) due to Chan [7], which is marginally subcubic. The existing
lower bound on the time complexity of APSP is the trivialΩ(n2) lower bound.

There exist subcubic algorithms for APSP problem if the edges weights are integers in a finite range.
All these algorithms employ fast (subcubic) algorithm for matrix multiplication. The underlying intuition
for taking this approach is the fact that computing all-pairs distances in a graph is related to computing
(min,+) product (calleddistanceproduct) of matrices. For the usual algebraic, i.e.,(+,×) product
of two matrices, Strassen [17] gave the first subcubic algorithm, and many faster algorithms followed
this algorithm. Letω be the exponent of matrix multiplication, i.e., the smallest constant for which
matrix multiplication can be performed usingO(nω) algebraic operations - additions,subtractions, and
multiplications. The fastest known algorithm for matrix multiplication due to Coppersmith and Winograd
[11] implies ω < 2.376. For undirected unweighted graphs, Seidel gave a very simple and elegant
algorithm to solve APSP iñO(nω) time. In fact he showed that APASP in undirected unweighted graphs
is harder than Boolean matrix multiplication by at most a polylogarithmic factor. For APSP in undirected
graphs with edges weights from{0, 1, ...,M}, Shoshan and Zwick [16] desiged añO(Mnω) algorithm.
For unweighted directed graphs, the first truly sub-cubic algorithm was designed by Alon et al. [2],
which was improved subsequently by Takaoka [18], and most recently by Zwick [22]. For directed
graphs with weights from the range{−1, 0, 1}, the algorithm by Zwick achievesO(n2.575) running
time. This algorithm works for integer edge weights in the range{−M, . . . ,M} as well, and achieves
subcubic running time providedM < n3−ω.

An algorithm for APSP problem which is based on matrix multiplication is undoubtedly very im-
portant because it breaks the cubic barrier in the time complexity of the fundamental problem of APSP.
However, there is a natural question as to whether it is possible to design a sub-cubic algorithm for APSP
problem that does not resort to any fast matrix multiplication subroutines. This question becomes even
more significant given the wide practicality of APSP problemand the fact that all the existing algo-
rithms for fast matrix multiplication are notoriously impractical. Motivated by this question, a number
of sub-cubic algorithms have been designed in the last ten years that are based on very simple and novel
combinatorial ideas, but computeapproximate , instead of exact, shortest paths.

Algorithms for all-pairs approximate shortest paths : As the name suggests, an algorithm for ap-
proximate shortest-paths (or distances) would report paths (distances) which are longer than the actual
shortest-paths (distances). The error associated with thedistance could be either additive (surplus) or
multiplicative (stretch). An algorithm is said to compute all-pairssurplus-k distances for somek ≥ 0, if
for any pair of verticesu, v ∈ V , the distance reported is at leastδ(u, v) and at mostδ(u, v)+k. Likewise
an algorithm is said to compute all-pairsstretch-t distances for a givent ≥ 1, if for any pair of vertices
u, v ∈ V the distance reported is at leastδ(u, v) and at mosttδ(u, v). An interesting theoretical question
is to find the possible trade-offs between the time complexity of such an algorithm and stretch/surplus of
the distance it guarantee.

Consider the naive approach of computing APSP in an undirected unweighted graph where we build
shortest path trees on all the vertices. The total running time of this algorithm will beO(mn). The sub-
cubic algorithms for approximate shortest-paths are basedon the simple observation that minimizing the
first termm (the number of edges) and/or the second termn (the number of vertices) in the expression
O(mn) would lead to subcubic running time. This objective may sound very simple; However, achieving
this objective with a small bound on approximation factors (surplus or stretch) is quite nontrivial, and is
achieved using simple but ingenious techniques by the existing algorithms.

Minimizing the termm in the running timeO(mn) could be achieved if we perform shortest path

2

computation on a sparse subgraph. Since we require a bound onthe approximation factor, it would be
necessary that the subgraph preserves all-pairs distancesapproximately. Such a graph is calledspanner.
The challenge here is to compute the spanners with small stretch (or surplus) and still having a small
size. There are a number of algorithms [3, 8, 9] that take thisspanner basedapproach for computing
approximate shortest paths with stretch 3 or more. RecentlyElkin [13] also presented an algorithm
based on this approach that achieves a tradeoff between the running time, stretch, and the surplus. In
precise words, he gave the following result. Given an undirected unweighted graph and arbitrarily small
constantsζ, ǫ, ρ > 0, there exists an algorithm that requiresO(mnρ + n2+ζ) time, and for any pair of
verticesu, v ∈ V , reports distanceδ∗(u, v) satisfying the inequality :

δ(u, v) ≤ δ∗(u, v) ≤ (1 + ǫ)δ(u, v) + β

whereβ is a function ofζ, ǫ, ρ. If the two verticesu, v ∈ V are separated by sufficiently long distances
in the graph, the ratioδ

∗(u,v)
δ(u,v) ensured by Elkin’s algorithm is quite close to(1 + ǫ), but this ratio will be

quite huge for short paths sinceβ depends onζ as(1/ζ)log 1/ζ , depends inverse exponentially onρ and
inverse polynomially onǫ.

