
Minimum+1 (s,t)-cuts and dual edge sensitivity
oracle
Surender Baswana #

Department of Computer Science & Engineering, IIT Kanpur, Kanpur – 208016, India

Koustav Bhanja #

Department of Computer Science & Engineering, IIT Kanpur, Kanpur – 208016, India

Abhyuday Pandey #

Department of Computer Science & Engineering, IIT Kanpur, Kanpur – 208016, India

Abstract
Let G be a directed multi-graph on n vertices and m edges with a designated source vertex s and

a designated sink vertex t. We study the (s, t)-cuts of capacity minimum+1 and as an important
application of them, we give a solution to the dual edge sensitivity for (s, t)-mincuts – reporting the
(s, t)-mincut upon failure or addition of any pair of edges.

Picard and Queyranne [Mathematical Programming Studies, 13(1):8-16, 1980] showed that there
exists a directed acyclic graph (DAG) that compactly stores all minimum (s, t)-cuts of G. This
structure also acts as an oracle for the single edge sensitivity of minimum (s, t)-cut. Dinitz and
Nutov [STOC, pages 509-518, 1995] showed that there exists an O(n) size 2-level cactus model that
stores all global cuts of capacity minimum+1. However, for minimum+1 (s, t)-cuts, no such compact
structures exist till date. We present the following structural and algorithmic results on minimum+1
(s, t)-cuts.
1. There exists a pair of DAGs of size O(m) that compactly store all minimum+1 (s, t)-cuts of G.

Each minimum+1 (s, t)-cut appears as a (s, t)-cut in one of the 2 DAGs and is 3-transversal – it
intersects any path in the DAG at most thrice.

2. There exists an O(n2) size data structure that, given a pair of vertices {u, v} which are not
separated by an (s, t)-mincut, can determine in O(1) time if there exists a minimum+1 (s, t)-cut,
say (A, B), such that {s, u} ∈ A and {v, t} ∈ B; the corresponding cut can be reported in O(|B|)
time.

3. There exists an O(n2) size data structure that solves the dual edge sensitivity problem for
(s, t)-mincuts. It takes O(1) time to report the value of a resulting (s, t)-mincut (A, B) and
O(|B|) time to report the cut.

4. For the data structure problems addressed in (2) and (3) above, we also provide a matching
conditional lower bound. We establish a close relationship among three seemingly unrelated
problems – all-pairs directed reachability problem, the dual edge sensitivity problem for (s,t)-
mincuts, and 2 × 2 maximum flow. Assuming the directed reachability hypothesis, this leads to
Ω̃(n2) lower bounds on the space for the latter two problems.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Network flows

Keywords and phrases mincut, maxflow, fault tolerant.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.52

1 Introduction

The concept of cuts of a graph is very fundamental in graph theory and has many algorithmic
applications as well. There are mainly two types of cuts – global cuts and (s, t)-cuts. A
set of edges whose removal disconnects a given undirected graph is called a global cut. Let
G = (V, E) be a directed multi-graph (E is a multiset) consisting of n = |V | vertices and

© Surender Baswana, Koustav Bhanja, Abhyuday Pandey;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff; Article No. 52; pp. 52:1–52:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbaswana@cse.iitk.ac.in
https://orcid.org/0000-0001-8657-7182
mailto:kbhanja@cse.iitk.ac.in
https://orcid.org/0000-0003-0902-0916
mailto:pandey.abhyuday07@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2022.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

m = |E| edges with a designated source vertex s and a designated sink vertex t. An (s, t)-cut
of G is defined as follows.

▶ Definition 1 ((s, t)-cut). For a subset C ⊂ V with s ∈ C and t /∈ C, the set of outgoing
edges of C is called an (s, t)-cut.
It follows from Definition 1 that for each (s, t)-cut, there exists at least one subset C ⊂ V

that defines it. For the simplicity of exposition and without causing any confusion, henceforth
we shall use C to denote the corresponding (s, t)-cut as well. An edge is said to contribute to
an (s, t)-cut C if it is an outgoing edge of C. The set of edges that have one endpoint in C

and another endpoint in C is known as the edge-set of C, denoted by E(C).
A (s, t)-cut (likewise a global cut) consisting of least number of contributing edges is

called an (s, t)-mincut (likewise a global mincut).
There has been extensive research in designing efficient algorithms for global mincuts

([15], [18], [19]) as well as (s, t)-mincuts ([10], [16]). In addition, elegant graph structures
have been invented that compactly store and characterize these cuts – Cactus graph for
all global mincuts given by Dinitz, Karzanov, and Lomonosov [5], and a directed acyclic
graph (DAG) given by Picard and Queyranne [23] for all (s, t)-mincuts. These structures
can also serve as an efficient data structure for single edge sensitivity problem – to report
the (s, t)-mincut (or global mincut) after the insertion/failure of an edge.

It is very natural to ask if there exists any compact structure for cuts of value greater than
the value of the minimum cuts. For global minimum+1 cuts, Dinitz and Nutov answered this
question in affirmative. In a seminal work [7], they showed that there exists an O(n) size
2-level cactus model that stores all minimum+1 cuts; they also gave a characterization of
these cuts. An incremental maintenance of this structure solves the problem of maintaining
minimum+2 edge connected components for any value of minimum cuts under insertion of
edges; generalizing the results of Galil and Italiano [12] and Dinitz [6].

However, for minimum+1 (s, t)-cuts, to the best of our knowledge, no such compact
structure exists till date. Note that the approach taken by Picard and Queyranne [23]
for (s, t)-mincuts does not seem extendable for minimum+1 (s, t)-cuts. This is because
their structure is based on the residual network resulting from a maximum (s, t)-flow and
thus crucially exploits the equivalence between maximum flow and minimum cut (Ford
and Fulkerson [10]); unfortunately, for a given minimum+1 (s, t)-cut, there is no equivalent
(s, t)-flow.

While a compact structure for minimum+1 (s, t)-cuts is of significant importance from a
graph theoretic perspective, equally important is a compact data structure that can efficiently
answer the following fundamental query for any given edge (u, v) ∈ E.

Q(u, v): report a minimum+1 (s, t)-cut C, if exists, such that u ∈ C, v ∈ C.

Interestingly, the DAG structure of Picard and Queyranne [23] for (s, t)-mincuts can
answer efficiently the question stated above in case of (s, t)-mincuts. For this purpose, it
crucially exploits the property that the set of (s, t)-mincuts are closed under intersection and
union operations. Unfortunately, this property no longer holds for minimum+1 (s, t)-cuts,
thus making it quite nontrivial to design a data structure for answering query Q.

The study of minimum+1 (s, t)-cuts has an immediate application as well. As is evident
from the following fact, their study is indispensable for efficiently solving the dual edge
sensitivity problem for (s, t)-mincuts.

▶ Fact 1.1. The failure of a given pair of edges will reduce the value of (s, t)-mincut if and
only if there is a minimum (s, t)-cut containing any failed edge or a minimum+1 (s, t)-cut
containing both the failed edges.

Baswana, Bhanja, Pandey 52:3

Sensitivity data structure for a given graph problem is motivated by the fact that graphs
in the real world are prone to failures of vertices/edges. These failures are transient in
nature. So while the set of failed vertices/edges keep changing with time, at any stage of
time, the number of failed vertices/edges remains quite small. Therefore, the aim is to have
a compact data structure that can efficiently report the solution of the given problem for a
given set of failed vertices/edges. In a similar manner, we would like to efficiently report the
solution of the given problem for a given set of newly added vertices/edges. This may help
us determine which newly added vertex/edge changes the solution most significantly. In the
past, many elegant fault-tolerant structures have been designed for various classical problems,
like single-source reachability [17], shortest paths [4], breadth-first search [21], (s, t)-mincuts
[23], all-pairs mincuts [1] etc, which can handle the failure of a single vertex/edge. It is
certainly interesting and important to handle more than a single failure/addition. In this
endeavour, it is quite natural to first design data structures that can handle dual failures
(or dual insertions). This either helps, or exposes the difficulty, in solving the problem in
its generality. It has turned out that the data structures that handle dual failures are often
more complex and require deeper insight into the problem than the data structures that
handle only single failure. This is evident at least for the following problems – single-source
reachability [3], breadth-first search [20], shortest paths [9] etc. For the case of (s, t)-mincuts,
note that the 40 years old data structure of Picard and Queyranne [23] is the only known
sensitivity data structure and it can handle only a single edge failure/addition. It occupies
O(m) space and can report the value of the resulting (s, t)-mincut and the corresponding cut
in O(1) and O(m) time, respectively. No nontrivial data structure exists for the dual-edge
sensitivity of (s, t)-mincuts till date.

1.1 New results and their overview
Let λ be the value of the (s, t)-mincut in G. Henceforth, we use (λ + k) (s, t)-cut to denote
a minimum+k (s, t)-cut, k ∈ {0, 1}. Using just the sub-modularity of (s, t)-cuts (Lemma
9) and the relation between any pair of (s, t)-mincuts, we first present an alternate DAG
structure, denoted by Dλ, that compactly stores and characterizes all (s, t)-mincuts as follows.
An (s, t)-cut in G is a (s, t)-mincut if and only if it appears as a 1-transversal cut in Dλ – the
edge-set of an (s, t)-cut intersects any path in Dλ at most once. It can be easily observed that
Dλ, upon reversal of its edges, is identical to the DAG of Picard and Queyranne [23]. The
major advantage of the approach taken for designing this alternate DAG is that it shows a
way to design compact structures for (λ+1) (s, t)-cuts using only the properties of (s, t)-cuts
without exploiting the relation between cuts and flows. We now present an overview of our
main results on the (λ + 1) (s, t)-cuts.

The set of minimum cuts are closed under intersection and union. This property has played
a crucial role in designing compact structure as well as characterization of these mincuts –
cactus graph for global mincuts by Dinitz, Karzanov, Lomonosov [5], the skeleton structure
for Steiner mincuts by Dinitz and Vainshtein [8], and DAG for (s, t)-mincuts described in
this paper. However, it turns out that (λ + 1) (s, t)-cuts are not closed under intersection as
well as union. Therefore, in order to design compact structure for (λ + 1)(s, t)-cuts and their
characterization, we analyse the relation between a pair of (λ + 1)(s, t)-cuts. On the basis
of the capacity of the cuts resulting from the intersection and union, each pair of (λ + 1)
(s, t)-cuts is classified into exactly one of the three types – Type-1, Type-2 and Type-3. While
designing compact structure for (λ + 1) (s, t)-cuts, the presence of pairs of Type-1 cuts poses
a challenge in characterizing them. Likewise the presence of pairs of Type-2 cuts poses a
challenge in determining the (s, t)-mincut upon the failure/addition of any pair of edges. A

ICALP 2022

52:4 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

natural idea to conquer these challenges is to partition the set of (λ + 1) (s, t)-cuts into a
small number of sets so that there is no pair of cuts from Type-1 (likewise Type-2) in a set.
It can be observed that any arbitrary partitioning may produce a large number of sets which
may defeat our objective of designing compact structures.

We present a technique called covering of (s, t)-cuts using which we can build a pair of
graphs that cover all (s, t)-cuts of G and each of them has no pair of cuts from Type-1. It
also helps in carefully handling pairs of cuts from Type-2. However, the covering technique
works only for a graph with at most two (s, t)-mincuts, and hence can not be applied directly.
In order to tackle this problem we introduce the concept of (λ + 1) (s, t)-class as follows.

▶ Definition 2. A (λ + 1) (s, t)-class is a maximal set of vertices A ⊂ V such that any pair
of vertices from A are not separated by any (s, t)-mincut.

It can be observed that the set of vertices of G that are assigned to a vertex of Dλ corresponds
to a (λ + 1) (s, t)-class. We first form a partition of the set of all (λ + 1) (s, t)-cuts (excluding
a set of degenerate cuts) with respect to the (λ + 1) (s, t)-classes. For each (λ + 1) (s, t)-class
W , we construct a new graph G(W) that preserves all (λ + 1) (s, t)-cut of G that subdivides
W and has at most two (s, t)-mincuts. We show that it is sufficient to work with G(W) for
each W to design compact structure for (λ + 1) (s, t)-cuts as well as dual edge sensitivity
data structure for (s, t)-mincuts.

1. A 2-level DAG structure for (λ + 1) (s, t)-cuts: Along similar lines of Dλ, we build a
compact graph Dλ+1 that stores all (λ + 1) (s, t)-cuts of G(W). In order to establish the
1-transversality property of (s, t)-mincuts in Dλ, the acyclicity of Dλ played a crucial role.
Therefore, at first sight, we would expect Dλ+1 to be acyclic and a (λ + 1) (s, t)-cut C in
G(W) to be a ℓ-transversal cut in Dλ+1 – edge-set of C intersects any path in Dλ+1 at most
ℓ times, for some constant ℓ. We find that Dλ+1 is not necessarily acyclic and, surprisingly
enough, a (λ + 1) (s, t)-cut may appear in Dλ+1 as an Ω(n)-transversal cut. The root cause
of non-acyclicity is the presence of pairs of cuts from Type-1. In order to tackle pairs of
cuts from Type-1, we exploit the fact that G(W) has at most two (s, t)-mincuts. We use
the covering technique to construct a pair of graphs G(W)I and G(W)U that are Type-1
free. Now applying the same approach that was applied to obtain Dλ, we construct a pair of
DAGs – Dλ+1 for graph G(W)I and Dλ+1 for graph G(W)U . This pair of DAGs is capable of
characterizing each (λ + 1) (s, t)-cut in G that subdividesW as follows. A (λ + 1) (s, t)-cut in
G(W) appears as a 3-transversal cut in exactly one of the two DAGs. In this way we obtain
an O(m) size structure for compactly storing and characterizing all (λ + 1) (s, t)-cuts and
it consists of two levels – (i) DAG Dλ and (ii) a pair of DAGs for each (λ + 1) (s, t)-class
associated with a vertex of Dλ.

Now we attempt to answer query Q(u, v) using our 2-level DAG structure. Note that each
1-transversal cut in Dλ is also a (s, t)-mincut in G. Hence for the set of (s, t)-mincuts the
query can be answered efficiently using a topological ordering of Dλ. However, a 3-transversal
cut in the pair of DAGs needs not be a (λ + 1) (s, t)-cut because of the existence of certain
pairs of cuts from Type-2.

2. Data structure for (λ + 1) (s, t)-cuts: For each vertex u, there exists a unique (s, t)-
mincut C, called nearest (s, t)-mincut, that keeps u on the side of s such that C ⊆ C ′

for every other (s, t)-mincut C ′ that keeps u on the side of s. We can use this nearest
(s, t)-mincut of u to determine if there exists a (s, t)-mincut C such that u ∈ C and v ∈ C

for any pair of vertices {u, v}. Unfortunately, there are multiple nearest (λ + 1) (s, t)-cuts
that keep u on the side of s, and hence this approach fails.

Baswana, Bhanja, Pandey 52:5

Let W be the (λ + 1) (s, t)-class to which u belongs. Let C and C ′ be any pair of nearest
(λ + 1) (s, t)-cuts of u. We show that C and C ′ do not cross in W, that is, C ∪ C ′ ∩W = ∅.
Using this crucial insight, we are able to design an O(n2) size data structure summarized in
the following theorem.

