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Abstract

Spanner of an undirected graph G = (V, E) is a subgraph which is sparse and yet preserves

all-pairs distances approximately. More formally, a spanner with stretch t ∈ N is a subgraph

(V, ES), ES ⊆ E such that the distance between any two vertices in the subgraph is at most

t times their distance in G. Though G is trivially a t-spanner of itself, the research as well as

applications of spanners invariably deal with a t-spanner which has as small number of edges as

possible.

We present fully dynamic algorithms for maintaining spanners in centralized as well as syn-

chronized distributed environments. These algorithms are designed for undirected unweighted

graphs and use randomization in a crucial manner.

Our algorithms significantly improve the existing fully dynamic algorithms for graph span-

ners. The expected size (number of edges) of a t-spanner maintained at each stage by our

algorithms matches, up to a poly-logarithmic factor, the worst case optimal size of a t-spanner.

The expected amortized time (or messages communicated in distributed environment) to process

a single insertion/deletion of an edge by our algorithms is close to optimal.
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1 Introduction

There are numerous well known algorithmic graph problems which aim at computing a subgraph of
a given graph with certain properties. These properties are usually defined by some function which
one tries to optimize for the given graph. For example, the objective of the minimum spanning tree
problem is to compute a connected subgraph having the least total weight. The objective of the
single source shortest paths problem is to compute a rooted tree which stores the shortest paths
from a given source vertex to all the vertices in the graph. In this paper, we consider one such well
known subgraph called spanner, and design its efficient dynamic algorithms. Let G = (V, E) be an
undirected graph with nonnegative weights on edges and t ≥ 1 be any integer. A t-spanner of the
graph G = (V, E) is a subgraph H = (V, ES) such that for all vertices u, v ∈ V ,

δG(u, v) ≤ δH(u, v) ≤ tδG(u, v) (1)

where δG is the distance in graph G. Though G is trivially a t-spanner of itself, we are invariably
interested in a t-spanner which has the smallest number of edges. So a spanner can also be viewed
as a subgraph which is sparse and yet preserves the all-pairs distance information of the given graph
approximately. The parameter t associated with a t-spanner is called the stretch of the spanner. The
number of edges in the spanner is called the size of the spanner.

In addition to being beautiful mathematical objects, spanners are useful in various domains of
computer science. They are the basis of space-efficient routing tables that guarantee nearly shortest
routes [1, 16, 17, 38, 47, 41], schemes for simulating synchronized protocols in unsynchronized net-
works [38]. Spanners are also used in parallel and distributed algorithms for computing approximate
shortest paths [13, 21]. A recent application of spanners is the construction of labeling schemes and
distance oracles [8, 5, 42, 47], which are the data structures that can report approximately accurate
distances in constant time.

Ever since the notion of spanner was defined formally by Peleg and Schaffer [37] in 1989, the
research area of spanner has witnessed many important results. Moreover, many new structures
similar to spanners have also evolved. One such structure is additive spanner. A subgraph H is said
to be additive b-spanner for graph G if δH(u, v) ≤ δG(u, v) + b. Note that a t-spanner as defined in
Equation 1 can thus be seen as a multiplicative t-spanner. For additive spanners, the reader is referred
to the work of Baswana et al. [6] and Woodruff [49]. Elkin and Peleg [27] introduced the notion
of (1 + ǫ, β) spanner which is a hybrid of multiplicative and additive spanner. Bollobás et al. [11]
introduced the notion of distance preserver. A subgraph is said to be a d-preserver if it preserves
exact distance for each pair of vertices which are separated by distance at least d. Coppersmith
and Elkin [14] study different notions of distance preservers. Thorup and Zwick [48] introduced
a variant of additive spanners where the additive error is sublinear in terms of the distance being
approximated. Though there are so many diverse applications of spanners and related structures,
each of them have a common algorithmic goal - to efficiently design or maintain the sparsest spanner
of a given additive and/or multiplicative stretch for a given graph. In this paper, we focus only on
multiplicative t-spanner. Henceforth we shall omit the word multiplicative while dealing with t-
spanner. We shall use n and m to denote the number of vertices and edges respectively of the given
undirected graph.