Minimizing the termn in the running timeO(mn) could be achieved if we perform shortest path
computation on a fewspecialvertices only. This approach alone is not able to compute approximate
shortest paths, so it is combined with computation of shortest path trees on the remaining vertices in a
sparse subgraph defined in somesuitableway by the special vertices. Quite often, this 2-level approach
can be easily generalized tok-levels, for any integerk > 2. There is a family of algorithms based on
this hierarchical approach. First such algorithm was designed by Aingworth etal. [1]. Their algorithm
computes all-pairs surplus-2 distances inO(n2.5 polylog n). Dor et al. [12], improved this algorithm to
achieve a running time ofO(min(n3/2√m,n7/3) polylog n). Note that for any two vertices, surplus-2
distance is also stretch-2 distance (but not vice versa) unless they are neighbors, which can be verified
in constant time. Hence the algorithm by Dor et al. [12] that computes all-pairs surplus-2 distances can
also report stretch-2 distances for any pair of vertices. They also generalized the algorithm to compute
all-pairs surplus-2k distances for arbitrary integerk ≥ 1, and fork = log n, they show that the resulting
algorithm also computes all-pairs stretch 3 distances inO(n2 polylog n) time.

In addition to the above mentioned work on undirected unweighted graphs, a lot of work has also
been done on undirected weighted graphs including the milestone ofapproximate distance oraclesby
Thorup and Zwick [20]. This result achieves subcubic running time as well as optimal sub-quadratic
space requirement for any stretch≥ 3. For these and related algorithms for weighted graphs [10, 15], we
refer the reader to an excellent and comprehensive survey byZwick [21].

1.1 Our contribution and organization of the paper

We address the problem of computing all-pairs 2-approximate distances. The stretch 2 is unique in
that it is the smallest stretch one can aim to compute for approximate distances in time which is less
than Boolean matrix multiplication. This is because any algorithm that computes all-pairs approximate
distances with stretch strictly less than 2 can be adapted tocompute multiplication of any two Boolean
matrices in the same time [12]. As mentioned above, the best known algorithm for computing all-pairs
stretch-2 distances in unweighted graphs [12] has a runningtime ofO(min(n3/2m1/2, n7/3) polylog n).
This bound indeed beats the existing best known bound ofO(n2.376) for Boolean matrix multiplication.
However, the question is whether this time complexity of all-pairs 2-approximate distances can be further
improved. Note that there existsΩ(n2) lower bound on space as well as time complexity of the problem
of all-pairs 2-approximate distances. The contribution ofthis paper is to show that we can in fact compute
all-pairsnearly2-approximate distances for unweighted undirected graphsin timeO(n2 polylog n). We

3

would also like to remark that previously it was possible to compute only all-pairs stretch-3 distances or
(surplusO(log n) distances) in this time [12].

1. We first design a data structure that, given any two vertices u, v ∈ V , requires constant time to
report distance bounded by2δ(u, v)+1, that is, an additive error of one unit over the 2-approximate
distance. Employing efficient randomized subroutines, we show that the expected preprocessing
time required to build this data structure isO(m2/3n log n + n2). At the cost of introducing
a surplus of one unit, this new algorithm (Algorithm I) is strictly faster than the previous best
algorithm wheneverm = o(n2) [12]. Moreover, for the rangem < n3/2, the new algorithm
requires expectedO(n2) time.

The algorithm falls under the category of algorithms for approximate shortest paths that employ
hierarchical approach, and is based on a new scheme for all-pairs stretch-2 shortest paths. This
scheme, using a new idea, builds upon the earlier work of Thorup and Zwick [19, 20] which deals
with the computation of all pairs approximate distances with stretch≥ 3.

2. We further reduce the expected preprocessing time toO(n2 log3/2 n) at the expense of increasing
the surplus to3, that is, given any pair of verticesu, v ∈ V , the distanceδ∗(u, v) reported by our
second algorithm (Algorithm II) satisfies

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3

The algorithm employs the new scheme on top of a special kind of spanner in order to achieve faster
time. In this way, this algorithm combines both the hierarchical approach and the spanner based
approach. The main obstacle in the design of this algorithm is to employ a spanner that should
be constructible in quadratic time and should not increase the stretch beyond 2. We can’t employ
any additive spanner since none of them is constructible in quadratic time. On the other hand,
employing a (multiplicative) spanner with stretcht would increase the stretch of the approximate
distance reported to2t, which is undesirable. We get around this problem in a way similar to [5].

As would become clear subsequently from the paper, the additive error shows up only in some
restricted worst case only. In general, the algorithms willbehave very much like a 2-approximate
shortest path algorithm.