▶ Theorem 3. Let G be a directed multi-graph on n vertices and m edges with a designated
source vertex s and a designated sink vertex t. There exists a data structure occupying O(n2)
space that can determine in O(k) time whether there exists a (λ + 1) (s, t)-cut C such that
u ∈ C and v1, . . . , vk ∈ C for any given vertices u, v1, . . . , vk belonging to a (λ+1) (s, t)-class.
It can also report C in O(|C|) time.

3. An oracle for dual edge sensitivity for (s, t)-mincuts: We show that there is a data
structure {F , I} occupying O(n2) space which is capable of answering dual edge sensitivity
query for (s, t)-mincuts in O(1) time. The data structure F for handling dual edge failure
query is obtained as follows.

When both failed edges are not belonging to the same (λ + 1) (s, t)-class, data structures
for (s, t)-mincuts are sufficient to answer the query. The main challenge arises when endpoints
of both failed edges are belonging to the same (λ + 1) (s, t)-class W. Notice that the data
structure for (λ + 1) (s, t)-cut from Theorem 3 can determine whether there is a (λ + 1)
(s, t)-cut in which a single failed edge is contributing, but cannot answer if both edges are
contributing to a single (λ+1) (s, t)-cut. Suppose there is a (λ+1) (s, t)-cut C∗ of G in which
both failed edges, say (x, y) and (x′, y′), are contributing. Then the necessary condition is
that y′ must not belong to the nearest (λ + 1) (s, t)-cut from x to y, and y must not belong
to the nearest (λ + 1) (s, t)-cut from x′ to y′. Therefore, if necessary condition holds then
both edges are contributing to the union of the two nearest (λ + 1) (s, t)-cuts. However, the
union needs not necessarily be a (λ + 1) (s, t)-cut because of the existence of certain pairs of
(λ + 1) (s, t)-cuts from Type-2.

We employ the covering technique to tackle pairs of cuts from Type-2. Unfortunately,
covering does not necessarily eliminate all Type-2 pairs of cuts like the way it does in case of
Type-1 pairs. In order to tackle the problem arising due to the prevailing Type-2 pairs, we
exploit the insight into the structure of G(W)I and G(W)U . The end result is that, in order
to determine whether any given pair of edges are contributing to a single (λ + 1) (s, t)-cut,
we only have to perform a couple of nearest (λ + 1) (s, t)-cuts queries on G(W)I and G(W)U .

Interestingly F can also determine in O(kl) time whether there exists a (λ + 1) (s, t)-
cut C such that u1, . . . , uk ∈ C and v1, . . . , vl ∈ C for any given vertices u1, . . . , uk, v1, . . . , vl

belonging to a (λ + 1) (s, t)-class.

4. Lower bound for various mincut data structures: We establish a close relationship
between two seemingly unrelated problems – all-pairs directed reachability problem and
dual edge sensitivity problem for (s, t)-mincuts. The classical problem of all-pairs directed
reachability is defined as follows – Given a directed graph G on n vertices and m edges,
preprocess it to form a data structure which can efficiently report if any given vertex v is
reachable from another given vertex u. The problem becomes interesting when the underlying
graph is sparse, that is, m = o(n2). It is natural to ask whether there is any data structure
for the all-pairs directed reachability that takes o(n2) space and o(m) query time ? Goldstein
et al. [14], following the seminal work of Patrascu [22], stated a conjecture that concisely
conveys the belief.

ICALP 2022

52:6 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Conjecture 4 (Directed Reachability Hypothesis [14]). Any data structure for the all-pairs
reachability in a directed graph must either use Ω̃(n2) space or Ω̃(m) query time. (Ω̃(.)
denotes complexity upto polylogarithmic factors)

We provide an O(m) time reduction from any instance of the all-pairs directed reachability
problem for a given graph on n vertices and m edges to an instance of the dual edge sensitivity
data structure for (s, t)-mincuts on a graph with O(n) vertices and O(m) edges. Thus,
assuming Conjecture 4 holds, our O(n2) size data structure for dual edge sensitivity for
(s, t)-mincuts is indeed the optimal size data structure for achieving O(1) query time. As a
byproduct of this reduction, we establish conditional lower bounds on 2 × 2 flow tree. In
particular, we show that if conjecture 4 holds, any data structure that can report the value
of ({s, u}, {v, t})-mincut for s, u, v and t being any four vertices of the graph must either
use Ω̃(n2) space or Ω̃(m) query time. An interesting implication of this result is a matching
conditional lower bound for the data structure described in Theorem 3.

1.2 Related work
Benczur [2] gave an O(n2) space geometric representation for all the global cuts of value
within 6

5 times the global minimum cut value. As an important application, this structure
leads to the improvement in the time complexity of splitting algorithms [11].

Vazirani and Yannakakis [24] addressed the following fundamental question about (s, t)-
cuts. – Is there a polynomial time algorithm to compute an (s, t)-cut of second minimum
weight? They answered this question in the affirmative by showing that there is an algorithm
which can compute a kth minimum weight (s, t)-cut using only O(n2(k−1)) maximum flow
computations. This algorithm gives an implicit structure for all (s, t)-cuts – a binary tree
with ℓ leaves, that stores all (s, t)-cuts of G and the number of (s, t)-cuts is ℓ.

Another related work is on characterizing (s, t)-cuts using the polyhedron corresponding
to the dual of linear programming (LP) formulation on maximum (s, t)-flow. Vazirani and
Garg [13] showed that not all (s, t)-cuts can be characterized as the vertices of this polyhedron.
Moreover, they modify the dual of the LP formulation by adding a polynomial number of
constraints such that the corresponding polyhedron of the resulting LP formulation has all
(s, t)-cuts as its vertices.

1.3 Organisation of the paper
Section 2 contains the basic preliminaries and the construction of a quotient graph for a set
of (λ + k) (s, t)-cuts. The technique of covering (s, t)-cuts is explained in Section 3. Section
4 contains the construction and properties of the alternate DAG structure for (s, t)-mincuts.
The structure for (λ + 1) (s, t)-cuts and their characterization is discussed in Section 5. The
data structure for reporting (λ + 1) (s, t)-cuts is constructed in Section 6. Section 7 contains
the Oracle for dual-edge sensitivity of (s, t)-mincuts. Finally in Section 8 we give the lower
bounds.

2 Preliminaries

For any X, Y ⊆ V , the capacity of (X, Y) (denote by c(X, Y)) is the number of edges leaving
X and entering Y ; for brevity we use c(X) to denote c(X, X) where X = (V \X). We say
that an (s, t)-cut C subdivides X ⊆ V if C ∩X and C ∩X are non empty.

Baswana, Bhanja, Pandey 52:7

▶ Definition 5 (Nearest (λ + k) (s, t)-cut of a vertex). The set A ⊂ V with s ∈ A and t ∈ A

is said to be the nearest (λ + k) (s, t)-cut of a vertex u if u ∈ A and there is no (λ + k)
(s, t)-cut B ⊂ V such that u ∈ B and B ⊂ A. The set of all nearest (λ + k) (s, t)-cuts of u

is denoted by Nk(u).

▶ Definition 6 (Nearest (λ + k) (s, t)-cut for a pair of vertices). Let A be a nearest (λ + k)
(s, t)-cut of a vertex u. For each vertex v ∈ A, A is said to be a nearest (λ + k) (s, t)-cut
from vertex {u} to a vertex {v}. The set of all nearest (λ + k) (s, t)-cuts from u to v is
denoted by Nk(u, v).

When |N1(u)| = 1 (likewise |N1(u, v)| = 1), without causing any ambiguity we use N1(u)
(likewise N1(u, v)) to denote the corresponding cut as well.

▶ Definition 7 (ℓ-transversal cut). A (s, t)-cut in a directed graph H is said to be ℓ-transversal,
ℓ ≥ 1, if any path in H intersects with the edge-set of the (s, t)-cut at most ℓ times.

▶ Definition 8 (transpose of a graph). Let H be a directed multi-graph with designated
source vertex s and designated sink vertex t. The transpose of graph H (denoted by (H)T) is
obtained by reversing the orientation of each edge of H with role of s and t swapped.

▶ Lemma 9 (Submodularity of cuts). For any A, B ⊆ V , c(A) + c(B) ≥ c(A∩B) + c(A∪B).

▶ Lemma 10. Let A and B be any two (s, t)-mincuts in G that are crossing, that is, A \B

as well as B \A are non-empty. There is no edge of G between A \B and B \A. (proof in
Appendix A)

2.1 Quotient graph for a family of (s, t)-cuts
Let C be a set of (λ + k) (s, t)-cuts in graph G = (V, E) where k ∈ {0, 1}. We define the
following binary relation on the vertex set of G.

▶ Definition 11 (Relation Rλ+k). Any two vertices {x, y} ∈ V are said to be related by Rλ+k

if and only if x and y are not separated by any (λ + k) (s, t)-cut from C.

It is a simple exercise to show that Rλ+k defines an equivalence relation on the vertex
set. We call each equivalence class defined by Rλ+k as a (λ + k + 1) (s, t)-class. It can be
observed that any (s, t)-cut that subdivides a (λ + k + 1) (s, t)-class has capacity strictly
larger than λ+k. The following lemma (proof in Appendix B) states how a (λ+k) (s, t)-class
is related to a (λ + k) (s, t)-cut.

▶ Lemma 12. A (λ + k) (s, t)-cut can subdivide at most one (λ + k) (s, t)-class.

Since Rλ+k is an equivalence relation, the (λ + k + 1) (s, t)-classes form a partition of
the vertex set of G into disjoint subsets. Let Gλ+k be the quotient graph of G obtained by
contracting each of these subsets into single vertices. We call each vertex of the quotient
graph as nodes. The node of Gλ+k containing source s is denoted by S and the node
containing sink t is denoted by T . We call an (S, T)-cut of Gλ+k as (s, t)-cut without causing
any ambiguity. The following theorem is immediate from the construction.

▶ Theorem 13. For a directed multi-graph G and a set of (λ + k) (s, t)-cuts C for any
k ∈ {0, 1}, there exists a quotient graph Gλ+k of G such that C ∈ C is an (s, t)-cut in G if
and only if C is a (λ + k) (s, t)-cut in Gλ+k.

An edge of Gλ+k is classified as normal or inverted using the following definition.

ICALP 2022

52:8 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Definition 14 (inverted edge for (λ + k) (s, t)-cut). An edge (x, y) of Gλ+k is said to be an
inverted edge if there exists no (λ + k) (s, t)-cut C ∈ C such that x ∈ C and y ∈ C.

▶ Fact 2.1. For a directed multi-graph H and a set of (λ + k) (s, t)-cuts C, let Hλ+k be the
quotient graph of H. Given a pair of nodes µ, ν in graph Hλ+k, the contraction of all vertices
which are mapped to µ or ν into a single vertex in H eliminates precisely all those (λ + k)
(s, t)-cuts from C that separate µ and ν.

Consider two sets of (λ + k) (s, t)-cuts C and C′ such that C ⊂ C′. Let Gλ+k and G′
λ+k

be the quotient graphs for C and C′ respectively. It follows from construction of quotient
graphs that there exists equivalence classes of Gλ+k which are further split into multiple
equivalence classes of G′

λ+k. Therefore, the following lemma is immediate.

▶ Lemma 15. Given a directed multi-graph G, let Gλ+k and G′
λ+k be a pair of quotient

graphs formed on the sets of (λ + k) (s, t)-cuts C and C′ respectively. If C ⊂ C′ then Gλ+k is
a quotient graph of G′

λ+k.

3 A covering of all (s, t)-cuts of a special graph

We first formalize the notion of covering the (s, t)-cuts of a graph using the following definition.

▶ Definition 16 (Covering all (s, t)-cuts). Given a directed multi-graph H with a designated
source vertex s and a designated sink vertex t, let F = {H1, H2, . . . , Hℓ} be a finite set of
directed multi-graphs, each defined on the same vertex set as that of H. F is said to cover
all (s, t)-cuts of H if and only if the following conditions hold.
1. For each (s, t)-cut C in H, there exists a (s, t)-cut C ′ in Hi for a unique 1 ≤ i ≤ ℓ such

that C = C ′.
2. For each (s, t)-cut C of finite capacity in Hi for any 1 ≤ i ≤ ℓ, there exists a (s, t)-cut

C ′ in H such that C = C ′.

Let H be a directed multi-graph with a designated source vertex s and a designated sink
vertex t that has at most two (s, t)-mincuts – {s} and (complement of) {t}. Our aim is to
compute a small family F = {H1, H2, . . . , Hℓ} that covers all (s, t)-cuts of H and satisfies
the following condition – for each pair C, C ′ of (s, t)-cuts in Hi for any 1 ≤ i ≤ ℓ, either their
intersection or union is not a λ (s, t)-cut.

We shall show that there exists a family F = {HU , HI} of only two graphs that covers
all (s, t)-cuts of H and satisfies the said property. We build two graph HU and HI from H

as follows. Let x be any arbitrary vertex other than s and t of H. HI is formed by adding
infinite capacity edge from vertex s to x. In a similar way, HU is formed by adding infinite
capacity edge from vertex x to t. The following lemma (proof in Appendix C) ensures that
HU and HI together cover all (λ + k) (s, t)-cuts of H. It exploits the following simple fact –
Let x be a vertex of graph H and C be any (s, t)-cut; either x ∈ C or x ∈ C.

▶ Lemma 17. Let λ′ > 0 be a finite number. C is an (s, t)-cut in H of capacity λ′ if and
only if C is a cut of capacity λ′ in HU or HI .

It follows from the construction that the first (s, t)-mincut of H, that is {s}, is present in
HU while the second (s, t)-mincut of H, that is (complement of) {t} is present in HI . So
using Lemma 17, we can state the following theorem.

▶ Theorem 18. Let H = (V, E) be a directed multi-graph on n vertices and m edges with
a designated source vertex s and a designated sink vertex t. Suppose H has at most two

Baswana, Bhanja, Pandey 52:9

(s, t)-mincuts, {s} and V \ {t}. There exists a set of graphs F = {HI , HU} satisfying the
following properties.

1. F covers all (λ + k) (s, t)-cuts of H.
2. V \ {t} is the only λ (s, t)-cut in HI , and {s} is the only λ (s, t)-cut in HU .

▶ Note 19. Covering technique cannot be applied to a graph H that has more than two
(s, t)-mincuts. This is because, for any vertex x in H, there will be more than one (s, t)-
mincuts that keep x on side of s and/or more than one (s, t)-mincuts that keep x on side of
t. Therefore, there will be multiple (s, t)-mincuts in HI or multiple (s, t)-mincuts in HU ,
hence violating Theorem 18(2).

4 An alternate DAG structure storing all (s, t)-mincuts

We now present an alternate compact structure Dλ for representing and characterizing all
(s, t)-mincuts of G.
Construction of Dλ: Let Gλ be the quotient graph defined by all λ (s, t)-cuts of G (The-
orem 13). Dλ is the graph obtained by reversing the direction of each inverted edge of Gλ.
Exploiting just the elementary properties of (s, t)-mincuts alone (Lemma 10 and submodu-
larity of cuts), we show that Dλ is acyclic. (proof in Appendix D). As the reader may notice,
Dλ is related to the DAG of Picard and Queyranne [23] – the mapping of vertices to the
nodes of the DAG is identical while the direction of each edge is flipped. Each (s, t)-mincut
of G is characterized by a 1-transversal cut in Dλ as stated in the following lemma. (proof
in Appendix E).