For computing a t-spanner, the algorithm of Althöfer et al. [2] is well known. This algorithm
is similar in spirit to the well known algorithm of Kruskal [35] for computing minimum spanning
tree. For any positive integer k, this algorithm [2] computes a (2k− 1)-spanner of O(n1+1/k) edges.
Based on a 48 year old girth conjecture of Erdős [28], this upper bound on the size of (2k − 1)-
spanner is worst-case optimal: there are graphs whose sparsest (2k − 1)-spanner and 2k-spanner
have Ω(n1+1/k) edges. However, the best known implementation of the algorithm of Althöfer [2]
has O(min(kn2+1/k, mn1+1/k)) running time [2, 44]. For the special case of unweighted graphs,
Halperin and Zwick [32] designed an O(m) time algorithm to compute a (2k − 1)-spanner with
O(n1+1/k) edges. For general graphs, Baswana and Sen [8] designed a randomized algorithm which
takes expected O(km) time to compute a (2k− 1)-spanner of O(kn1+1/k) size. This algorithm takes
a very simple and local approach. As a result, it has been adapted easily to design near optimal
algorithms for spanners in external memory, parallel, and distributed computational environments
as well [8]. The algorithm was later derandomized by Roditty et al. [42].
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In addition to the centralized algorithms mentioned above, many efficient distributed algorithms
have also been designed for computing spanner. These distributed algorithms are motivated by
various applications of spanners in distributed computing. The centralized algorithm of Baswana
and Sen [8] can be adapted easily in distributed environment to construct a (2k − 1)-spanner of
expected O(kn1+1/k) size in O(k) rounds and O(km) communication complexity. Derbel et al. [19]
designed a deterministic distributed algorithm with matching efficiency in synchronous environment.
Note that the size of the sparsest spanner computed by these algorithms is of the order of n log n
and it is achieved for stretch log n. For computing an O(n) size spanner with stretch log n, Dubhashi
et al. [20] and Pettie [40] independently designed algorithms which run in O(polylog n) rounds.

Though various efficient algorithms exist for computing spanners and related structures for a
given graph, these algorithms are not suitable for many real life graphs which are dynamic in their
nature. These graphs undergo updates which are insertion and deletion of edges. A naive way to
handle an update is to execute the best static algorithm for the given problem from scratch after
each update. Certainly this approach seems quite wasteful because the new solution might not be
much different from the previous one. This necessitates the design of a separate dynamic algorithm
for a graph problem in addition to its static counterpart. The aim of such a dynamic algorithm
is to maintain some efficient data structure such that the updates can be processed in time much
faster than the best known static algorithm. Many dynamic algorithms have been designed in the
past for various fundamental graph problems, namely, undirected connectivity [31, 33, 34], all-pairs
shortest paths [18], transitive closure [45, 43]. Following the terminologies of any other dynamic
graph problem, the problem of maintaining spanners in dynamic graphs can be stated formally as
follows.
Given an undirected graph G = (V, E) under any arbitrary sequence of updates - insertion and
deletion of edges, design an efficient algorithm to maintain a (2k − 1)-spanner of the graph in an
online fashion with the aim to preserve O(n1+1/k) bound on the size of the spanner.

The measure of efficiency of a dynamic algorithm is the time required (or messages communi-
cated in distributed environment) to update the spanner upon insertion or deletion of an edge. This
measure is commonly called the update time of the dynamic algorithm. Given the existence of a
linear time static algorithm to compute a (2k− 1)-spanner in centralized environment, an ideal goal
of a fully dynamic algorithm would be to achieve constant or poly-logarithmic update time per edge
insertion or deletion. Similarly an ideal goal of a fully dynamic algorithm in distributed environment
would be to achieve constant communication complexity per edge insertion or deletion. Naturally,
such a goal may look too ambitious, if not counter-intuitive, as there is no apparent way to argue
that a single update in the graph will lead to a small change in the spanner. For example, upon
deletion of an edge in the spanner, it is not obvious that we need to add just a few edges of the graph
to the spanner to preserve its stretch, leave aside the issue of finding those edges efficiently. However,
defying all these impressions, this paper presents fully dynamic algorithms for graph spanners with
extremely small update time (or message complexity in distributed environment).

Remark 1.1: The best known dynamic algorithms for various fundamental problems [10, 18,
31, 33, 34, 43, 45] achieve a bound only on the expected and/or amortized time complexity per
update. The time complexity bounds guaranteed by our fully dynamic algorithms are also expected
amortized instead of worst case.

1.1 Prior work and our contributions

1.1.1 Centralized Algorithms

Ausiello et al. [3] are the first to design fully dynamic algorithms for graph spanners. They present
a fully dynamic deterministic algorithm for maintaining spanners with stretch at most 5 only, and
the update time guaranteed is O(n). Their algorithm does not seem extensible to arbitrary stretch.