Without any modifications, all our data structures for reporting approximate distance can also be used to
report approximate shortest path in optimal time. After discussing the preliminary notations and lemmas
in the following section, we present and analyze the new scheme to design efficient algorithms for stretch
nearly 2 in Section 3. In order to realize this scheme, we present andanalyze efficient randomized
subroutines in section 4. Finally, we present our two algorithms in section 5.

2 Preliminaries

In an unweighted graph, shortest path tree at a vertex is the same as a BFS (breadth first search) tree
rooted at that vertex, and such a tree can be constructed inO(m) time. Now we present the notations,
definitions and important Lemmas (most of them from [20]) to be used in the rest of the paper.

For a given undirected unweighted graphG = (V,E), and a setY ⊆ V , first we define the following
notations.

• δ(u, v) : the distance between vertexu and vertexv in the graph.

• δ(v, Y) : miny∈Y δ(v, y)

4

• nv(Y) : the vertex from the setY which is nearest tov, that is, at distanceδ(v, Y) from v. If there
are multiple vertices in setY at distanceδ(v, Y) from v, we break the tie arbitrarily to ensure a
uniquenv(Y). Moreover, ifv ∈ Y , we definenv(Y) = v. For conciseness, we shall usenv to
denotenv(Y) when the setY is clear from the context.

• Rp : A subset formed by selecting each vertex fromV independently with probabilityp.

Given a setY ⊂ V , it is quite easy to computenv(Y) andδ(v, Y) for all v ∈ V in O(m) time as
follows. Connect a dummy vertexω to all the vertices of setY , and perform a BFS traversal on the graph
starting fromω. We can summarize this observation as the following Lemma.

Lemma 2.1 Given a setY ⊂ V , it requiresO(m) time to computenv(Y) andδ(v, Y) for all vertices
v ∈ V .

An important construct from [20] which we shall use is aBall which is defined as follows.

Definition 2.1 Given a graphG = (V,E), a vertexv ∈ V , and two subsets of verticesX andY , the set
Ball(v,X, Y) is defined in the following way

Ball(v,X, Y) = {x ∈ X|δ(v, x) < δ(v, Y)}
In other words,Ball(v,X, Y) consists of all those vertices of the setX whose distance fromv is less
than the distance betweennv(Y) andv. TheRadiusr(v) of Ball(v,X, Y) is defined asδ(v, Y) − 1.
It may be noted thatBall(v,X, ∅) is the setX itself, whereasBall(v,X,X) = ∅. The following
lemma from [20] suggests that if the setY is a suitable random sample of the setX, the expected size of
Ball(u,X, Y) will be sublinear in|X|.
Lemma 2.2 [20] Given a graphG = (V,E), the expected size ofBall(v,X, Y) is at most1/p if the set
Y is constructed by either of the following two sampling methods :
(i) Y contains each vertex from setX independently with probabilityp.
(ii) Y is a uniformly random sample of sizep|X| from setX (where all subsets of sizep|X| are equally
likely).

Proof: Consider the sequence〈x1, x2, · · ·〉 of vertices of setX arranged in non-decreasing order of their
distance fromv.

It follows from Definition 2.1 that the vertexxi will belong toBall(v,X, Y) only if none ofx1, · · · , xi

are selected for the setY . So if the setY is formed by selecting each vertex of setX independently with
probability p, thenxi ∈ Ball(v,X, Y) with probability at most(1 − p)i. Hence using linearity of
expectation, the expected number of vertices inBall(v,X, Y) is at most

∑

i(1− p)i < 1/p.
It also follows from Definition 2.1 that the size ofBall(v,X, Y) is bounded by the index of the

first vertex of setY in the sequence〈x1, x2, · · ·〉. It follows from elementary probability that if we
selectnp numbers uniformly from[1, n], then the expected value of the smallest number selected is
(n + 1)/(np + 1). So if we select a sample of sizenp uniformly from setX, then the expected size of
Ball(v,X, Y) is bounded by(n + 1)/(np + 1)− 1 < 1/p. 2

Definition 2.2 Given a graphG = (V,E), and two subsetsX,Y of vertices, we defineclusterC(x, Y),
for anyx ∈ X as the set{v ∈ V |x ∈ Ball(v,X, Y)}.

Clusters can be viewed as inverses of Balls. Given any two subsetsX,Y of vertices, the following
important equality between the size of Balls and clusters can be easily verified using Definition 2.2.

∑

x∈X

|C(x, Y)| =
∑

v∈V

|Ball(v,X, Y)| (1)

5

Let R ⊂ V .

1. Global distance information

For each vertexs ∈ R, build a BFS tree to compute distance froms to every vertex
in the graph.

2. Local distance information

For each vertexu ∈ V \R, compute distance to all the vertices ofBall(u, V,R) and
its nearest vertexnu.