▶ Lemma 20 (1-transversality property). An (s, t)-cut is an (s, t)-mincut of G if and only if
it appears as a 1-transversal cut in Dλ.

The following lemma can be proved along similar lines as Lemma 20.

▶ Lemma 21. An (s, t)-cut of G is an (s, t)-mincut if and only if it appears as an (s, t)-cut
with no incoming edge in Dλ.

Interestingly, Dλ can serve as a compact data structure for efficiently answering the query
Q(u, v) for (s, t)-mincuts as follows. Let τ be a topological ordering of Dλ. For each edge
(µ, ν) of Dλ, τ(µ) < τ(ν). Hence, it is a simple corollary of Lemma 20 that every prefix
of τ is a (s, t)-mincut. Therefore, given any edge (u, v) ∈ E, there is a (s, t)-mincut in G

containing it if u and v appear in different nodes of Dλ and the node containing u appears
before the node containing v. (proof in Appendix F).

5 Structure of (λ + 1) (s, t)-cuts

In order to construct a compact structure for (λ + 1) (s, t)-cuts, we take an approach similar
to the construction of Dλ for (s, t)-mincuts and construct a graph Dλ+1 as follows.
Construction of Dλ+1: Let Gλ+1 be the quotient graph defined by all (λ + 1) (s, t)-cuts
(Theorem 13). Dλ+1 is the graph obtained by reversing the direction of each inverted edge
of Gλ+1. Henceforth Dλ+1 for a graph H is denoted by Dλ+1(H).
Dλ characterizes (s, t)-mincuts of G as 1-transversal cuts. Unfortunately, it turns out

that Dλ+1(G) is not sufficient for characterizing (λ + 1) (s, t)-cuts in terms of ℓ-tranversal
cuts for some constant ℓ as stated in the following theorem. (Proof in Appendix I).

ICALP 2022

52:10 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

Figure 1 Contributing edges of a pair of (s, t)-cuts A and B between different regions.

▶ Theorem 22 (Ω(n)-transversality). There exists a directed multi-graph H on n vertices with
a designated source vertex s and a designated sink vertex t having only two (s, t)-mincuts
and a (λ + 1) (s, t)-cut C such that C appears as a Ω(n)-transversal cut in Dλ+1(H).

We now provide a classification of all-pairs of (λ + 1) (s, t)-cuts. This classification will
act as a crucial tool in the analysis of Dλ+1(G) as well as establishing properties of the
compact structure for (λ + 1) (s, t)-cuts in Section 5.1.

Suppose A and B are any two (λ + 1) (s, t)-cuts. Using sub-modularity of cuts (Lemma
9), we arrive at the following inequality, c(A∩B) + c(A∪B) ≤ c(A) + c(B) = 2(λ + 1). Note
that c(A∩B) ≥ λ and c(A∪B) ≥ λ. This implies that the value of c(A∩B) + c(A∪B) will
always belong to {2λ, 2λ + 1, 2λ + 2}. Therefore, each pair (A, B) of (λ + 1) (s, t)-cuts can
be classified uniquely into one of the three types based on the value of c(A ∩B) + c(A ∪B).
We now state the following lemma that will provide an alternate characterization of these
three types based on the number of edges between A \B and B \A.

▶ Lemma 23. Suppose A and B are any two (λ + 1) (s, t)-cuts. Let γ1 and γ2 denote the
number of edges from A\B to B \A and from B \A to A\B respectively. If c(A∩B) = λ+p

and c(A ∪B) = λ + q for some p, q ≥ 0, then γ1 + γ2 = 2− p− q.

Proof. The cuts A and B partition G into at most 4 regions. Refer to Figure 1 for the
illustration of these regions and the edges contributing to the respective cuts.

The following equations follow directly from Figure 1.

c(A ∩B) = α1 + α2 + δ = λ + p (1)
c(A ∪B) = β1 + β2 + δ = λ + q (2)
c(B) = β1 + α2 + γ2 + δ = λ + 1 (3)
c(A) = β2 + α1 + γ1 + δ = λ + 1 (4)

Using equations (1) and (3) we get α1 = β1 + γ2 + p − 1. Similarly using equations
(1) and (4) we get α2 = β2 + γ1 + p − 1. By combining these two equalities, we get
α1 +α2 = β1 +β2 +γ1 +γ2 +2p−2. Hence γ1 +γ2 = 2−p−q, since α1 +α2 = β1 +β2 +p−q

from equations (2) and (1). ◀

Refer to Table 1 for two ways to characterize the three types of pairs of (λ + 1) (s, t)-cuts.

Baswana, Bhanja, Pandey 52:11

c(A ∩ B) + c(A ∪ B) c(A \ B, B \ A) + c(B \ A, A \ B)

Type-1 2λ 2
Type-2 2λ + 2 0
Type-3 2λ + 1 1

Table 1 Classification of any pair (A, B) of (λ + 1) (s, t)-cuts.

It follows from Theorem 22 that transversality of (λ + 1) (s, t)-cuts cannot be bounded by
a constant even if a graph has at most two (s, t)-mincuts – {s} and (complement of) {t}. In
the following section, we shall first give a compact structure for (λ + 1) (s, t)-cuts for graph
G assuming that G has at most two (s, t)-mincuts. Finally, we shall extend it to general
graphs with the help of the structure of Dλ in Section 5.1.1.

5.1 Compact representation and characterization of (λ + 1) (s, t)-cuts
The characterization of (s, t)-mincuts crucially exploits the fact that Dλ is a DAG. Unfortu-
nately, as shown in Figure 2(i), Dλ+1(G) can have cycles. The following lemma states the
source of any 2-length cycle in Dλ+1.

▶ Lemma 24. If graph G does not have any pair of cuts from Type-1, then Dλ+1(G) cannot
have a cycle of length two.

Proof. Suppose we have a 2-length cycle ⟨µ, ν, µ⟩ in Dλ+1(G). It follows from construction
of Dλ+1 that there exists a (λ + 1) (s, t)-cut C for the edge (µ, ν) such that µ ∈ C and
ν ∈ C. In a similar manner there exists a (λ + 1) (s, t)-cut C ′ for the edge (ν, µ) such that
ν ∈ C ′ and µ ∈ C ′. It can be observed that (C, C ′) forms a pair of cuts from Type-1, a
contradiction. ◀

In fact, the absence of pairs of (λ + 1) (s, t)-cuts from Type-1 is a sufficient condition for
acyclicity as stated in the following lemma.

▶ Lemma 25 (acyclicity property). If graph G does not have any pair of cuts from Type-1,
then Dλ+1(G) is a directed acyclic graph.

Proof. We begin with stating the following assertion.
A(i): For any graph H that has no pair of (λ + 1) (s, t)-cuts from Type 1, there is no cycle
of length i in Dλ+1(H).
We shall now prove, by induction on i, that A(i) holds for all i ≥ 2, and this would establish
the lemma. The base case, A(2) follows directly from Lemma 24. Suppose A(j) holds for all
j < i. We shall now prove that A(i) holds.

Suppose there is a cycle O of length i in Dλ+1(H) (see Figure 2(ii)). Consider any
arbitrary edge (µ, ν) in this cycle. It follows from construction of Dλ+1(H) that there exists
a (λ + 1) (s, t)-cut C of H such that µ ∈ C and ν ∈ C. Let U be the set of vertices of H

that are mapped to either µ or ν. Contracting the set U into a single vertex we obtain a
new graph H ′ from H. It follows from Fact 2.1 and Lemma 15 that Dλ+1(H ′) has to be a
quotient graph of Dλ+1(H). As a result, cycle O in Dλ+1(H) will be mapped to either a
cycle of length strictly less than i or a single node in Dλ+1(H ′). The Induction Hypothesis
rules out the possibility of the former case. We shall now rule out the possibility of the latter
case. This will establish the validity of A(i).

ICALP 2022

52:12 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

Figure 2 (i) An example of Dλ+1(G) with cycle ⟨a, b, c, d, e, f, a⟩. Note that here Dλ+1(G) turns
out to be same as G. (ii) Cycle O in graph Dλ+1(H) from the proof of Lemma 25.

The cut C must contain at least one more edge, say (µ′, ν′), of cycle O because the
cycle O must intersect the edge-set of C at least twice. It follows from the construction
of Dλ+1(H) that there exists a (λ + 1) (s, t)-cut, say C ′, in Dλ+1(H) such that µ′ ∈ C ′

and ν′ ∈ C ′. Since µ′ and ν′ belong to the same node in Dλ+1(H ′), the cut C ′ is not
present in H ′. This observation, in the light of Fact 2.1, implies that C ′ must separate
µ and ν (dashed curve in Figure 2). This would imply that for the pair of cuts (C, C ′),
c(C \C ′, C ′ \C)+c(C ′ \C, C \C ′) = 2. Hence (C, C ′) forms a Type-1 pair of (λ+1) (s, t)-cut
in H, a contradiction. ◀

In order to have acyclic structures that collectively preserve all (λ + 1) (s, t)-cuts, Lemma
25 raises the following question – can we partition the set of (λ + 1) (s, t)-cuts such that each
partition does not contain any pair of (λ + 1) (s, t)-cut from Type-1? The covering technique
(Theorem 18) gives an affirmative answer to this question. In particular, it outputs just a
pair of graphs {GI , GU} such that all (λ + 1) (s, t)-cuts of G are covered by GI and GU

together. Moreover, both GU and GI will contain exactly one (s, t)-mincut each, and this
ensures that there are no pairs of (λ + 1) (s, t)-cuts from Type-1 in GI or GU . Therefore, it
follows from Lemma 25 that Dλ+1(GI) and Dλ+1(GU) are acyclic. In the case when G has
exactly one (s, t)-mincut, Dλ+1(G) itself is acyclic.

Not only Dλ+1(GI) and Dλ+1(GU) are acyclic but also help in characterizing (λ + 1)
(s, t)-cuts as follows.

We show that each (λ + 1) (s, t)-cut of G is 3-transversal in Dλ+1(GI) or in Dλ+1(GU).
Without loss of generality let us consider the graph Dλ+1(GU). In order to accomplish 3-
transversality of (λ+1) (s, t)-cuts in Dλ+1(GU), we first show that for any path in Dλ+1(GU)
whose first node is not S, there is no (λ + 1) (s, t)-cut which can keep both the first and the
last node of the path on side of S, and remaining nodes on side of T . As a warm-up, the
following lemma validates this assertion for all paths of length two.

▶ Lemma 26. Let P = ⟨v0 ̸= S, v1, v2⟩ be a path in Dλ+1(GU). There can not exist any
(λ + 1) (s, t)-cut C such that v0, v2 ∈ C and v1 ∈ C.

Proof. We give a proof by contradiction. Assume that there is such a (λ + 1) (s, t)-cut C. It
follows from the construction of Dλ+1(GU) that there is a (λ + 1) (s, t)-cut C ′ for the edge
(v1, v2) such that v1 ∈ C ′ and v2 ∈ C ′. It can be observed that the edge (v1, v2) is an edge
from C ′\C to C\C ′. Therefore, {C, C ′} cannot be a pair from Type-2. {C, C ′} cannot be
pair from Type-1 as well since there is no pair of (λ + 1) (s, t)-cuts from Type-1 in Dλ+1(GU).
So, {C, C ′} must be a pair from Type-3. Notice that C ∪C ′ has capacity λ + 1 since the only

Baswana, Bhanja, Pandey 52:13

Figure 3 C: dash-dot curve, C′: solid curve, C ∪ C′: dashed curve, (vi−1, vi) is in E(C) ∩ E(C′).

λ (s, t)-cut in GU is {s}. Hence, C ∩ C ′ must be containing the node S only. Since v0 ∈ C,
therefore, v0 cannot belong to C ′ and hence the edge-set of C ′ must intersect path P again
at edge (v0, v1). Then, in that case, there are two edges (v0, v1) and (v1, v2) between C \ C ′

and C ′ \ C. This implies that (C, C ′) are from Type-1, a contradiction. ◀

Generalizing Lemma 26 for any arbitrary length path, we give the following lemma which
will provide the foundation for establishing 3-transversality of (λ + 1) (s, t)-cuts.

▶ Lemma 27. Let P = ⟨v0 ̸= S, v1, . . . , vi⟩ be a simple path in Dλ+1(GU). There does not
exist a (λ + 1) (s, t)-cut C such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C.

Proof. We begin with stating the following assertion.
A(i) : There does not exist a (λ+1) (s, t)-cut C such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C

for a path P = ⟨v0 ̸= S, v1, . . . , vi−1, vi⟩ of length i.
We shall use proof by induction on the length of the path i ≥ 2 to show that A(i) holds.

The base case, A(2) follows directly from Lemma 26.
Let us now assume that A(j) holds for all 2 ≤ j < i. We shall prove that A(i) holds

using a proof by contradiction. Assume to the contrary that there is a (λ + 1) (s, t)-cut C

such that v0, vi ∈ C and v1, . . . , vi−1 ∈ C (refer to Figure 3). It follows from the construction
of Dλ+1(GU) that there is a (λ + 1) (s, t)-cut C ′ for the edge (vi−1, vi) such that vi−1 ∈ C ′

and vi ∈ C ′. Along similar lines of the proof of Lemma 26 we can argue that (C, C ′) are
pairs from Type-3 with c(C ∪ C ′) = λ + 1, and edge-set of C ′ must be intersecting path
P at least one more time before the edge (vi−1, vi). So, let (vk, vk+1), 0 ≤ k < i − 1,
be the first edge on P that intersects edge-set of C ′. Now, there are two possible cases,
either k = 0 and vk+1 = v1 or k > 0. In the former case, it is easy to observe that two
edges (v0, v1) and (vi−1, vi) lie between C ′ \ C and C \ C ′. Therefore, (C, C ′) must be from
Type-1, a contradiction. In the latter case, observe that v0, . . . , vk /∈ C ′ and vk+1 ∈ C ′

because (vk, vk+1) is the nearest edge from v0 in P that intersects edge-set of C ′. Therefore,
v0, vk+1 ∈ C ∪C ′ and v1, . . . , vk /∈ C ∪C ′. So, we get a path P ′ = ⟨v0,vk+1⟩ and a (λ+1)
(s, t)-cut C ∪ C ′ such that v0, vk+1 ∈ C ∪ C ′ and v1, . . . , vk ∈ C ∪ C ′. Moreover, path P ′

has length strictly smaller than i because k < i− 1. Therefore, A(k + 1) fails to hold and
k + 1 < i, a contradiction. ◀

Now in the following lemma, using Lemma 27 we argue that there cannot exist any (λ+1)
(s, t)-cut C in Dλ+1(GU) such that edge-set of C intersects a path P more than thrice.

▶ Lemma 28 (3-transversality property). Each (λ + 1) (s, t)-cut of G is 3-transversal in
Dλ+1(GI) or in Dλ+1(GU).