In the recent past, a couple of partially dynamic algorithms have also been designed for graph
spanners. Incremental (similarly decremental) algorithm for graph spanner is for those applications
which involve only insertion (only deletion) of edges. Feigenbaum et al. [30] are the first to design an
incremental algorithm for (2k − 1)-spanner which takes O(k2n1/(k−1) log n) time per edge insertion
and maintain spanners with nearly optimal size. Baswana [4] and Elkin [24, 25] independently de-

3



signed incremental algorithms which guarantee (kn1+1/k) bound on the expected size of the spanner
and achieve O(1) update time per insertion. However, the algorithm of Elkin [24, 25] is superior in
that it guarantees worst case O(1) time which is better than amortized O(1) time per edge insertion
guaranteed by Baswana [4].

Elkin [25] also designed an efficient fully dynamic algorithm for (2k−1)-spanners for any k. This
algorithm handles any edge insertion in O(1) time. However, for deletion of an edge, the algorithm
achieves O(1) time with probability 1 − n−1/k and O(m) time with probability n−1/k. Therefore,
the expected time per update guaranteed by the algorithm of Elkin [25] is O(m/n1/k). Due to this
reason, this algorithm is suitable only if the parameter k as well as the number of edge deletions is
very small. In particular, for arbitrary sequence of sufficiently large number of updates, algorithm
of Elkin [25] guarantees only O(m/n1/k) bound on the average time per update, which is not even
sublinear in n if the graph is dense.

We present two fully dynamic centralized algorithms which improve the update time to the extent
of near optimality. The update time of our first fully dynamic centralized algorithm is independent of
n, and depends only on the stretch of the spanner. In particular, the expected amortized update time
achieved for (2k − 1)-spanner is of the order of 7k/2 per edge insertion/deletion. Hence constant
stretch spanners can be maintained fully dynamically in O(1) expected amortized time per edge
update. Our second fully dynamic algorithm guarantees expected amortized O(k2 log2 n) update
time for maintaining a (2k− 1)-spanner. Note that k = O(log n) always, therefore, our second fully
dynamic algorithm achieves expected amortized O(polylog n) update time for all values of k.

The starting point for our dynamic algorithms is the static linear time algorithm of Baswana and
Sen [7]. Unlike its seamless adaptability in parallel, distributed and external memory environment,
it poses nontrivial challenges to adapt it in a dynamic environment. These challenges are due to the
hierarchical structure of the algorithm wherein there is a huge dependency of upper level structures
on lower level structures. For a dynamic scenario, such a huge dependency becomes a source of
enormous update cost. We investigate the source of these challenges. Using extra randomization
and new ideas, we design two fully dynamic algorithms for maintaining a (2k−1)-spanner. The reader
may please note that the ideas underlying the two algorithms are mutually disjoint, therefore, each
of them can be studied independently. Figure 1 provides a comparative description of the previously
existing dynamic algorithms for graph spanners and the new algorithms in centralized environment.

Fully Dynamic Algorithms

Stretch Size Update Time Notes

3 O(n3/2) O(n) Ausiello et al. [3]

5 O(n5/2) O(n) Ausiello et al. [3]

2k − 1 O(kn1+1/k) expect. O(mn−1/k) expect. Elkin [25]

2k − 1 O(k9n1+1/k log2 n) expect. O(7k/2) expect. amort. New (Algorithm-I)

2k − 1 O(kn1+1/k log n) expect. O(k2 log2 n) expect. amort. New (Algorithm-II)

Partially Dynamic Algorithms

Incremental Algorithms

Stretch Size Update Time Notes

2k − 1 O(kn1+1/(k−1)) expect. O(k2n1/(k−1) log n) Feigenbaum et al. [30]

2k − 1 O(kn1+1/k) expect. O(1) amort. Baswana [4]

2k − 1 O(kn1+1/k) expect. O(1) Elkin [25]

Decremental Algorithms

2k − 1 O(kn1+1/k) expect. O(k2 log n) expect. amort. New (Algorithm-II)

Figure 1: Current state-of-the-art dynamic algorithms for spanner in centralized environment.

Remark 1.2: The dynamic algorithms mentioned above are for undirected unweighted graph.
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However, they can be used for maintaining spanners for undirected weighted graphs also. Let wmax

and wmin be the weights of the heaviest and lightest edge respectively in the graph. For any ǫ > 0,
maintain a partition of the edges of the graph into log1+ǫ

wmax

wmin
subgraphs based on their weights.

For each subgraph, maintain a (2k − 1)-spanner ignoring the weights. The union of these spanners
will always be a (2k − 1)(1 + ǫ)-spanner for the graph. However, the update time and the size of
spanner thus maintained will increase by a factor of log1+ǫ

wmax

wmin
.