3. Keep a data structure to determine, in constant time, whether any two Balls overlap
(share a common vertex).

Figure 1: New scheme for nearly 2-approximate distances

3 A New Scheme for nearly 2-Approximate distances

The new scheme is described in Figure 1. The scheme may appearsimilar to the 3-approximate distance
oracle of Thorup and Zwick [20] except the third step. However, it is this step that proves to be crucial
in achieving nearly 2 stretch. The query procedureQ(u, v) for reporting approximate distance between
any u, v ∈ V using this scheme is described in Figure 2. The query Procedure Q(u, v) explores the
following three possible cases in the above fixed order. First, if any of the two vertices lie in the Ball
rooted at the other, we report the exact distance betweenu andv. Otherwise, if the Balls rooted at the
two vertices overlap, and letw be a vertex common to both the Balls, then we report the sum of the
distance fromu to w and distance fromv to w. In both the cases, we manage to report distance using
only local distance information stored at verticesu andv. The only case that is left is, when the two Balls
are non-overlapping. In this case, we use the global distance information stored atnu andnv. Note that
our scheme keeps track of the exact distance fromnu to v as well as fromnv to u. We compute the sum
of distance fromu to nu and distance fromnu to v; likewise, we compute sum of distance fromv to nv

and distance fromnv to u, and report the minimum of the two sums as an approximate distance between
u andv.

Theorem 3.1 Given a graphG = (V,E) and any two verticesu, v ∈ V , the approximate distance
betweenu andv as reported by the query procedureQ(u, v) is bounded by2δ(u, v) + 1.

Proof: Let a andb be the radii ofBall(u, V,R) andBall(v, V,R) respectively. The approximation fac-
tor associated with the distance depends on the step of procedureQ(u, v) in which it (the approximate
distance) is reported. We analyze the three cases as follows:

Case 1: The distance is reported in the first step ofQ(u, v).
Without loss of generality, let us assume thatv lies in Ball(u, V,R) (see Figure 3, Case-1). Here we
report theexactdistance betweenu andv.
Case 2: The distance is reported in the second step ofQ(u, v).
Since the query procedure failed to report the distance in the first step, therefore, the distance betweenu
andv is more than the radius ofBall(u, V,R) andBall(v, V,R). In other words,δ(u, v) is greater than
a as well asb. (see Figure 3, Case-2). Letw be a vertex lying in bothBall(u, V,R) andBall(v, V,R).
Clearly,δ(u,w) ≤ a andδ(v,w) ≤ b. Therefore, the distance reported in this step is bounded bya + b,

6

Q(u, v) : We answer a distance query betweenu andv in the following order.

• If v ∈ Ball(u, V,R) or u ∈ Ball(v, V,R) :

reportδ(u, v)

• Else ifBall(u, V,R) andBall(v, V,R) overlap:

reportδ(u,w) + δ(v,w) for somew ∈ Ball(u, V,R) ∩Ball(v, V,R)

• Else:

reportminimum of (δ(u, nu) + δ(nu, v)) and (δ(v, nv) + δ(nv, u))

Figure 2: Answering distance query using new scheme

which is at most2δ(u, v) as explained above.
Case 3: The distance is reported in the third step ofQ(u, v).
Since the query procedure failed to report the distance in the second step,Ball(u, V,R) andBall(v, V,R)
are separated by distancex ≥ 1 (see Figure 3, Case-3). So the shortest path betweenu and v can
be viewed as consisting of three sub-paths : the first subpathis the portion of the path lying inside
Ball(u, V,R) and has lengtha, the second sub-path is the portion of the path lying outsidethe two Balls
and has lengthx, and the third sub-path is the portion of the path lying inside Ball(v, V,R) and has
lengthb. Hence, the distance betweenu andv is a + x + b for somex ≥ 1.

In the third step, we report minimum of(δ(u, nu) + δ(nu, v)) and(δ(v, nv) + δ(nv, u)). It can be
noted thatδ(u, nu) = a + 1 andδ(v, nv) = b + 1. Now considering the path fromnu to v passing
throughu, we can observe thatδ(nu, v) is at most2a + x + b + 1. Similarly, analyzing the path fromnv

to u passing throughv, we can observe thatδ(nv , u) is at most2b + x + a + 1. Therefore, the distance
reported byQ(u, v) can be bounded from above as follows.

min((δ(u, nu) + δ(nu, v)) , (δ(v, nv) + δ(nv , u)))

≤ min(3a + x + b + 2, 3b + x + a + 2)

= min(3a + b, 3b + a) + x + 2

= 3b + a + x + 2 {without loss of generality assumea ≥ b}
≤ 2a + 2b + x + 2 {sincea ≥ b}
≤ 2(a + x + b) + 1 {sincex ≥ 1}
= 2δ(u, v) + 1

Hence, the distance betweenu, v as reported byQ(u, v) is bounded by2δ(u, v) + 1. 2

Remark: It is worth noting that the distance between any two verticesu, v ∈ V , as reported byQ(u, v),
is bounded by2δ(u, v) even in the Case 3, if at least one of the following conditionshold:
(i) x > 1, that is, the two Balls are separated by a path longer than oneedge.
(ii) a 6= b, that is, the radii of the two Balls differs.