Proof. Without loss of generality let us consider Dλ+1(GU). The proof is along similar lines
for Dλ+1(GI). We give a proof by contradiction. Assume to the contrary that there exists a
(λ + 1) (s, t)-cut C in G and a path P in Dλ+1(GU) such that edge-set of C intersects path P

ICALP 2022

52:14 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

Figure 4 (i) The edge-set of (λ + 1) (s, t)-cut A intersects path ⟨S, v1, v2, T ⟩ thrice; A and B are
(λ + 1) (s, t)-cuts from Type-3. (ii) A 1-transversal cut C = A ∩ B with capacity greater than λ + 1.

more than thrice. Then, path P can be divided into at least 5 contiguous disjoint subpaths
{P1, P2, P3, P4, P5}. For the cut C, observe that either each node of Pi is on side of S for all
odd i and each node of Pi is on side of T for all even i or vice versa. In the former case, let us
consider the subpath P ′ = ⟨P3, P4, P5⟩ of P . For this path P ′, we have each node of P3, P5
in C and each node of P4 in C. Moreover, S cannot belong to P3 because by construction of
Dλ+1(GU) there is no incoming edge to S. Therefore, we have a path P ′ with first node (not
S) and last node in (λ + 1) (s, t)-cut C and other nodes are in C. This contradicts Lemma
27. In a similar way we can argue the latter case using subpath P ′ = ⟨P2, P3, P4⟩. ◀

We also show that there are (λ + 1) (s, t)-cuts which may not appear in Dλ+1 as
1-transversal cut (refer to Figure 4(i)). This is because, for each 3-transversal (λ + 1) (s, t)-
cut A, there exists a (λ + 1) (s, t)-cut B such that A, B are pairs from Type-3. Therefore,
our bound of 3-transversality is tight.

5.1.1 Extension to general graphs
The compact structure and characterization of (λ + 1) (s, t)-cuts are valid if the graph has
at most two (s, t)-mincuts. However, in general, graphs can have exponential number of
(s, t)-mincuts. To tackle this difficulty we explore how a (λ + 1) (s, t)-cut is related to the
(λ + 1) (s, t)-classes of a graph G. There are (λ + 1) (s, t)-cuts in G which do not subdivide
any (λ + 1) (s, t)-class. We call them degenerate (λ + 1) (s, t)-cuts. These cuts appear in Dλ

and have the following characterization. (proof in Appendix G).

▶ Lemma 29. An (s, t)-cut of G is a degenerate (λ + 1) (s, t)-cut if and only if it appears as
an (s, t)-cut with exactly one incoming edge in Dλ.

Henceforth, our main focus is on the non-degenerate (λ + 1) (s, t)-cuts – cuts that
subdivide (λ + 1) (s, t)-classes. It follows from Lemma 12 that each such (λ + 1) (s, t)-cut
subdivides precisely one (λ + 1) (s, t)-class. Therefore, the set of all (λ + 1) (s, t)-cuts can be
partitioned into disjoint subsets where each subset subdivides exactly one (λ + 1) (s, t)-class.
This partitioning allows us to work separately with each (λ + 1) (s, t)-class. Let W be a
(λ + 1) (s, t)-class. In order to build a compact structure that stores all (λ + 1) (s, t)-cuts
that subdivide W, we now define a graph G(W) associated with W as follows.

Construction of G(W): Let τ be a topological ordering of Dλ where source node S

(likewise T) has the smallest (likewise highest) topological number. G(W) is obtained by
forming a quotient graph of G using τ as follows. Let µ be the node of Dλ corresponding to
W . All nodes that precede µ in the topological ordering τ are contracted into a single source
node S′ and every node that succeeds µ are contracted to a single sink node T ′.

Baswana, Bhanja, Pandey 52:15

It is easy to observe that s ∈ S′ (likewise t ∈ T ′) since s ∈ S (likewise t ∈ T). Henceforth
without causing any ambiguity we denote an (S′, T ′)-cut in G(W) as an (s, t)-cut in G(W).
The following lemma (proof in Appendix H) establishes the mapping between the (λ + 1)
(s, t)-cuts of G and G(W).

▶ Lemma 30. A (λ+1) (s, t)-cut C in G subdivides a (λ+1) (s, t)-classW into (W1,W\W1)
if and only if there exists a (λ + 1) (s, t)-cut C ′ =W1 ∪ {S′} in G(W).

It is easy to observe that graph G(W) can have at most two (s, t)-mincuts – S′ and complement
of T ′. Therefore, we construct pair of DAGs, Dλ+1((G(W))I) and Dλ+1((G(W))U), for each
(λ + 1) (s, t)-class W . Now we summarize these structural and characterization results in the
following theorem.

▶ Theorem 31. For any directed multi-graph G, on n vertices and m edges with a designated
source vertex s and a designated sink vertex t, there exists a 2-level DAG structure of O(m)
size–(i) Dλ and (ii) a pair of DAGs associated with each node of Dλ, such that all (λ + 1)
(s, t)-cuts of G are compactly stored and characterized as follows.
1. a non-degenerate (λ+1) (s, t)-cut of G subdividing a (λ+1) (s, t)-classW is a 3-transversal

cut in one of the two DAGs associated with W, and
2. an (s, t)-cut of G is a degenerate (λ+1) (s, t)-cut if and only if it has exactly one incoming

edge in Dλ.

We now explore the possibility of answering query Q(u, v) using the pair of DAGs,
Dλ+1(GI) or Dλ+1(GU). Recall that for the case of (s, t)-mincuts, just storing a topological
ordering of Dλ is sufficient to answer query Q(u, v) because each 1-transversal cut in Dλ is
also an (s, t)-mincut. However, a 1-transversal cut in Dλ+1(GI) or Dλ+1(GU) needs not be a
(λ + 1) (s, t)-cut. For example, cut A ∩B as shown in Figure 4(ii) is 1-transversal but has
capacity λ + 2. Note that A and B form a (λ + 1) (s, t)-cuts from Type-2. In the following
section, we provide a compact data structure that can answer query Q(u, v) even when (u, v)
is not necessarily an edge.

6 Compact data structures for reporting (λ + 1) (s, t)-cuts

In this section we address the very fundamental problem of reporting any (λ + 1) (s, t)-cut C

for a given pair of vertices {u, v} such that u ∈ C and v ∈ C, if exists. In order to answer the
query it is sufficient to verify if v is separated by at least one of the cuts from N1(u). Note
that in case of (s, t)-mincut, it suffices to store the N0(u) which turns out to be unique for
each vertex u. This structure occupies O(n2) space and achieves O(|C|) time for reporting
the (s, t)-mincut C such that u ∈ C and v ∈ C. Unfortunately, N1(u) can have more than
one elements (as shown in Figure 4 that both A and B belong to N1(ν)). This is because
unlike for (s, t)-mincuts, the set of all (λ + 1) (s, t)-cuts that keep a vertex u on the side of s

is not closed under intersection and union operations.
In order to design compact data structure for reporting (λ + 1) (s, t)-cut, as discussed

in Section 5.1.1, we work on each (λ + 1) (s, t)-class. Let W be a (λ + 1) (s, t)-class in
graph G and u, v ∈ W. Although N1(u) can have multiple elements, it can be shown using
sub-modularity of cuts (Lemma 9) that N1(u, v) is unique (proof in Appendix J). However,
this fact alone guarantees O(|W|3) space data structure for determining the existence of
N1(u, v) for any pair of vertices u, v ∈ W. In order to achieve more compact data structure
we explore how N1(u, v) is related to N1(u, w) for any w ∈ W . The following lemma provides
an important insight into this relationship.

ICALP 2022

52:16 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Lemma 32. If N1(u, v) ̸= N1(u, w) for any {u, v, w} in W, then W ⊆ N1(u, v)∪N1(u, w).

Proof. The proof is by contradiction. Let C = N1(u, v) and C ′ = N1(u, w). Assume that
there is a vertex inW which is also in C ∪ C ′. In that case both C ∩C ′ and C ∪C ′ subdivide
W; therefore, capacity of each of them is strictly larger than λ. So it immediately follows
from sub-modularity of cuts (Lemma 9) that c(C ∩C ′) is (λ + 1). Therefore we have a (λ + 1)
(s, t)-cut C ∩ C ′ which is a proper subset of at least one of C and C ′. Therefore, C or C ′

fails to satisfy Definition 6 – a contradiction. ◀

Now let N1(u) = {C1, C2, . . . , Cl}. Consider any vertex v ∈ W . If v belongs to
⋂l

i=1 Ci,
then N1(u, v) does not exist; otherwise, Lemma 32 implies that v is separated from u by
exactly one of the cuts from N1(u). As a result the sets Ci ∩W for each i ∈ [l] are disjoint.
In order to determine the position of any other vertex, w ∈ W, with respect to N1(u, v), we
formulate the following query.

belong(u, v, w) =
{

1 if N1(u, v) exists and w ∈ N1(u, v)
0 otherwise.

For each vertex x ∈ W \ {u}, if x ∈ Ci for any i ∈ [l] then mark x with label i. Now if label
of v and w are same, then w is not present in N1(u, v), otherwise w belongs to N1(u, v). In
this way we can answer query belong(u, v, w) in O(1) time. Therefore, the following lemma
is immediate.

▶ Lemma 33. Let W be a (λ + 1) (s, t)-class and u ∈ W. There exists an O(|W|) size data
structure Nλ+1(u) that can determine in O(k) time whether there exists a (λ + 1) (s, t)-cut C

such that u ∈ C and v1, . . . , vk ∈ C for any v1, . . . , vk ∈ W. If C exists, the data structure
can output C ∩W in O(|C ∩W|) time.

Moreover, given vertices u, v1, . . . , vk ∈ W, Nλ+1(u) can be used to report a (λ + 1) (s, t)-
cut C, if exists, in O(|C|) time using an auxiliary O(n) space topological ordering of Dλ

of G such that u ∈ C and v1, . . . , vk ∈ C (see Appendix K). Now based on Lemma 33 we
construct the following data structure for (λ + 1) (s, t)-class W.
Description of Nλ+1: It consists of Nλ+1(u) for each u in W.
Nλ+1 for a (λ + 1) (s, t)-class W occupies O(|W|2) space. Each (λ + 1) (s, t)-class is

disjoint from each other. Hence by constructing Nλ+1 for each (λ + 1) (s, t)-class of G we
get an O(n2) size data structure and it completes the proof of Theorem 3. We complement
this result with a conditional lower bound of Ω̃(n2) space based on Conjecture 4 (refer to
Appendix R).

7 Dual edge sensitivity oracle for (s, t)-mincuts

In this Section we shall present an oracle that can efficiently report (s, t)-mincut upon the
failure of a pair of edges in graph G. We say that an edge (u, v) belongs to a (λ+1) (s, t)-class
W if both u, v ∈ W.

7.1 Handling dual edge failures
Consider the failure of two edges e = (x, y), e′ = (x′, y′) in G. Suppose at least one of {e, e′}
does not belong to any (λ + 1) (s, t)-class. In this case the value of (s, t)-mincut decreases by
at least 1 if N0(x, y) or N0(x′, y′) exists. The value of (s, t)-mincut decreases by exactly 2 if
and only if both e, e′ are contributing to a single (s, t)-mincut. To determine the existence of

Baswana, Bhanja, Pandey 52:17

Figure 5 Graph (i) has no λ + 1 (s, t)-cut containing edges (x, y) and (x′, y′), but Graph (ii)
does have one such cut shown by dashed curve.

such an (s, t)-mincut, since (s, t)-mincuts are closed under union operation, it is sufficient to
verify whether y /∈ N0(x′, y′) and y′ /∈ N0(x, y). So we construct a data structure, denoted
by Nλ, which consists of N0(u) for each vertex u of G. This O(n2) space data structure
achieves O(1) time to report the resulting value of (s, t)-mincut on failure of {e, e′} in this
case. (see Appendix L).

If e and e′ belong to distinct (λ + 1) (s, t)-classes, then it follows from Lemma 12 that
the (s, t)-mincut value remains unchanged. Let us consider case when both e and e′ belong
to the same (λ + 1) (s, t)-class, say W . It follows as a simple corollary of Lemma 30 that we
just need to verify if there is a (λ + 1) (s, t)-cut in G(W) in which e and e′ are contributing.
Note that the only (λ + 1) (s, t)-class of G(W) is W.

Consider the data structure Nλ+1 for W in G(W). For the existence of a (λ + 1) (s, t)-
cut in which both e and e′ are contributing, observe that a necessary condition is that
y /∈ N1(x′, y′) and y′ /∈ N1(x, y). These conditions can be verified using Nλ+1 in O(1) time.
Upon checking these conditions, a natural approach would be to explore whether the union
of these two cuts is a (λ + 1) (s, t)-cut. Unfortunately, we can not infer anything conclusively
from the union of these cuts as illustrated by the two graphs in Figure 5. In both these
graphs, N1(x, y) ∪N1(x′, y′) is not a (λ + 1) (s, t)-cut . However, for graph (i), no (λ + 1)
(s, t)-cut exists that contains the two edges; for graph (ii), there is still a (λ + 1) (s, t)-cut
containing the two edges. Note that in these graphs, N1(x, y) and N1(x′, y′) are pairs of
(λ + 1) (s, t)-cuts from Type-2.

Looking at this hurdle carefully, we get the following insight. Since y, y′ both lie outside
N1(x′, y′) ∪N1(x, y), hence c(N1(x, y) ∪N1(x′, y′)) has to be > λ. Therefore, if c(N1(x, y) ∩
N1(x′, y′)) is also > λ, then using sub-modularity of cuts (Lemma 9), their union is bound to
be a (λ + 1) (s, t)-cut and this will serve our purpose. Unfortunately, G(W) does not ensure
that c(N1(x, y) ∩N1(x′, y′)) is greater than λ as shown in Figure 5.

In order to materialize the above insight, we use covering technique (Theorem 18) to
build the pair of graphs {G(W)I , G(W)U} that partition all (λ + 1) (s, t)-cuts of G(W). It
follows from Theorem 18(2) that the capacity of the intersection (likewise union) of each pair
of (λ + 1) (s, t)-cut in G(W)I (likewise G(W)U) is greater than λ. This is because the only
(s, t)-mincut of G(W)I is T ′ and the only (s, t)-mincut of G(W)U is S′. Theorem 18(1) states
that {G(W)I , G(W)U} covers all the (λ + 1) (s, t)-cuts of G(W). Therefore, if y′ /∈ N1(x, y)
and y /∈ N1(x′, y′) in G(W)I or x /∈ N1(y′, x′) and x′ /∈ N1(y, x)) in (G(W)U)T then there
is a (λ + 1) (s, t)-cut in G(W) in which e, e′ are contributing. Now we shall establish the
converse of this assertion.

Suppose there exists a (λ + 1) (s, t)-cut C in G(W) to which both edges (x, y) and

ICALP 2022

52:18 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

(x′, y′) are contributing. Without loss of generality assume that C is present in G(W)I . It
can be observed that the cuts N1(x, y) and N1(x′, y′) in G(W)I are subsets of C. Hence
y /∈ N1(x′, y′) and y′ /∈ N1(x, y) in G(W)I . If C is present in G(W)U , exactly the same
analysis can be carried out on (G(W)U)T . So we can state the following lemma.

▶ Lemma 34. A pair of edges e = (x, y), e′ = (x′, y′) from (λ + 1) class W are outgoing
edges of a (λ + 1) (s, t)-cut in G(W) if and only if (i) y /∈ N1(x′, y′) and y′ /∈ N1(x, y) in
G(W)I or (ii) x /∈ N1(y′, x′) and x′ /∈ N1(y, x) in (G(W)U)T .