1.1.2 Distributed Algorithms

An algorithmic graph problem in the distributed model of computation is defined as follows. Each
vertex in the graph corresponds to a node hosting a processor and local memory, and each edge
corresponds to a bi-directional link along which messages can be sent. Each node is not aware of
the global picture of the distributed network, and communication of messages is the only mean of
sharing any information between two neighboring nodes. The computation in the distributed model
proceeds in rounds. In each round, a processor may send and receive messages to and from its
neighbors, and based on this information it performs some computation locally. A given algorithmic
graph problem is solved in a distributive manner - message communications and local computations
over a sequence of rounds. The standard measures of complexity for a distributed algorithm are the
number of messages communicated and the number of rounds taken to compute the solution of the
problem.

There are two models of distributed computation. The first model is synchronous model of
distributed computation. In this model, all the processors share a common clock so that transmission
(sending and receiving) of messages takes place at the same time on all processors. The time spent
in the local computation at a node in each round is assumed to be bounded by the duration of the
round. In another model, called asynchronous model, there is no global clock, and therefore the
transmission of messages takes place in an asynchronous manner.

Two well known measures of the performance of a distributed dynamic algorithm are quiescence
time and quiescence message complexity. Let all updates stop occurring in round α, and let β ≥ α
be the round in which the distributed structure maintained by the algorithm starts satisfying the
properties of the problem at hand. The worst-case difference β − α is called the quiescence time
complexity of the algorithm, and the worst-case number of messages that are sent in between rounds
β and α is called the quiescence message complexity of the algorithm.

Though the area of distributed algorithms in static environment is quite rich and vast, there are
no explicit dynamic distributed algorithms for majority of the problems. As observed by Elkin in his
seminal paper [23], most dynamic distributed algorithms are built by using simulation techniques
on top of a static distributed algorithm. Unfortunately these simulation techniques have numerous
drawbacks (see [23]). This necessitates the search for designing dynamic distributed algorithm
from scratch. Elkin [23] designed the first fully dynamic distributed algorithm for spanners in
synchronous as well as asynchronous environment. This algorithm is quite elegant and significantly
more efficient compared to the algorithm formed by combining the simulation technique and the
static algorithm of Baswana and Sen [8]. The quiescence time complexity of this algorithm [23] is
2k in synchronous environment and 3k in asynchronous environment. The algorithm of Elkin [23]
achieves even superior bounds on quiescence time for some interesting cases of partially dynamic
environments. In purely incremental environment, it takes just O(1) rounds to process insertion
of multiple edges simultaneously if the number of newly inserted edges incident on each vertex is
a constant. In the purely decremental environment, the algorithm [23] achieves expected 1 + o(1)
rounds of quiescence time if the number of edge deletions in a round is o(n1/k). Elkin [23] also showed
that for any constant k any distributed algorithm that maintains sparse spanner of near optimal
size must need quiescence time greater or equal to ⌊ 2k

3 ⌋. There is also a lower bound of Ω(m) on
quiescence message complexity for any dynamic algorithm. Note that this lower bound is derived
for the worst case when there are Θ(m) updates in the graph in a single round. The quiescence
message complexity of the fully dynamic algorithm of Elkin [23] is O(km). In this manner, quiescence
message complexity and quiescence time complexity of the fully dynamic distributed algorithm of
Elkin [23] are nearly optimal.

An important measure of complexity of dynamic distributed algorithm has to be the message
complexity per update. The message complexity per update achieved by the fully dynamic dis-
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tributed algorithm of Elkin [23] are the same as the time complexity per update achieved by the
centralized algorithm of Elkin [25]. Thus, the dynamic distributed algorithm of Elkin [23] achieves
expected O(mn−1/k) bound on message complexity per update, which is quite large. We present a
fully dynamic algorithm for (2k−1)-spanner in synchronous distributed environment which achieves
expected amortized O(7k) message complexity per update (see Figure 2). It can be observed that
the improvement in message complexity per update is really drastic, especially for small value of
k. Moreover, the quiescence time complexity of our algorithm is k. In our algorithm, at most one
message of size O(log n) bits is communicated by a vertex along an edge during a round. Hence, the
quiescence message complexity of our algorithm is O(km).