7

a

a + 1

b b + 1
u

uu

v

v

vwCase 1 Case 2

Case 3

nu

nunu

nv

nv

x vertex of setR

Figure 3: Three cases in reporting distance betweenu andv

u

nu

r(u)

r(u)− 1

sampled vertex
tree edge

Figure 4: To computeBall(u, V,Rp), it suffices to explore adjacency list of vertices lying up todistance
r(u)− 1 only.

4 Efficient Sub-Routines for Realization of the New Scheme

In order to design efficient algorithm based on our new schemefor all-pairs nearly 2-approximate dis-
tances, we shall now present sub-routines for efficient computation of Balls as well as efficient detection
of overlap of any two Balls.

4.1 An Efficient Algorithm for Computing Balls

We shall now present an algorithm for computingBall(u, V,Rp), for all u ∈ V \Rp. Recall thatRp is
the set formed by selecting each vertex independently with probability p < 1.

It follows from Definition 2.1 that the vertices ofBall(u, V,Rp) and their distances fromu can be
computed by building a BFS tree atu up to level (distance) equal to the radiusr(u) of the Ball. Therefore,
prior to the computation ofBall(u, V,Rp), we computer(u). It follows from Lemma 2.1 that we can
compute radii of all Balls inO(m) time by a single BFS traversal.

If r(u) = 0, Ball(u, V,Rp) consists of vertexu only and we are done. For the case whenr(u) ≥ 1,

8

we build a BFS tree up to levelr(u) to computeBall(u, V,Rp), and the computation time required in
doing so is of the order of the number of edges explored. Sincethe graph is undirected, an edge will be
explored at most twice (once by each of its end-point), and wewould charge the cost of exploring an
edge to that end-point which explores it first. Let〈v1(= u), v2, · · · , vn〉 be a sequence of vertices of the
given graph arranged in non-decreasing order of their distance fromu. Note that computing BFS tree
up to levelr(u) requires exploring the adjacency list of vertices up to level r(u) − 1 only (see Figure
4). Therefore, in the computation ofBall(u, V,Rp), we shall explore adjacency list ofvi only if the
following two events happen:
E i

1 : There is no vertex in the set{vj |j < i} which is selected in the sampleRp.
E i

2 : There is no vertex from{vj |j > i} that is adjacent tovi and also a sampled vertex.
The eventsE i

1 and E i
2 are independent since the vertices are selected independently to form Rp.

Following our charging scheme mentioned above, exploring adjacency list of vertexvi would contribute
O(d′(vi)) to the computation time ofBall(u, V,Rp), whered′(vi) is the number of edges incident onvi

from vertices{vj |j > i}. So the expected time for computingBall(u, V,Rp) is
n

∑

i=1

(

Pr(E i
1) · Pr(E i

2) · d′(vi)
)

=
n

∑

i=1

(

(1− p)i−1(1− p)d
′(vi)d′(vi)

)

≤
n

∑

i=1

(1− p)i−1
d′(vi)
∑

j=1

(1− p)j−1

≤
n

∑

i=1

(

(1− p)i−1 1

p

)

≤ 1

p

n
∑

i=1

(1− p)i−1 ≤ 1

p2
.

Combining this discussion with Lemma 2.1, we can state the following theorem.

Theorem 4.1 Given an undirected unweighted graphG = (V,E) and p < 1, let Rp be a set formed
by selecting each vertex independently with probabilityp. There exists an algorithm for computing
Ball(u, V,Rp) for all u ∈ V \Rp in expectedO(m + n

p2) time.

It follows from the proof of Theorem 4.1 that if we have a setR ⊇ Rp, the time required to compute
Ball(u, V,R) is not greater than the time required to computeBall(u, V,Rp) for anyu ∈ V . So we can
state the following corollary.

Corollary 4.1 Given an undirected unweighted graphG = (V,E) andp < 1, let Rp be a set formed
by selecting each vertex independently with probabilityp < 1. For any setR ⊇ Rp, it takes expected
O(m + n

p2) time to computeBall(u, V,R), for all u ∈ V \R.

4.2 Computing Overlap Matrix O
To determine for a pair of verticesu, v ∈ V , whether there exists a vertex common to bothBall(u, V,R)
andBall(v, V,R), we compute a matrixO such thatO[u, v] is null if Ball(u, V,R)∩Ball(v, V,R) = ∅,
otherwiseO[u, v] stores a vertex that belongs to both the Balls. To build the matrix O efficiently, we form
theclustersC(v,R) (see Definition 2.2). It is easy to observe that we can form setsC(v,R),∀v ∈ V by
a single scan of setsBall(u, V,R),∀u ∈ V . Now once we haveC(v,R),∀v ∈ V , we can compute the
matrixO as follows.