Using the data structure Nλ+1, it requires a constant number of belong queries to verify
the conditions mentioned in Lemma 34. Therefore, the data structure F for dual edge failure
is as follows.

F consists of the following data structures:
Nλ for graph G.
Nλ+1 for G(W)I and (G(W)U)T for each (λ + 1) (s, t)-class W.

It can be observed that the resulting (s, t)-mincut value can be reported in O(1) time
upon failure of any pair of edges from G using F (Handling of dual edge insertion is in
Appendix M). We summarize the results of this section in the following theorem.

▶ Theorem 35. A directed multi-graph G = (V, E), on |V | = n vertices and |E| = m edges
with a designated source vertex s and a designated sink vertex t, can be preprocessed for
constructing O(n2) space Oracle {F , I} that takes O(1) time to report the value of resultant
(s, t)-mincut upon
1. failure of any given pair of edges (x, y), (x′, y′) ∈ E using F , or
2. insertion of any given pair of edges (x, y), (x′, y′) ∈ V × V using I.
▶ Remark 36. For a (λ + 1) (s, t)-class W and any pair of disjoint subsets A, B ⊂ W, F
can determine in O(|A||B|) time if there exists a (λ + 1) (s, t)-cut C such that A ⊆ C and
B ⊆ C. If C exists, then it is possible to report C using F in O((|A|+ |B|)|W|+ |C|) time.
(see Appendix N)

8 Conditional lower bound for dual edge sensitivity for (s, t)-mincuts

The problem of reachability in directed graph is as follows – Given a simple directed graph
G with n vertices and m edges, preprocess it to form a data structure which can efficiently
report if a given vertex v is reachable from another vertex u. The reachability in G is same
as reachability in GSCC , a directed acyclic graph which can be obtained by contracting each
of the Strongly Connected Components to a single vertex. Henceforth, we shall assume that
G is a directed acyclic graph. We transform the directed acyclic graph G into a graph D as
follows.
Construction of D: Create two additional vertices, namely s and t. Suppose ∆v denotes
the difference in the number of incoming and outgoing edges of any vertex v of G. For each
vertex v in G, if ∆v > 0 we add ∆v edges from v to t. Likewise, if ∆v < 0 we add ∆v edges
from s to v. Lastly, add two additional edge(s) from s to v and v to t for all v in G. Observe
that the number of edges in this graph is only O(m). Thus, we state the following lemma.

▶ Lemma 37. For a directed graph G with n vertices and m edges, there exists a directed
acyclic multi-graph D with O(m) edges and n + 2 vertices such that a vertex v is reachable
from a vertex u in G if and only if vertex v is reachable from vertex u in D.

Baswana, Bhanja, Pandey 52:19

The graph D, that we have constructed, has a very interesting property. D is identical
to the DAG Dλ that stores all (s, t)-mincuts in graph D. We crucially exploit this property
to derive an equivalence between reachability queries in graph D and dual edge failure (or
insertion) query for (s, t)-mincut in D. Since, the reachability structure of D and G is
identical, we state the following lemma. (detailed proof in Appendix O).

▶ Lemma 38. Let G be a directed graph. A vertex v is reachable from a vertex u in G if and
only if the value of (s, t)-mincut reduces by exactly 1 on removal of the edges {(s, u), (v, t)}
from graph D which is obtained from G using Lemma 37.

Proof sketch. We know that D is same as Dλ of D. So, removal of any edge from D reduces
value of (s, t)-mincut by 1. Any (s, t)-cut in which both edges, {(s, u), (v, t)}, are contributing
cannot be 1-transversal because of the u to v path. Every (s, t)-mincut is 1-transversal
(Lemma 20), therefore, there cannot exist (s, t)-mincut in which both edges are contributing.

If there is no path from u to v, then both edges contribute to (s, t)-cut C = R({u}) ∪ T ;
where R({u}) defines the set of vertices reachable from u. We can show that C is also an
(s, t)-mincut. Thus, upon removal of edges {(s, u), (v, t)} the value of (s, t)-mincut reduces
by 2. ◀

Using Conjecture 4 and Lemma 38 we state the following conditional lower bound.

▶ Theorem 39. Assuming Directed Reachability Hypothesis holds, any data structure that
can report the value of (s, t)-mincut for a designated source s and a designated sink t upon
failure or addition (refer to Appendix P) of any pair of edges in a directed multi-graph with
n vertices and m edges must either use Ω̃(n2) space, or Ω̃(m) time.

References
1 Surender Baswana and Abhyuday Pandey. Sensitivity oracles for all-pairs mincuts. In

Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 581–609. SIAM, 2022. doi:10.1137/1.9781611977073.27.

2 András A. Benczúr. A representation of cuts within 6/5 times the edge connectivity with
applications. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 92–102. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492466.

3 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis Chatzigianna-
kis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 130:1–130:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.130.

4 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.
doi:10.1137/S0097539705429847.

5 Efim A Dinitz, Alexander V Karzanov, and Michael V Lomonosov. On the structure of the
system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages
290–306, 1976.

6 Yefim Dinitz. Maintaining the 4-edge-connected components of a graph on-line. In Second Israel
Symposium on Theory of Computing Systems, ISTCS 1993, Natanya, Israel, June 7-9, 1993,
Proceedings, pages 88–97. IEEE Computer Society, 1993. doi:10.1109/ISTCS.1993.253480.

7 Yefim Dinitz and Zeev Nutov. A 2-level cactus model for the system of minimum and
minimum+1 edge-cuts in a graph and its incremental maintenance. In Frank Thomson Leighton

ICALP 2022

https://doi.org/10.1137/1.9781611977073.27
https://doi.org/10.1109/SFCS.1995.492466
https://doi.org/10.1109/SFCS.1995.492466
https://doi.org/10.4230/LIPIcs.ICALP.2016.130
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1109/ISTCS.1993.253480

52:20 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

and Allan Borodin, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 509–518. ACM,
1995. doi:10.1145/225058.225268.

8 Yefim Dinitz and Alek Vainshtein. The general structure of edge-connectivity of a vertex
subset in a graph and its incremental maintenance. odd case. SIAM J. Comput., 30(3):753–808,
2000. doi:10.1137/S0097539797330045.

9 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Claire Mathieu,
editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages 506–515. SIAM, 2009. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496826.

10 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

11 Harold N. Gabow. Efficient splitting off algorithms for graphs. In Frank Thomson Leighton
and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium
on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 696–705. ACM,
1994. doi:10.1145/195058.195436.

12 Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a graph
on-line. SIAM J. Comput., 22(1):11–28, 1993. doi:10.1137/0222002.

13 Naveen Garg and Vijay V. Vazirani. A polyhedron with alls - t cuts as vertices, and adjacency
of cuts. Math. Program., 70:17–25, 1995. doi:10.1007/BF01585926.

14 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower bounds
for space/time tradeoffs. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack, editors,
Algorithms and Data Structures - 15th International Symposium, WADS 2017, St. John’s, NL,
Canada, July 31 - August 2, 2017, Proceedings, volume 10389 of Lecture Notes in Computer
Science, pages 421–436. Springer, 2017. doi:10.1007/978-3-319-62127-2_36.

15 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1–4:50, 2019. doi:10.1145/3274663.

16 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in õ(vrank) iterations and faster algorithms for maximum flow. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 424–433. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.52.

17 Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979. doi:10.1145/357062.
357071.

18 Jason Li. Deterministic mincut in almost-linear time. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 384–395. ACM, 2021. doi:10.1145/3406325.
3451114.

19 Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In
Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 85–92. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00017.

20 Merav Parter. Dual failure resilient BFS structure. In Chryssis Georgiou and Paul G. Spirakis,
editors, Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 481–490. ACM, 2015.
doi:10.1145/2767386.2767408.

21 Merav Parter and David Peleg. Sparse fault-tolerant BFS structures. ACM Trans. Algorithms,
13(1):11:1–11:24, 2016. doi:10.1145/2976741.

22 Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.

https://doi.org/10.1145/225058.225268
https://doi.org/10.1137/S0097539797330045
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1145/195058.195436
https://doi.org/10.1137/0222002
https://doi.org/10.1007/BF01585926
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.1145/3274663
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/3406325.3451114
https://doi.org/10.1145/3406325.3451114
https://doi.org/10.1109/FOCS46700.2020.00017
https://doi.org/10.1109/FOCS46700.2020.00017
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.1145/2976741
https://doi.org/10.1137/09075336X

Baswana, Bhanja, Pandey 52:21

23 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a network
and applications. In Rayward-Smith V.J. (eds) Combinatorial Optimization II. Mathematical
Programming Studies, 13(1):8–16, 1980. doi:10.1007/BFb0120902.

24 Vijay V. Vazirani and Mihalis Yannakakis. Suboptimal cuts: Their enumeration, weight and
number (extended abstract). In Werner Kuich, editor, Automata, Languages and Programming,
19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings,
volume 623 of Lecture Notes in Computer Science, pages 366–377. Springer, 1992. doi:
10.1007/3-540-55719-9_88.

A Proof of Lemma 10

Proof. It follows from sub-modularity of cuts (Lemma 9), c(A ∩B) + c(A ∪B) ≤ 2λ. Since
c(A ∩B), c(A ∪B) ≥ λ, hence A ∩B and A ∪B are (s, t)-mincuts.

Notice that A and B splits V into four subsets. We refer to Figure 1 for the illustration
of these regions and the edges among them.

Since c(A ∩ B) = c(B) = c(A), therefore α1 = β1 + γ2 and α2 = β2 + γ1. From these
two equations we get, α1 + α2 = β1 + γ2 + β2 + γ1. Adding δ on each side of the equation,
γ1 + γ2 = λ− λ = 0 since c(A ∪B) = α1 + α2 + δ = λ and c(A ∪B) = β1 + β2 + δ = λ. ◀

B Proof of Lemma 12

Proof. Let C be a (λ + k) (s, t)-cut which subdivides two (λ + k) (s, t)-classes µ and ν. Note
that µ and ν must be separated by a (s, t)-cut C ′ of capacity (λ + k− 1). By sub-modularity
of cuts (Lemma 9) we have, c(C ∩ C ′) + c(C ∪ C ′) ≤ 2λ + 2k − 1. Since C subdivides both
of them, therefore c(C ∩ C ′), c(C ∪ C ′) ≥ λ + k. Hence c(C ∩ C ′) + c(C ∪ C ′) ≥ 2λ + 2k, a
contradiction. ◀

C Proof of Lemma 17

Proof. Let C be a (s, t)-cut of capacity λ′ in H. The vertex x is either in C or in C. Without
loss of generality assume that x ∈ C. In graph HI this cut C is preserved since the infinite
capacity edge is from s to x. Evidently its capacity also remains unchanged in HI .

Without loss of generality let C be a (s, t)-cut of capacity λ′ in HI . It follows from the
construction of HI , x ∈ C. Therefore, removal of the infinite capacity edge, say e∞, from
HI does not affect the (s, t)-cut C because e∞ is not a contributing edge of C. Hence C is
(s, t)-cut of capacity λ′ in H. ◀

D Acyclicity of Dλ

In order to prove acyclicity we require the following lemma.

▶ Lemma 40 (transitivity Property). Let {x, u, v} be any three nodes of Dλ such that there
exists a directed path ⟨x, (x, u), u, (u, v), v⟩. Let A, B be two (s, t)-mincuts containing edges
(x, u) and (u, v) respectively, then x ∈ B.

Proof. Suppose x /∈ B. In that case edge (x, u) is from A \ B to B \ A, which leads to
contradiction because of Lemma 10. ◀

An induction on the length of a path leads to the following corollary of Lemma 40.

ICALP 2022

https://doi.org/10.1007/BFb0120902
https://doi.org/10.1007/3-540-55719-9_88
https://doi.org/10.1007/3-540-55719-9_88

52:22 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Corollary 41. Let P = ⟨v0, (v0, v1), v1, . . . , (vl−1, vl), vl⟩ be a path in Dλ. Then each node
vi, 0 ≤ i ≤ l − 1 in P belongs to the (s, t)-mincut containing edge (vl−1, vl).

Here we state the proof for acyclicity.

▶ Lemma 42 (acyclicity property). Dλ is a directed acyclic graph.

Proof. We give a proof by contradiction. Assume to the contrary that Dλ is not acyclic. Then
there exists cycle ⟨v0, e1, v1, . . . , er, vr, e0, v0⟩ in Dλ. Let us look at an edge ei−1 = (vi−2, vi−1),
0 ≤ i ≤ r. Since the orientation is from vi−2 to vi−1, it follows from the construction of Dλ

that there is a (s, t)-mincut B such that vi−2 ∈ B and vi−1 ∈ B. Also we have a directed
path P from vi to vi−2 since it is a directed cycle. It follows from Corollary 41 that all the
nodes in the directed path P belongs to B, hence vi ∈ B also. Let us consider edge ei. Again
it follows from the construction of Dλ that there is a (s, t)-mincut A such that vi−1 ∈ A and
vi ∈ A. Therefore, we have an edge (vi−1, vi) between A \B and B \A, a contradiction due
to Lemma 10. ◀

E Proof of Lemma 20 : 1-transversality property of (s, t)-mincuts

In Gλ, we show that S and (complement of) T defines (s, t)-mincuts of G using the following
lemma.

▶ Lemma 43. Each edge entering into S or leaving T in Gλ is an inverted edge.

Proof. We give a proof by contradiction. Let e = (u, v) be an edge of Gλ such that v ∈ S

and u /∈ S. If v = s then trivially e is inverted. So we assume that v ̸= s. Assume to the
contrary that the edge e is not inverted. Then there exists a (s, t)-mincut C such that u ∈ C

and v ∈ C. Since s and v are separated by C, therefore v and s cannot belong to the same
(λ + 1) (s, t)-class S, a contradiction. ◀

The following corollary is immediate using Lemma 43 as (s, t)-mincuts are closed under
intersection and union.

▶ Corollary 44. S as well as complement of T are (s, t)-mincuts.

For other nodes except S and T of Gλ, we establish the following important property.

▶ Lemma 45. Let µ ̸= {S, T} be a node of Gλ. If we ignore inverted edges, the number of
incoming edges of µ is the same as the number of outgoing edges of µ.

Proof. Suppose µ has α incoming and β outgoing edges which are not inverted. For each
edge ein

i = (ui, µ) of α edges there is a (s, t)-mincut Cin
i such that ui ∈ Cin

i and µ ∈ Cin
i

by definition, i ∈ [α]. We know that
⋃α

i=1 Cin
i is a (s, t)-mincut. This directly implies

that α ≤ β. Similarly each outgoing edge eout
i = (µ, vi) of β edges there is a (s, t)-mincut

Cout
i such that µ ∈ Cout

i and vi ∈ Cout
i . In a similar way we can show that

⋂β
i=1 Cout

i is a
(s, t)-mincut, implies α ≥ β. Thus α = β. ◀

Now we prove the 1-transversality property.