Algorithm for computing overlap matrix O
For eachv ∈ V \R do

For eachu ∈ C(v,R) do
For eachw ∈ C(v,R) do
O[u,w]← v

9

ProcedureAugment(V ′, Rp) {
R← Rp;
While (V ′ 6= ∅)

Let A be a uniform sample of sizenp from V ′

R← A ∪R
For everyu ∈ V \R, computeBall(u, V,R);
For everyv ∈ V \R do

C(v,R)← {u ∈ V | v ∈ Ball(u, V,R)};
V ′ ← {v ∈ V ′

∣

∣

∣ |C(v,R)| > 4/p};
End While ;

ReturnR;
}

Figure 5: Augmenting the setRp to ensure|C(v,R)| = O(1/p), ∀v ∈ V

The running time of the above algorithm for computing the overlap matrixO is of the order of
∑

v∈V |C(v,R)|2+
n2. In order to bound this running time byO(n/p2 + n2) (which also matches the time required to com-
pute Balls), we need to find a setR ⊂ V which would ensure that|C(v,R)| = O(1/p), for eachv ∈ V .
It should be noted that the equality 1 and Lemma 2.2 can’t ensure O(1/p) bound on the expected size
of C(v,R) if R is chosen to beRp. Moreover, due to quadratic dependence of the running time (of
the above algorithm) on|C(v,R)|, merely a bound on its expected size won’t suffice; instead wewould
require the deviation in|C(v,R)| to be small. We shall employ the algorithm by Thorup and Zwick[19]
to build the desired setR such that|C(v,R)| = O(1/p) for all vertices. Beginning withR = Rp, let
V ′ be the set ofbadverticesv such that|C(v,Rp)| > 4/p. The algorithmAugment(V ′, Rp), described
in Figure 5, turns a fraction of bad vertices intogoodvertices (with cluster size≤ 4/p) iteratively by
augmenting the setR. For every iteration in this algorithm,R ⊃ Rp, so it follows from Corollary 4.1
that each iteration will require expectedO(m + n/p2) time. Furthermore, since the setR is augmented
over the iterations, the value|C(v,R)| will never increase for any vertexv ∈ V . Hence once a ver-
tex becomesgood, it will never becomebad in future. Now for bounding the number of iterations, the
following lemma will be crucial.

Lemma 4.1 In each iteration, the number of bad vertices reduces by a factor of 2 with probability at
least 1/2.

Proof: Let Vi be the set of bad vertices (the setV ′) at the end ofith iteration. The iteration begins with
augmenting the existing setR by a uniform sample ofnp vertices fromVi. The expected sum of sizes of
the clusters around each vertex fromVi with respect to the augmented setR can be bounded as follows

E

∑

v∈Vi

|C(v,R)|

 = E

[

∑

u∈V

| Ball(u, Vi, R)|
]

{using Equality 1}

≤ E

[

∑

u∈V

| Ball(u, Vi, A)|
]

{ sinceA ⊂ R }

≤ n · |Vi|
pn

{using Lemma 2.2 (ii) }

= |Vi|/p

10

Algorithm I

Preprocessing
Let R be the set of vertices as defined by Theorem 4.2.

1. For eachu ∈ V \R, computeBall(u, V,R).

2. Compute overlap matrixO.

3. For eachv ∈ R, build a full BFS tree rooted atv in the graph.

Reporting distance betweenu, v ∈ V
Q(u, v)

Figure 6: Algorithm I

In other words, starting with|Vi| bad vertices in iterationi, the expected sum of sizes of all clusters
around these vertices at the end of the iteration is|Vi|/p. Now, using Markov Inequality, the probability
that this sum is bounded by2|Vi|/p is at least 1/2, and in that case there can’t be more than|Vi|/2 vertices
in Vi with the cluster size greater than4/p. ThereforePr[|Vi+1| ≤ |Vi|/2] ≥ 1/2. 2

It follows from Lemma 4.1 that after expectedlog n iterations,V ′ would be reduced to∅. Each
iteration addsnp vertices to the sample setR. Thus the expected size of the final sampleR would be
np log n, and the terminating condition of the algorithm ensures that C(v,R) is bounded byO(1

p), for
eachv ∈ V . Hence we can state the following Lemma.

Lemma 4.2 Given an undirected unweighted graphG = (V,E) andp < 1, we can compute a sample
setR of expected sizenp log n such that|C(v,R)| is bounded byO(1

p), for eachv ∈ V .

Combining Corollary 4.1 and Lemma 4.2, we can conclude the following theorem.

Theorem 4.2 Given an undirected unweighted graphG = (V,E) and p < 1, a setR ⊂ V of size
O(np log n) can be computed in expectedO(m log n + n

p2 log n) time ensuring that

• It takes a total ofO(m + n/p2) time to computeBall(u, V,R),∀u ∈ V \R.
• It takesO(n2 + n

p2) time to build the overlap matrixO.

5 Algorithms for Nearly 2-Approximate Shortest Paths

5.1 Algorithm I

Our first algorithm for computing nearly2-approximate distances is a realization of the scheme men-
tioned in Section 2 and is described in Figure 5.1. Let us now analyse its time complexity. Computing
BFS tree from vertices of the setR requiresO(m|R|) = O(mnp log n) expected time. By applying
Theorem 4.2, it follows that the total expected time for preprocessing the graph in Algorithm I is of the
order of

O(m log n + n2 +
n

p2
log n + mnp log n) = O(n2 + m2/3n log n) { for p = 1

3
√

m
}.