Proof. Without causing ambiguity we call a 1-transversal cut as a transversal cut in this
proof. Let C be a (s, t)-mincut of G. Observe that C separates each x ∈ C from each y ∈ C.
So, it follows from the construction of Dλ that C defines a (s, t)-cut in Dλ. Assume that it
is not transversal in Dλ. In that case edge-set of C must be intersecting a directed path of

Baswana, Bhanja, Pandey 52:23

Dλ at least thrice. This implies there exists at least one edge (u, v) such that u ∈ C and
v ∈ C. Since the orientation of edge (u, v) in Dλ is from u to v then there must exist another
(s, t)-mincut C ′ of G such that u ∈ C ′, v ∈ C ′. So we have u ∈ C ′ \ C, v ∈ C \ C ′ and (u, v)
is an edge, a contradiction from Lemma 10.

To prove the converse part, we state and prove the following assertion.
A(i) : Each transversal cut C in Dλ consisting of i nodes is a (s, t)-mincut of G.
We now prove A(i) by induction on i. In the base case i = 1, S is the only transversal

cut of Dλ and it is a (s, t)-mincut of G as stated in Corollary 44. Suppose A(j) holds for
each j < i.

Let C be a transversal cut C in Dλ consisting of i nodes. Since Dλ is a acyclic graph,
there exists a topological ordering. Let us consider a node µ such that µ has the highest
topological order and µ ∈ C. Observe that all outgoing edges of µ are incident on V \ C.
Therefore, removing node µ from C makes another transversal cut C ′ of Dλ. Since C ′

consists of i− 1 nodes, it follows from induction hypothesis that C ′ is a (s, t)-mincut. An
outgoing edge of µ in Dλ is not an outgoing edge of C in G if the edge is inverted. Similarly
an incoming edge of µ in Dλ is not an outgoing edge of C ′ in G if it is an inverted edge.
Therefore, it follows from Lemma 45 that the capacity of C is same as C ′. Hence C is a
(s, t)-mincut. ◀

F Single edge sensitivity : O(n) space, O(1) time

Given an edge e of G, if edge e is an outgoing edge of some (s, t)-mincut then value
of (s, t)-mincut reduces by 1. The graph Dλ is acyclic as stated in Lemma 42. This
ensures the existence of a topological ordering of the set of nodes of Dλ. Let us consider
a topological ordering τ of Dλ such that node S (likewise node T) is the lowest (likewise
highest) topologically ordered node. Now we use the following lemma to construct our O(n)
size data structure.

▶ Lemma 46. An edge e = (x, y) in G is an outgoing edge of an (s, t)-mincut if and only if
the node containing x appears before the node containing y in topological ordering τ .

Proof. If e is an outgoing edge of a (s, t)-mincut then it appears in Dλ with orientation
unchanged. Hence the node containing x appears before the node containing y in each
topological ordering of Dλ.

Since x and y are appearing in different nodes, therefore the edge is appearing in Dλ.
Assume to the contrary that there is no (s, t)-mincut where edge e is an outgoing edge. Then
there exists a (s, t)-mincut C such that y ∈ C and x ∈ C. Hence edge e is an inverted edge.
Therefore, in Dλ the orientation of edge e is from y towards x. Evidently in each topological
ordering of Dλ the node containing y appears before the node containing x, a contradiction
to the premise. ◀

Using Lemma 46 and topological ordering τ we can report the value of (s, t)-mincut upon
failure of any edge in O(1) time. Moreover if the value decreases then report the vertices
belonging to those nodes which appear before the node containing x (including the node
containing x) in the topological ordering τ as the resultant (s, t)-mincut because any prefix
of τ is a (s, t)-mincut.

In case of insertion of an edge e if we can ensure that e contributes to each (s, t)-mincut
then the value is of (s, t)-mincut is increased. Therefore the following fact is necessary as
well as sufficient to verify whether (s, t)-mincut value increases upon insertion of an edge.

ICALP 2022

52:24 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Fact F.1. Let the (λ + 1) (s, t)-class containing source s be S and (λ + 1) (s, t)-class
containing sink t be T . On insertion of an unit capacity edge e = (x, y), the value of
(s, t)-mincut increases by 1 if and only if x ∈ S and y ∈ T .

G Proof of Lemma 29 : Degenerate (λ + 1) (s, t)-cuts

In order to prove Lemma 29, we explore the relation between a (λ + 1) (s, t)-cut and a
(s, t)-mincut in the following lemma.

▶ Lemma 47. Suppose A, B be any two (s, t)-cut such that one of {A, B} is a (s, t)-mincut
and other is a (λ + 1) (s, t)-cut. Let γ1 and γ2 denotes the number of edges from A \B to
B \A and from B \A to A \B respectively. If c(A ∩B) = λ + p and c(A ∪B) = λ + q for
some p, q ≥ 0, then γ1 + γ2 = 1− p− q.

The proof of Lemma 47 is along similar lines as the proof for Lemma 23. The following
corollary is immediate from Lemma 47.

▶ Corollary 48. Suppose A and B are two (s, t)-cuts such that one of {A,B} is a (s, t)-mincut
and other is a (λ + 1) (s, t)-cut.
1. The number of edges between A \ B and B \ A is exactly 1 if and only if c(A ∩ B) =

c(A ∪B) = λ.
2. The number of edges between A \B and B \A is at most 1.

Now we give the proof for Lemma 29.

Proof. The (s, t)-cut C cannot have zero incoming edges, otherwise it is a transversal cut
and from Lemma 20, C must be a (s, t)-mincut. Assume to the contrary that C has at
least two incoming edges– e = (µ, ν) and e′ = (µ′, ν′). It follows from construction of Dλ

that there exists a (s, t)-mincut, say C1, such that µ ∈ C1, ν ∈ C1. Since ν ∈ C and
µ ∈ C, therefore edge e is between C \ C1 and C1 \ C. It follows from Corollary 48(1) that
(C ∩ C1) and (C ∪ C1) are (s, t)-mincuts. It is easy to observe that the position of edge e′

is one of the following three –(i) C1 \ C to C ∩ C1, (ii) C1 \ C to C \ C1 or (iii) C ∪ C1 to
(C ∪ C1) \ (C1 \ C) = C. In case (i), (s, t)-mincut C ∩ C1 and in case (iii), the (s, t)-mincut
C ∪ C1 has incoming edge, contradiction from Lemma 21. Otherwise in case (ii) we have
two edges between C \ C1 and C1 \ C – a contradiction from Corollary 48(2).

Figure 6 (i) (s, t)-cut C has exactly one incoming edge (ν, µ) (ii) The edges between different
regions formed by C and C1.

Baswana, Bhanja, Pandey 52:25

Let us now prove the converse part. We first define the following function f on edge set
of Dλ.

f((ν, µ), C) =
{

1, if edge (ν, µ) of Dλ is a contributing edge of (s, t)-cut C

0, otherwise.

Let C be a (s, t)-cut with exactly one incoming edge (ν, µ) where ν and µ are nodes of
Dλ. Let us consider a topological ordering τ of Dλ. In τ , node ν must appear before node µ.
Since µ ∈ C and ν ∈ C, therefore in τ if we go towards S from µ, we must reach a node ω

such that ω /∈ C. It follows from Lemma 20 that the prefix of τ till ω is a (s, t)-mincut, say
C1 (refer to Figure 6(i) for better understanding). We consider (s, t)-cut C ∩ C1. The only
incoming edge of C is from ν to µ. Since µ /∈ C ∩ C1, C ∩ C1 is transversal cut and hence
it is (s, t)-mincut as stated in Lemma 20. Also (s, t)-cut C1 ∪ C is a transversal cut since
both µ and ν belongs to C1 ∪C. Again from Lemma 20 (C1 ∪C) is a (s, t)-mincut. Observe
that the edge (ν, µ) is from C1 \ C to C \ C1. Notice that there cannot be any edge from
C \ C1 to C1 \ C, otherwise the topological ordering is not valid. The following equations
are immediate from the Figure 6(ii).

c(C ∩ C1) = β′ + β + δ = λ (5)
c(C ∪ C1) = α′ + α + δ = λ (6)
c(C1) = α′ + f((ν, µ), C1) + β + δ = λ, (7)

We want to find out c(C) = β′ + f((ν, µ), C) + α + δ. Let us consider the case when (ν, µ) is
an inverted edge. Then c(C1) = α′ + β + δ = λ because (ν, µ) becomes an incoming edge of
C1. Comparing this equation with Equation 5 we get, α′ = β′. Since edge (ν, µ) is inverted,
(ν, µ) is an outgoing edge of C and hence c(C) = β′ + 1 + α + δ. Hence replacing β′ by α′ we
have c(C) = α + α′ + δ + 1 = λ + 1 from Equation 6.
Now we consider the case when (ν, µ) is not an inverted edge. In this case c(C1) =
α′ + 1 + β + δ = λ because (ν, µ) is an outgoing edge of C1. Comparing this equation with
Equation 6 we get, α = β + 1. Since (ν, µ) is not inverted, hence c(C) = α + β′ + δ because
(ν, µ) is an incoming edge of C. Replacing α by β + 1 we get, c(C) = β + 1 + β′ + δ = λ + 1
using Equation 5. This completes our proof. ◀

H Proof of Lemma 30

Figure 7 Illustration for the proof of Lemma 30.

Proof. Without loss of generality we assume that µ ̸= {S, T}. The following fact is immediate
because it follows from Lemma 20 that every prefix of a topological ordering of Dλ is a
(s, t)-mincut.

ICALP 2022

52:26 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Fact H.1. The (s, t)-cut S′ and S′ ∪ µ are (s, t)-mincuts of G.

By sub-modularity of cuts (Lemma 9) the S′ ∪C and (S′ ∪µ)∩C are (λ + 1) (s, t)-cuts of G.
The (s, t)-mincut S′ contains all the nodes that precedes µ in the topological ordering. Hence
our construction of G(W) keeps the (s, t)-cuts S′ and (S′ ∪ µ) intact in G(W). Therefore
the (s, t)-cut (C ∪ {S′}) ∩ (S′ ∪ µ) is a (λ + 1) (s, t)-cut (refer to Figure 7) of G(W) using
sub-modularity of cuts (Lemma 9). It is easy to observe that (C ∪ {S′}) ∩ (S′ ∪ µ) is the
(s, t)-cut W1 ∪ {S′} of G(W). Let C ′ = S′ ∪W1 is (λ + 1) (s, t)-cut of G(W). From Fact
H.1, we know S′ is a (s, t)-mincut of G. Therefore S′ ∪W1 is also a (λ + 1) (s, t)-cut of G

and it subdivides W into (W1,W \W1). ◀

I Proof of Theorem 22 : Ω(n)-transversality

We shall show that for any k ≥ 2, there exists a directed multi-graph G, with a designated
source vertex s and designated sink vertex t, consisting of two (s, t)-mincuts of capacity
2k − 1 such that there exists a (λ + 1) (s, t)-cut in G whose edge-set intersects a simple path
in Dλ+1(G) exactly 2k + 1 times. In order to construct G, we first construct the following
graph H.
Construction of H: H is a cycle ⟨a, b, c, d, e, f, a⟩ on 6 vertices such that each consecutive
pair of vertices in path ⟨d, e, f, a, b⟩ has exactly two parallel edges.

Now we give the construction of graph G.
Description of G: G consists of k − 2, k ≥ 2, instances, say {H2, . . . , Hk−1}, of graph
H with a source vertex s and a sink vertex t. The source s and sink t are connected to
each instance Hi, 2 ≤ i ≤ k − 1, of H as follows. There are edges to di and ei from s, and
edges from ai and bi to t, for each 2 ≤ i ≤ k − 1. Consecutive graphs Hi and Hi+1, for
2 ≤ i ≤ k − 2, are connected by the following pair of edges (ei+1, di) and (fi, ai+1).
There is a vertex, denoted by ak, which is connected to s, t and Hk−1 as follows. There is
an edge from s, an edge to t and a pair of edges (ak, dk−1), (fk−1, ak).
There is another component consisting of 6 vertices in G as follows. There is a cycle
⟨a1, b1, c1, d1, a1⟩ on 4 vertices and there is also a path ⟨d1, e1, f1, b1⟩ on 4 vertices. Let us
denote this component by H1. H1 is connected with s, t and H2 as follows. There are edges
from s to c1 and d1, edges to t from b1 and c1, and a pair of edges (e2, d1), (f1, a2). We refer
to Figure 8 for better understanding.

The value of (s, t)-mincut in graph G is 2k− 1. This is because for each Hi, 1 ≤ i ≤ k− 1,
there are two incoming edges from s; and for ak there is only one edge from s (similar
arguments for edges incident on t). Also, every other (s, t)-cut value is greater than 2k − 1.
Therefore, G has exactly two (s, t)-mincuts of capacity 2k−1. These are {s} and complement
of {t}. The following lemma ensures that G is same as Dλ+1(G).

▶ Lemma 49. For each edge (µ, ν) of graph G there is (λ + 1) (s, t)-cut C(µ,ν) such that
µ ∈ C(µ,ν) and ν ∈ C(µ,ν).

Proof. Let us first consider the edges of each Hi, 2 ≤ i ≤ k − 1.
1. edges (ai, bi): Let C be a (s, t)-cut that keeps only vertex bi on side of t. Except edge

(bi, t), each edge incident on t is an outgoing edge of C, and also both parallel edges
(ai, bi) are outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

2. edge (bi, ci): Let C be a (s, t)-cut that keeps only vertex ci on side of t. Each edge
incident on t is an outgoing edge of C, also edge (bi, ci) is an outgoing edge of C. Hence
the capacity of C is 2k − 1 + 1 = 2k.

Baswana, Bhanja, Pandey 52:27

Figure 8 (i) (λ + 1) (s, t)-cut C intersecting path ⟨a1, . . . , f1, a2, . . . f2, . . . , f3, a4, T ⟩ in Dλ+1(G)
9 times when G has 2 instances of H. (ii) Graph G with k − 2 instances of H.

3. edge (ci, di): Let C be a (s, t)-cut that keeps only vertex ci on side of s. Each edge
incident on s is an outgoing of C, also edge (ci, di) is an outgoing edge. Hence the capacity
of C is 2k − 1 + 1 = 2k.

4. edges (di, ei): Let C be a (s, t)-cut that keeps only vertex di on side of s. Except edge
(s, di), each edge incident on s is an outgoing of C, and also both parallel edges (di, ei)
are outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

5. edges (ei, fi): Let C be a (s, t)-cut that keeps only two vertices {di, ei} on side of s.
Except edges (s, di) and (s, ei), each edge incident on s is an outgoing of C, and three
outgoing edges of vertex ei (includes edge (ei, di−1)) are also outgoing edges of C. Hence
the capacity of C is 2k − 1− 2 + 3 = 2k.

6. edges (fi, ai): Let C be a (s, t)-cut that keeps only two vertices {ai, bi} on side of t.
Except two edges (ai, t) and (bi, t), each edge incident on t is an outgoing of C, and also
three incoming edges of ai (includes edge (fi−1, ai)) are outgoing edges of C. Hence the
capacity of C is 2k − 1− 2 + 3 = 2k.