11

Theorem 5.1 An undirected unweighted graphG = (V,E) can be preprocessed in expectedO(m2/3n log n+
n2) time to build a data structure of sizeΘ(n2) which can reportδ∗(u, v) in O(1) time for anyu, v ∈ V
such that

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 1

5.2 Algorithm II

The preprocessing time of the first two steps in Algorithm I described above can be bounded byO(n2 log n)
with a suitable choice ofp. The third step that computes BFS trees from vertices of setR requires
O(m|R|) time, which is certainly notO(n2 log n) when the graph is dense. To improve its preprocess-
ing time toO(n2 polylog n), one idea is to perform BFS fromR on a spanner (havingo(n2) edges) of the
original graph. A spanner is a subgraph that is sparse but still preserves approximate distance between
vertices in the graph.

Definition 5.1 Givenα ≥ 1, β ≥ 0, a subgraph(V,E′), E′ ⊆ E is said to be an(α, β)-spanner of
G = (V,E) if for each pair of verticesu, v ∈ V , the distanceδs(u, v) in the spanner is bounded by
αδ(u, v) + β.

The sparsity of a spanner comes along with the stretching of the distances in the graph. So one has to be
careful in employing an(α, β)-spanner (withα > 1) in the third step, lest one should end up computing
nearly2α-approximate distances instead of nearly 2-approximate distances. To explore the possibility of
using spanner in our algorithm, let us revisit our distance reporting schemeQ(u, v). The full BFS trees
rooted at the vertices of setR serve to provide global distance information in the schemeQ(u, v), and
they are required only whenBall(u, V,R) andBall(v, V,R) are non-overlapping. In the analysis of
this case, we partitioned the shortest path betweenu andv into three sub-paths (see Fig. 3,Case-3): the
sub-paths of lengthsa andb covered byBall(u, V,R) andBall(v, V,R) respectively, and the sub-path
of lengthx lying between the two Balls and not covered by either of them.We showed that the distance
δ∗(u, v) as reported byQ(u, v) is bounded by2a + 2b + x + 2. A comparison of this expression of
δ∗(u, v) with δ(u, v) = a + x + b suggests that there is a possibility of stretching the uncovered sub-
path (of lengthx) between the Balls by a factor of2 and still keeping the distance reported to be nearly
2-approximate. So we may employ an(α, β)-spanner in the third step of our algorithm, providedα (the
multiplicative stretch) is not greater than 2 and more importantly, for each vertexu ∈ V \R, the shortest
path fromnu to u as well as the shortest paths fromu to all the vertices ofBall(u, V,R) are preserved in
the spanner. To ensure these additional features, we shall employ the parameterized spanner introduced
in [5].

Definition 5.2 Given a graphG = (V,E), and a parameterX ⊂ V , a subgraph(V,E′) is said to be a
parameterized(2, 1)-spanner with respect toX if
(i) (V,E′) is a (2, 1)-spanner.
(ii) Every edge whose at least one endpoint is not adjacent to anyvertex from the setX is surely present
in the spanner too.

A parameterized(2, 1)-spanner for a givenX ⊂ V (as a parameter) can be constructed inO(m +
n) time [5]. To ensure that the spanner is a parameterized(2, 1)-spanner, the algorithm satisfies the
following property.

Lemma 5.1 [5] For an edgee(u, v) not present in the spanner, there is a vertexx ∈ X adjacent tou in
the spanner such that there is a path fromx to v in the spanner of length at most 2.

12

Algorithm II

Preprocessing
Let R be the set of vertices as defined by Theorem 4.2.

1. For eachu ∈ V \R, computeBall(u, V,R).

2. Compute overlap matrixO.

3. (a) Let(V,E′) be a parameterized(2, 1)-spanner with respect toR for the given
graphG = (V,E).

(b) For eachv ∈ R, compute a full BFS tree rooted atv in the graph(V,E′∪E(v)).
(E(v) denotes the edges incident onv in the original graphG = (V,E))

Reporting distance betweenu, v ∈ V
Q(u, v)

Figure 7: Algorithm II

Property(ii) of the parameterized(2, 1)-spanner implies that if we chooseR as the parameter, all the
edges lying inside a Ball are present in the parameterized spanner, and hence all the shortest paths that
completely lie within a Ball are also preserved. Now observethat the shortest path fromnu to u lies
fully inside Ball(u, V,R) except the first edge of this path which is incident onnu. So to ensure that
the shortest path fromnu to u is also preserved, it would suffice if we augment the spanner with all the
edges in the original graph that are incident onnu. The algorithm II is described in Figure 5.2.
From the discussion above, it follows that for any pair of verticesu, v ∈ V , the distance reported in
Case-3 byQ(u, v) will be

δ∗(u, v) ≤ 2(a + b) + (2x + 1) + 2 {sincex is stretched to2x + 1 }
= 2(a + x + b) + 3 = 2δ(u, v) + 3.