Now we consider the two edges incident on ak.
1. edge (ak, dk−1): Let C be a (s, t)-cut that keeps only vertex ak on side of s. Except edge

(s, ak), each edge incident on s is an outgoing of C, and also edges (ak, dk−1) and (ak, t)
are outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

2. edge (fk−1, ak): Let C be a (s, t)-cut that keeps only vertex ak on side of t. Except edge
(ak, t), each edge incident on t is an outgoing of C, and also edges (s, ak) and (fk−1, ak)
are outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

Finally we consider the edges of H1.
1. edge (a1, b1): Let C be a (s, t)-cut that keeps only vertices {a1, d1} on side of s. Except

edge (s, d1), each edge incident on s is an outgoing of C, and also edges (d1, e1) and
(a1, b1) are outgoing edges of C. Hence the capacity of C is 2k − 1 − 1 + 2 = 2k. The
edge (d1, e1) is also an outgoing edge of C.
If we include vertex e1 in C to define a new (s, t)-cut C ′, then edge (e1, f1) is an outgoing
edge of C ′. C ′ is also a (s, t)-cut of capacity 2k because instead of edge (d1, e1), edge
(e1, f1) is contributing.

ICALP 2022

52:28 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

In a similar way if we exclude vertex a1 from C to define a new (s, t)-cut C ′′, then edge
(d1, a1) is an outgoing edge of C ′′. C ′′ is also a (s, t)-cut of capacity 2k because instead
of edge (a1, b1), the edge (d1, a1) is contributing.

2. edge (f1, b1): Let C be a (s, t)-cut that keeps only vertex b1 on side of t. Except edge
(b1, t), each edge incident on t is an outgoing of C, and also edges (a1, b1) and (f1, b1) are
outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

3. edge (c1, d1): Let C be a (s, t)-cut that keeps only vertex c1 on side of s. Except edge
(s, c1), each edge incident on s is an outgoing of C, and also edges (c1, d1) and (c1, t) are
outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

4. edge (b1, c1): Let C be a (s, t)-cut that keeps only vertex c1 on side of t. Except edge
(c1, t), each edge incident on t is an outgoing of C, and also edges (b1, c1) and (s, c1) are
outgoing edges of C. Hence the capacity of C is 2k − 1− 1 + 2 = 2k.

Therefore, we showed that for each edge (µ, ν) of graph G there is (λ + 1) (s, t)-cut C(µ,ν)
such that µ ∈ C(µ,ν) and ν ∈ C(µ,ν). ◀

It follows from Lemma 49 that Dλ+1(G) is same as G. Let us now consider a (s, t)-cut
C in G defined by the following set of vertices. For H1, include vertices {a1, d1}, for Hi,
2 ≤ i ≤ k− 1, include vertices {di, ei} and finally include the vertex ak. Observe that, (s, c1)
is an outgoing edge of C. Then for H1, two edges (a1, b1) and (d1, e1) are outgoing from C.
For each Hi, 2 ≤ i ≤ k− 1, two parallel edges from ei to fi are outgoing from C. Finally the
edge (ak, t) is outgoing. Therefore, the capacity of C is 1 + 2 + 2(k − 2) + 1 = 2k, thus a
(λ + 1) (s, t)-cut of G.

There is a path P = ⟨a1, b1, c1, d1, e1, f1, a2, . . . , f2, . . . , ak−1, . . . , fk−1, ak, T ⟩ in Dλ+1(G)
which intersects the edge-set of (s, t)-cut C exactly 2k + 1 times as follows. In H1, edge-set
of C intersects P thrice. Then at each Hi, 2 ≤ i ≤ k − 1, edge-set of C intersects path P

twice. Finally two times at edge (fk−1, ak) and at edge (ak, t). Hence the total number of
intersections is 3 + 2(k − 2) + 2 = 2k + 1. Therefore, the following lemma is immediate.

▶ Lemma 50. There is a graph G, with a designated source vertex s and a designated sink
vertex t, having two (s, t)-mincuts of capacity 2k − 1 such that in Dλ+1 of G there exists a
directed path P and a (λ + 1) (s, t)-cut C where edge-set of C intersects path P exactly 2k + 1
number of times.

It follows from the construction of G that k can be Ω(n) if we use Ω(n) instances of H to
construct G. Therefore, Lemma 50 implies Theorem 22.

J Proof of uniqueness of nearest (λ + 1) (s, t)-cut

Proof. We give a proof by contradiction. Assume to the contrary that there exists two
nearest (λ + 1) (s, t)-cuts C and C ′ from u to v. Since u ∈ C ∩C ′, C ∪C ′, v ∈ C ∩ C ′, C ∪ C ′

therefore the c(C ∩C ′) and the c(C ∪C ′) are strictly larger than λ. So it follows immediately
from sub-modularity of cuts (Lemma 9) that c(C∩C ′) = c(C∪C ′) = λ+1. That is, C∩C ′ is
also a (λ + 1) (s, t)-cut. Since it is a proper subset of at least one of C or C ′, this contradicts
the definition of nearest (λ + 1) (s, t)-cut. ◀

K Reporting a (λ + 1) (s, t)-cut using Nλ+1

To efficiently report a (λ + 1) (s, t)-cut the following lemma is used.

Baswana, Bhanja, Pandey 52:29

▶ Lemma 51. Suppose τ be a topological ordering of Dλ where source node S has the smallest
topological number and sink node T has the highest topological number. Let µ be the node
corresponding to the (λ + 1) (s, t)-class W. Let C be a (s, t)-mincut defined by the prefix of
τ till before node µ. Then C ∪ (N1(u, v) ∩W) is a (λ + 1) (s, t)-cut.

Proof. Let C ′ be N1(u, v). Lemma 12 implies that C ′ cannot subdivide any other nodes
and hence c(C ∩ C ′) must be λ. Since C ∪ C ′ is subdividing µ, therefore, it follows from
sub-modularity of cuts (Lemma 9) that (C ∪ C ′) is a (λ + 1) (s, t)-cut. It is easy to observe
that (C ∪ C ′) = C ∪ (N1(u, v) ∩W). ◀

Let τ be a topological ordering of Dλ where source node S has the smallest topological
number and sink node T has the highest topological number. Let µ be the node corresponding
to W. Suppose a (λ + 1) (s, t)-cut subdivides W into (W1,W \W1). We want to report a
(λ + 1) (s, t)-cut Cλ+1 given the set W \W1. Let C be the (s, t)-mincut defined by the set of
nodes from S to µ in τ . It follows from Lemma 51 that C ∪ (W \W1) is a (λ + 1) (s, t)-cut.
Therefore, we report this cut in O(|C ∪ (W \W1)|) time, which is O(Cλ+1).

L A step towards dual edge sensitivity data structure with Dλ

We try to address the problem of dual edge sensitivity of (s, t)-mincuts using Dλ. Unfortu-
nately it will be shown that Dλ can be used only for a partial solution of the problem.

L.1 Partial solution to dual edge failure

Let e = (x, y) and e′ = (x′, y′) be any pair of edges of graph G. We know how to determine
if either e or e′ is contributing to a (s, t)-mincut. Now we have to determine if there is a
single (s, t)-mincut C from which both edges e and e′ are outgoing as stated in Fact 1.1. In
this case it is necessary that y′ /∈ N0(x, y) and y /∈ N0(x′, y′). Also, we know that the union
of both the nearest (s, t)-mincuts is also a (s, t)-mincut. Since {y, y′} are not in any of the
nearest (s, t)-mincuts, hence they are also not in their union. Therefore, the following lemma
is a necessary and sufficient condition.

▶ Lemma 52. A pair of edges e = (x, y), e′ = (x′, y′) are contributing to (s, t)-mincut
N0(x, y) ∪N0(x′, y′) if and only if y′ /∈ N0(x, y) and y /∈ N0(x′, y′).

Let us consider a vertex u ∈ V . It is easy to show that N0(u) is unique because if there
are multiple then their intersection becomes a (s, t)-mincut which leads to contradiction by
Definition 5. Therefore, N0(u) = N0(u, v) for any vertex v ∈ V . Now a data structure is
required that can efficiently determine if a vertex w belongs to a N0(u). Here we construct
the data structure, denoted by Nλ, for (s, t)-mincuts as follows.
Construction of Nλ(G) : store N0(u) for each u ∈ V .

This O(n2) space structure is used to verify the conditions mentioned in Lemma 52 in
O(1) time.

Observe that till this point we are able to solve the dual edge failure query when both
edges are not belonging to any (λ+1) (s, t)-class. If they are belonging to (λ+1) (s, t)-classes,
then it might be the case that both edges are outgoing from a single (λ + 1) (s, t)-cut. This
verification cannot be done using Nλ and hence it is required for us to study the structure of
(λ + 1) (s, t)-cuts.

ICALP 2022

52:30 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

L.2 Partial solution to dual edge insertion
Let us now consider the insertion of a pair of edges. Let e = (x, y), e′ = (x′, y′) be a pair
of edges which are added in G where {x, y, x′, y′} ∈ V . The (s, t)-mincut value increases
upon insertion of a single edge is based on the Fact F.1. Let S (likewise T) be the (λ + 1)
(s, t)-class containing source s (likewise sink t). It is a necessary condition from Fact F.1 that
to increase the value of (s, t)-mincut at least one edge must be leaving S and at least one
must be entering T , otherwise value of (s, t)-mincut remains unchanged. Without loss of
generality assume e leaves S and e′ enters T .

Suppose y ≠ T and x′ ̸= S, then value of (s, t)-mincut increases by 1 on the following
condition.

▶ Lemma 53. The value of (s, t)-mincut in G increases by 1 upon insertion of edges
{(x, y), (x′, y′)} where x ∈ S and y′ ∈ T if and only if x′ ∈ N0(y).

Proof. Suppose (s, t)-mincut value increases by 1 but x′ /∈ N0(y). Let C be the N0(y).
Insertion of edges {e, e′} does not increase the capacity of C because y ∈ C and x′ /∈ C.
Hence the (s, t)-cut C remains intact and therefore the value of (s, t)-mincut remains
unchanged, contradicts our assumption.

Suppose x′ ∈ N0(y). Insertion of edge (x, y) increases value of each (s, t)-mincut that
keeps y on side of t. So, only those (s, t)-mincuts remain unchanged upon insertion of edge
(x, y) which keep y on side of s. Since, (s, t)-mincuts are closed under intersection, therefore,
N0(y) must be the subset of each (s, t)-mincut that keeps y on side of s. Since x′ ∈ N0(y),
therefore upon insertion of edge (x′, y′), the value of each (s, t)-mincut, that keeps y on side
of s, increases by 1. This implies that the value of (s, t)-mincut in G also increases by 1. ◀

Using data structure Nλ we can verify the condition of Lemma 53 in O(1) time.
We now discuss when both query edges leaves S and enters T . Surely in this case the

value of (s, t)-mincut increases by 1 from Fact F.1. However since both edges are from S to
T , it is not necessarily true that the (s, t)-mincut value increases by 2 always. If there exists
a (λ + 1) (s, t)-cut between s and {x, x′} or between {y, y′} and t then the (s, t)-mincut
value increases only by 1. This also motivates us to study all the (λ + 1) (s, t)-cuts of G. So,
this data structure Nλ can solve the dual edge insertion queries when both edges are not
added from S to T . Now we state the following theorem as a partial solution to the dual
edge sensitivity problem of (s, t)-mincut.

▶ Theorem 54. For a directed multi-graph G on n vertices and m edges with a designated
source vertex s and a designated sink vertex t, there exists an O(n2) size data structure Nλ

that can,
1. answer the resulting (s, t)-mincut value in O(1) time upon failure of a pair of edges from

G when both the edges are not belonging to the same (λ + 1) (s, t)-class,
2. answer the resulting (s, t)-mincut value upon insertion of a pair of edges in G when both

edges are not from S ((λ + 1) (s, t)-class containing source s) to T ((λ + 1) (s, t)-class
containing sink t), and,

3. report a resulting (s, t)-mincut C in O(|C|) time.

M Handling Dual edge insertions

Let e = (x, y), e′ = (x′, y′) be a pair of edges which are added in G where {x, y, x′, y′} ∈ V .
If both edges are not from S ((λ + 1) (s, t)-class containing s) to T ((λ + 1) (s, t)-class
containing t), it follows from Theorem 54 that Nλ can report the resulting (s, t)-mincut value.

Baswana, Bhanja, Pandey 52:31

We shall now consider the case when both edges are from S to T . The following lemma plays
a crucial role in this case.

▶ Lemma 55. The (s, t)-mincut value increases by 2 if and only if both the following
conditions holds,
1. there does not exist any (λ + 1) (s, t)-cut that separates {s} from {x, x′}.
2. there does not exist any (λ + 1) (s, t)-cut that separates {t} from {y, y′}.

Proof. Suppose there exists a (λ + 1) (s, t)-cut A that separates s from {x, x′}. Since
{x, x′} ∈ A therefore addition of the edges e and e′ does not increase the value of cut A.
Hence after adding both the edges the resulting (s, t)-mincut value is at most (λ + 1) since
c(A) is (λ + 1).

Directly from premise we can state that any (s, t)-cut that keeps {x, x′} on side of t

has capacity at least λ + 2. Similarly any (s, t)-cut that keeps {y, y′} on side of s also has
capacity at least λ + 2. The two query edges e and e′ are now contributing to each (s, t)-cut
C such that {x, x′} ∈ C and {y, y′} ∈ C. Since all (s, t)-mincuts have {x, x′} on side of s

and {y, y′} on side of t, therefore both edges are contributing to each (s, t)-mincut. Hence
evidently the (s, t)-mincut is increased by 2. ◀

Without loss of generality let us consider the (λ + 1) (s, t)-class S that contains source s.
It follows from Lemma 55 that we only have to look at N1(s) among all (λ + 1) (s, t)-cuts
that subdivides S. Using Lemma 33 we state the following corollary.

▶ Corollary 56. There exists an O(|S|) size data structure, denoted by Nλ+1(s), which stores
N1(s) that subdivides S.

Based on Corollary 56 and Theorem 54, now we describe the data structure I for dual edge
insertion.

I consists of the following data structures,
Nλ for graph G.
Nλ+1(s) for S in G and (G)T .

The data structure Nλ+1(s) can report in O(1) time if N1(s, x) exists. Then using a
constant number of belong(s, x, x′) queries, we can verify conditions of Lemma 55.

N Generalizing query Q

Let G be a directed multi-graph on n vertices. Suppose u and v be any pair of vertices in G

that belong to a (λ + 1) (s, t)-class W . To report a (λ + 1) (s, t)-cut C such that u ∈ C and
v ∈ C, we require the data structure Nλ+1 for W. Now we try to generalize this problem in
the following query.

Q′: Let U = {u1, u2, . . . , uk} and V = {v1, v2, . . . vl} are two disjoint subsets of W. De-
termine whether there exists a (λ + 1) (s, t)-cut C such that {u1, u2, . . . , uk} ∈ C and
{v1, v2, . . . vl} ∈ C.

We shall show that data structure F can efficiently answer query Q′ and also report such a
cut if exists. The Algorithm 1 is executed twice to answer Q′ – first for graph G(W)I and
then for graph (G(W)U)T .

The following lemma proves the correctness of Algorithm 1.

ICALP 2022

52:32 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

Algorithm 1 Answering query Q′

1: procedure Query Q′(U , V)
2: for each u ∈ U do
3: Let v be any arbitrary vertex from V.
4: for each w ∈ V do
5: if belong(u, v, w) == 1 then
6: Output "(λ + 1) (s, t)-cut does not exist."
7: end if
8: end for
9: end for

10: C ←W
11: for each i = 1 to |U| do
12: Consider a vertex ui from U and a vertex v from V.
13: C ← C ∩N1(ui, v)
14: end for
15: return C.
16: end procedure

▶ Lemma 57. Let W be a (λ + 1) (s, t)-class of G. For a pair of subsets U ,V ⊂ W,
There exists a (λ + 1) (s, t)-cut C in G such that U ⊆ C and V ⊆ C if and only if
V ⊆

⋃
i∈|U|, v∈V N1(ui, v) in G(W)I or U ⊆

⋃
i∈|V|, u∈U N1(vi, u) in (G(W)U)T .

Proof. If C exists, then it follows from Definition 16 and Lemma 30 that C must be appearing
either in G(W)I or in G(W)U . Without loss of generality assume that C is in G(W)I . It
is easy to observe that N1(ui, vi) is a subset of C for each i ∈ |U|. Therefore, if V ⊆ C,
it is immediate that V ⊆

⋃
i∈|U|, v∈V N1(ui, v) in G(W)I . The similar arguments work for

(G(W)U)T .
The proof of the converse part is as follows. Without loss of generality assume that

V ⊆
⋃

i∈|U|, v∈V N1(ui, v) in graph G(W)I . It follows from Theorem 18 that the only (s, t)-
mincut of G(W)I is complement of {t}. Therefore, capacity of the intersection of any pair
of (λ + 1) (s, t)-cuts in G(W)I is greater than λ. Using sub-modularity of cuts(Lemma 9),
the capacity of their union has to be λ + 1. Therefore the set

⋃
i∈|U|, v∈V N1(ui, v) defines a

(λ + 1) (s, t)-cut. Also, U ⊆
⋃

i∈|U|, v∈V N1(ui, vi) and V ⊆
⋃

i∈|U|, v∈V N1(ui, v) in G(W)I .
Since a (λ + 1) (s, t)-cut exists in G(W)I , it follows from Definition 16 and Lemma 30 that
there exists a (λ + 1) (s, t)-cut C in G such that U ⊆ C and V ⊆ C. The similar arguments
work for the following case, U ⊆

⋃
i∈|V|, u∈U N1(vi, u) in (G(W)U)T . . ◀

Query time: Algorithm 1 achieves O(kl) time to answer query Q′, and reporting the
cut C takes O((k + l)|W|+ |C|) time using O(n) extra space (refer to Appendix K).

O Proof of Lemma 38

In order to prove Lemma 38 let us first show that graph D is same as graph Dλ of D. The
following lemma states the relation among capacities of 1-transversal cuts in D.

▶ Lemma 58. Each 1-transversal cut in D has equal capacity.

Proof. The following fact is immediate from the construction of graph D.

Baswana, Bhanja, Pandey 52:33

Figure 9 Edges between different regions formed by a 1-transversal cut A and non 1-transversal
cut C′

▶ Fact O.1. Each vertex in D must appear at least in one path from s to t.

Let C and C ′ be a pair of 1-transversal cuts in D. We claim that there are no edges between
C \ C ′ and C ′ \ C. Without loss of generality assume there is an edge (u, v) such that
u ∈ C \ C ′ and v ∈ C ′ \ C. It follows from Fact O.1 that there is a path from s to u.
Therefore, the path ⟨s, . . . , u, v, . . . , t⟩ intersects edge-set of C ′ at least thrice – it is not
possible because C ′ is a 1-transversal cut.
Let us consider the set C \ C ′. It has incoming edges only from C ∩ C ′ and outgoing edges
only to C∪C ′. Since each vertex has same number of incoming and outgoing edges, therefore,
the number incoming edges of C \ C ′ is same as the number of outgoing edges of C \ C ′.
Similarly, the number of incoming and outgoing edges of C ′ \ C is same. Evidently the
capacity of C and C ′ is same. ◀

The following property holds in D.

▶ Lemma 59. A (s, t)-cut is 1-transversal cut in D if and only if it is a (s, t)-mincut in D.

Proof. Let C be a 1-transversal cut in D but assume to the contrary it is not a (s, t)-mincut.
Let C ′ be a (s, t)-mincut in D. It follows from Lemma 58 that C ′ cannot be 1-transversal,
otherwise C becomes a (s, t)-mincut. Since C ′ is not 1-transversal then there is a path P

such that edge-set of C ′ intersects P at least thrice. Let (u, v) be an edge of P such that
u ∈ C ′ and v ∈ C ′. We know D is a DAG. Let τ be a topological ordering of D. In τ , u

must precede v as (u, v) edge exists. We consider prefix of τ till u, say A. This set A defines
a 1-transversal cut in D and u ∈ A, v ∈ A. It is easy to observe that A and C ′ forms four
disjoint partition of the vertex set of D. We refer to Figure 9 for the illustration of these
regions and edges among them. Note that there cannot be any incoming edge of A, otherwise
A does not remain a 1-transversal cut. The following equations follow directly from Figure 9.

c(A) = α2 + β1 + δ + γ = λ + k, k > 0 (8)
c(C ′) = α1 + β2 + δ = λ (9)

We get the following equation from Equation 8 and Equation 9.

α2 + β1 + γ = α1 + β2 + k (10)

ICALP 2022

52:34 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

Since each vertex has equal incoming and outgoing edges therefore, we have the following
equations from Figure 9.

β2 = α2 + β3 + γ (11)
α1 = α3 + β1 + γ (12)

We get the following equality by adding Equation 11 and Equation 12, β2 + α1 = α2 + β3 +
α3 + β1 + 2γ. Now replacing β2 + α1 in Equation 10 we get, α3 + β3 + γ = −k. Since k > 0,
α3 + β3 + γ < 0, a contradiction.

We shall now prove the converse part. Assume to the contrary that there is a (s, t)-mincut
C which is not 1-transversal cut in D. Since C is not 1-transversal, then there is a path P

which intersects edge-set of C at least thrice. Let (u, v) be an edge of P such that u ∈ C

and v ∈ C. Let τ be a topological ordering of D. In τ , u must precede v since (u, v) is an
edge. Prefix of τ till vertex v, say C ′, defines a 1-transversal cut of D. We showed that each
1-transversal cut is a (s, t)-mincut. Therefore, C ′ is also a (s, t)-mincut. It is easy to observe
that edge (u, v) is from (C ′ \ C) to (C \ C ′) – a contradiction from Lemma 10. ◀

Now we give the proof for Lemma 38.

Proof. Since both edges {(s, u), (v, t)} appears in D, their removal reduces (s, t)-mincut
value by at least 1. It follows from Lemma 37 that there is a path, say P , from u to v in D.
So any (s, t)-cut C in D, in which both edges (s, u) and (v, t) are contributing, cannot be
a 1-transversal cut because P intersects E(C) more than once. Therefore, it follows from
Lemma 59 that there is no (s, t)-mincut in D in which both edges are contributing. So,
removal of these two edges reduces the (s, t)-mincut value by at most 1.

Assume to the contrary that (s, t)-mincut in D reduces by 1 but there is no path from
u to v in G. Let us consider the set of vertices R({u}) that are reachable from u in D. It
can be observed that the set C = R({u}) ∪ T defines a 1-transversal cut in D. It follows
from Lemma 59 that C is a (s, t)-mincut in D. It follows from Lemma 37 that there is no
path from vertex u to vertex v in D. Evidently, v /∈ R({u}). Hence observe that both edges
(s, u) and (v, t) are contributing to this (s, t)-mincut C. Therefore, value of (s, t)-mincut in
D reduces by exactly 2 – a contradiction. ◀

P Conditional lower bound for dual edge insertion

We show in the following lemma that reachability queries in G can be answered using the
dual edge insertion query for (s, t)-mincuts in D.

▶ Lemma 60. Let G be a directed graph. A vertex v is reachable from a vertex u in G if
and only if the value of (s, t)-mincut increases by 1 on insertion of edges {(s, v), (u, t)} in D
which is obtained from G using Lemma 37.

Proof. Suppose there is a path from u to v in G. For each (s, t)-cut that keeps u on the side
of s, its capacity increases by 1 upon the insertion of edge (u, t). Therefore, after the insertion
of edge (u, t) each (s, t)-mincut must keep u on side of t. Since (s, t)-mincuts appears as a
1-transversal cut of D (Lemma 59), it implies that each (s, t)-mincut of D keeps the set of
vertices reachable from u in D on side of t. The following fact is immediate from Fact F.1.

▶ Fact P.1. Value of (s, t)-mincut in a directed graph increases by 1 upon insertion of an
edge if and only if the edge contributes to each (s, t)-mincut in the graph.

Baswana, Bhanja, Pandey 52:35

We have v ∈ R({u}) from the premise and Lemma 37. Therefore, after insertion of edge
(u, t), insertion of edge (s, v) increases the value of (s, t)-mincut in D by 1 using Fact P.1.

Suppose v is not reachable from u in G. Let us consider the set R({u}) ∪ T in D. The
set C = R({u}) ∪ T defines a 1-transversal cut. Hence C is a (s, t)-mincut of D as stated in
Lemma 59. Since v /∈ R({u}), therefore insertion of edges {(s, v), (u, t)} does not increase
the capacity of (s, t)-cut C. As a result value of (s, t)-mincut in D remains unchanged by
the insertion of edges {(s, v), (u, t)}. ◀

Lemma 60 completes the proof of Theorem 39.

Q Generalized Flow Tree for 2× 2 mincuts

We shall show in the following lemma how to transform a reachability query to the following
query in G – Given any pair of vertices x, y in G, does there exists a (s, t)-mincut C in G

such that a vertex x ∈ C and a vertex y ∈ C?

▶ Lemma 61. Suppose u and v are two vertices of a directed graph G. A vertex v is reachable
from u in G if and only if each (s, t)-cut C in D (obtained from G using Lemma 37) with
v ∈ C and u ∈ C has capacity greater than the capacity of (s, t)-mincut.

Proof. Assume to the contrary that v has a path from u in G but there is a (s, t)-mincut
C in D such that v ∈ C and u ∈ C. It follows from Lemma 37 that path P exists in D.
Therefore, the edge-set of the (s, t)-mincut C intersects the path ⟨s, . . . , u, v⟩ (from Fact O.1)
more than once in D. So, C is not a 1-transversal cut in D – contradiction from Lemma 59.

Again we assume to the contrary that suppose each (s, t)-cut C in D with v ∈ C and
u ∈ C has capacity greater than the capacity of (s, t)-mincut but vertex v is not reachable
from u in G. Let us look at the set of vertices R({u}) that are reachable from u in D. The
set C ′ = R({u}) ∪ t defines a 1-transversal cut in D and hence it follows from Lemma 59 that
C ′ is a (s, t)-mincut in D. Since v is not reachable from u, therefore v /∈ R({u}). Therefore,
for (s, t)-mincut C ′, u ∈ C ′ and v ∈ C ′ – a contradiction. ◀

Using Conjecture 4 and Lemma 61 we state the following conditional lower bound.

▶ Theorem 62. Assuming Directed Reachability Hypothesis holds, any data structure that
can determine whether there is a (s, t)-mincut in G that keeps u on side of s and v on side
of t, for a given pair of vertices {u, v} and a designated source vertex s and a designated sink
vertex t, in a directed multi-graph on n vertices must either use Ω̃(n2) space, or linear query
time.

R Conditional lower bound on determining the existence of a (λ + 1)
(s, t)-cut

Let G be a directed multi-graph on n vertices and m edges with a designated source vertex s

and a designated sink vertex t. We first construct the DAG structure Dλ from G that stores
all (s, t)-mincuts of G.
Construction of D1: The graph D1 is obtained by modifying Dλ as follows. We add one
dummy source s′ and connect using λ− 1 directed edges from s′ to S. Similarly we add a
dummy sink t′ and connect using λ− 1 directed edges from T to t′. Observe that {s′} and
complement of {t′} are only two (s′, t′)-mincut of D1.

ICALP 2022

52:36 Minimum+1 (s,t)-cuts and dual edge sensitivity oracle

▶ Lemma 63. A (s, t)-cut C in Dλ is a (s, t)-mincut in G if and only if C ∪ {s′} is a
minimum+1 (s′, t′)-cut in D1.

Proof. Let us consider a (s, t)-mincut C of Dλ. Evidently from construction of D1, {S, s′} ∈
C ∪ s′ and {T, t′} ∈ C ∪ {s′}. Therefore the addition of edges from s′ to S does not increase
the capacity of C ∪ {s′}. Similarly addition of edges from T to t′ also does not increase the
capacity of C ∪ {s′}. Since the (s′, t′)-mincut is λ− 1, therefore C ∪ {s′} is a minimum+1
(s′, t′)-cut.

Let C be a minimum+1 (s′, t′)-cut of D1, c(C) = λ. From the construction it is obvious
that both {S, s′} ∈ C and {T, t′} ∈ C. Therefore C \ {s′} defines a valid (s, t)-cut of Dλ.
Moreover, it follows from the construction of D1 that the capacity of C \ {s′} remains
unchanged. Hence C \ {s′} is a valid (s, t)-mincut of Dλ. ◀

The following corollary is immediate from Lemma 63.

▶ Corollary 64. For any given pair of vertices {u, v} in G, there is a (s, t)-mincut in G that
keeps u on side of s and v on side of t if and only if there is a minimum+1 (s′, t′)-cut in D1
that keeps u on side of s′ and v on side of t′.

Using Corollary 64 and Theorem 62, we state the following conditional lower bound.

▶ Theorem 65. For any directed multi-graph on n vertices with a designated source vertex s

and a designated sink vertex t, any data structure that can report , for a given pair of vertices
{u, v}, if there exists a (λ + 1) (s, t)-cut that keeps u on side of s and v on side of t occupies
Ω̃(n2) space, or takes linear query time unless reachability hypothesis is violated.

	1 Introduction
	1.1 New results and their overview
	1.2 Related work
	1.3 Organisation of the paper

	2 Preliminaries
	2.1 Quotient graph for a family of (s,t)-cuts

	3 A covering of all (s,t)-cuts of a special graph
	4 An alternate DAG structure storing all (s,t)-mincuts
	5 Structure of (+1) (s,t)-cuts
	5.1 Compact representation and characterization of (+1) (s,t)-cuts
	5.1.1 Extension to general graphs

	6 Compact data structures for reporting (+1) (s,t)-cuts
	7 Dual edge sensitivity oracle for (s,t)-mincuts
	7.1 Handling dual edge failures

	8 Conditional lower bound for dual edge sensitivity for (s,t)-mincuts
	A Proof of Lemma 10
	B Proof of Lemma 12
	C Proof of Lemma 17
	D Acyclicity of D
	E Proof of Lemma 20 : 1-transversality property of (s,t)-mincuts
	F Single edge sensitivity : O(n) space, O(1) time
	G Proof of Lemma 29 : Degenerate (+1) (s,t)-cuts
	H Proof of Lemma 30
	I Proof of Theorem 22 : (n)-transversality
	J Proof of uniqueness of nearest (+1) (s,t)-cut
	K Reporting a (+1) (s,t)-cut using N+1
	L A step towards dual edge sensitivity data structure with D
	L.1 Partial solution to dual edge failure
	L.2 Partial solution to dual edge insertion

	M Handling Dual edge insertions
	N Generalizing query Q
	O Proof of Lemma 38
	P Conditional lower bound for dual edge insertion
	Q Generalized Flow Tree for 22 mincuts
	R Conditional lower bound on determining the existence of a (+1) (s,t)-cut