To analyse the running time of Algorithm II, observe that we perform BFS on a(2, 1)-spanner.
Therefore, a bound on the size of the spanner is required. We shall use the following lemma from [5].

Lemma 5.2 [5] Let Rp be a set formed by selecting each vertex independently with probability p. For
any setR ⊃ Rp, the expected size of parameterized(2, 1)-spanner will beO(|R|n + n/p).

It follows from Lemma 4.2 that the expected size ofR is O(pn log n). This fact in conjunction with the
previous Lemma implies that the size of(2, 1)-spanner isO(n/p + n2p log n). Hence using Theorem
4.2 the expected preprocessing time of Algorithm II is

O

(

m log n +
n

p2
log n +

(

n2p log n +
n

p

)

np log n

)

= O(n2 log
3

2 n) {for p =
1√

n 4
√

log n
}

Theorem 5.2 An undirected unweighted graphG = (V,E) can be preprocessed inO(n2 log3/2 n)
expected time to build a data structure of sizeΘ(n2) which can reportδ∗(u, v) in constant time for any
u, v ∈ V such that

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3

13

6 Conclusion and Open Problems

Given an undirected unweighted graphG = (V,E) on |V | = n vertices, we can compute nearly 2-
approximate distances inO(n2 polylog n) time. A natural question is whether the same bound is achiev-
able for undirected weighted graphs as well. Subsequent to the submission of this paper, Baswana and
Kavitha [4], and Berman and Kasivishwanathan [6] independently answered this question in affirmative.
They showed that an undirected weighted graphG = (V,E) can be preprocessed inO(n2 log n) time to
computeδ∗ such that for each pairu, v ∈ V

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + wmax(u, v)

wherewmax(u, v) is the weight of the maximum weight edge on the shortest path betweenu andv.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest
paths(without matrix multiplication).SIAM Journal on Computing, 28:1167–1181, 1999.

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all-pairs shortest paths problem.Journal
of Computer and System Sciences, 54:255–262, 1997.

[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse neigh-
borhod covers.SIAM Journal on Computing, 28:263–277, 1998.

[4] S. Baswana and T. Kavitha. Faster algorithms for approximate distance oracles and all-pairs small
stretch paths. InProceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 591–602, 2007.

[5] S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs iñO(n2) time. In
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 271–280,
2004.

[6] P. Berman and S. P. Kasiviswanathan. Faster approximation of distances in graphs. InProceedings
of 10th Workshop on Algorithms and Data Structures, volume 4619 ofLNCS, pages 541–552.
Springer, 2007.

[7] T. M. Chan. More algorithms for all-pairs shortest pathsin weighted graphs. InProceedings of
39th Annual ACM Symposium on Theory of Computing, pages 590–598, 2007.

[8] E. Cohen. Fast algorithms for constructingt-spanners and paths with stretcht. SIAM Journal on
Computing, 28:210–236, 1999.

[9] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths.
Journal of Association of Computing Machinery, 47:132–166, 2000.

[10] E. Cohen and U. Zwick. All-pairs small stretch paths.Journal of Algorithms, 38:335–353, 2001.

[11] D. Coppersmith and S. Winograd. Matrix multiplicationvia arithmetic progressions.Journal of
Symbolic Computation, 9:251–280, 1990.

[12] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths.Siam Journal on Computing,
29:1740–1759, 2000.

14

[13] M. Elkin. Computing almost shortest paths.ACM Transactions on Algorithms, 1:282–323, 2005.

[14] S. Pettie. A new approach to all-pairs shortest paths onreal-weighted graphs.Theoretical Computer
Science, 312:47–74, 2004.

[15] L. Roditty, M. Thorup, and U. Zwick. Deterministic construction of approximate distance ora-
cles and spanners. InProceedings of 32nd International Colloquim on Automata, Languages and
Programming, volume 3580 ofLNCS, pages 261–272. Springer, 2005.

[16] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer weights. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages
605–615, 1999.

[17] V. Strassen. Gaussian elimination is not optimal.Numerische Mathematik, 13:354–356, 1969.

[18] T. Takaoka. Subcubic cost algorithms for the all pairs shortest path problem.Algorithmica, 20:309–
318, 1998.

[19] M. Thorup and U. Zwick. Compact routing schemes. InProceedings of 13th ACM Symposium on
Parallel Algorithms and Architecture, pages 1–10, 2001.

[20] M. Thorup and U. Zwick. Approximate distance oracles.Journal of Association of Computing
Machinery, 52:1–24, 2005.

[21] U. Zwick. Exact and approximate distances in graphs - a survey. InProceedings of the 9th Annual
European Symposium on Algorithms (ESA), pages 33–48, 2001.

[22] U. Zwick. All-pairs shortest paths using bridging setsand rectangular matrix multiplication.Jour-
nal of Association of Computing Machinery, 49:289–317, 2002.

15