Quiescence Time Quiescence Message Message Complexity

Expected Size Complexity Complexity per update Model Notes

O(kn1+1/k) 2k O(km) O(mn−1/k) expect. Synchronous Elkin [23]

O(kn1+1/k) 3k O(km) O(mn−1/k) expect. Asynchronous Elkin [23]

O(k9n1+1/k log2 n) k O(km) O(7k) expect. amort. Synchronous New

Figure 2: Current state-of-the-art fully dynamic distributed algorithms for (2k − 1)-spanner.

Organization of the paper. In the following section, we describe concepts and notations used in
this paper. We also describe the notion of clustering which is the fundamental concept underlying
both the algorithms. In section 3, we sketch the challenges in extending the optimal static algorithm
of Baswana and Sen [8] to dynamic scenarios, and provide an overview of the approaches taken by
our dynamic algorithms. In sections 4 and 5, we describe our two centralized algorithms separately.
The fully dynamic distributed algorithm is described in section 6. In section 7, we describe improved
fully dynamic centralized algorithms for APASP problem.

All the algorithms designed in this paper are randomized. We assume that the adversary who
generates the updates in the graph is oblivious of the random bits used by the algorithm. For clarity
of exposition, we have not tried to optimize the value of the leading coefficients as functions of k in
our bounds (Theorems 4.2, 4.4, 4.5).

2 Concepts and notations

Throughout this paper, we deal with graphs which are undirected and unweighted. We assume that
the vertices are numbered from 1 to n. The objective of building or maintaining a (2k− 1)-spanner
can be achieved by ensuring the following, somewhat local, proposition for each edge (x, y) ∈ E.

P2k−1(x, y) : the vertices x and y are connected in the spanner by a path consisting of at most
(2k − 1) edges.

In order to maintain a (2k − 1)-spanner in dynamic environment, our algorithms will ensure that
P2k−1 holds at each stage for each edge currently present in the graph. An important ingredient of
our algorithms is a suitable grouping of vertices, called clustering, which is defined as follows.

Definition 2.1 [8] a cluster is a subset of vertices. A clustering C, is a union of disjoint clusters.
Each cluster will have a unique vertex which will be called its center. A clustering can be represented
by an array C[1..n] such that C[v] for any v ∈ V is the center of the cluster to which v belongs, and
C[v] = 0 if v is unclustered (does not belong to any cluster).

A vertex u is said to be present in a clustering C, if there is some cluster c ∈ C such that u ∈ c.
For each clustering C we design, we shall always associate a spanning forest F ⊆ E such that each
cluster c ∈ C corresponds to a tree in this forest. Radius of a clustering is the smallest integer r
such that the distance from center of a cluster to any vertex of the same cluster in the forest F is at
most r. See Figure 3 for better understanding of these terminologies associated with a clustering.

The following notations will be used throughout this paper. In order to achieve a better under-
standing of the two dynamic algorithms, the reader is advised to get familiarized with these notations
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v15 v16
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(i) (ii)

Figure 3: For the graph shown in Figure (i), a clustering consisting of three clusters of radius 1,
centered at v2, v5, and v11 are shown in Figure (ii). Note that v6 is unclustered (does not belong to
the clustering). The thick edges constitute the spanning forest associated with the clustering.

before proceeding further. In these notations, C corresponds to a clustering, E′ ⊆ E, X ⊂ V , c is
any cluster of C, u is any vertex not belonging to cluster c, and R is any subset of clusters from C.

• E′(u, c) : the set of edges from E′ which are between u and vertices of cluster c. The cluster
c is said to be adjacent or neighboring to u if E′(u, c) 6= ∅.
• E′(c, c′) : the set of edges from E′ with one endpoint in cluster c and another endpoint in

cluster c′. The cluster c is said to be adjacent or neighboring to cluster c′ if E′(c, c′) 6= ∅.
• E′(C, C) : {(u, v) ∈ E′| u and v belong to different clusters in C}.
• E′(R) : the set of edges from E′ with at least one endpoint in some cluster c ∈ R.

• δ(u, X) : min{δ(u, v) | v ∈ X}.
The challenge in building and maintaining a spanner is to keep its size as well as stretch small

simultaneously. The idea of clustering helps in meeting this challenge as suggested by the following
observation which underlies many static algorithms for computing spanners. The credit of this
observation goes to Halperin and Zwick [32], and Peleg and Schaffer [37].

Observation 2.1 For a graph (V, E), let C be a clustering of radius i for vertices V , and let F ⊆ E
be its spanning forest.

1. Let ES be the set of edges formed by selecting one edge from E(v, c) for each vertex v and its
neighboring cluster c ∈ C. Then the subgraph ES ∪ F ensures that P2i+1 holds for each edge
in E (see Figure 4).

2. Let ES be the set of edges formed by selecting one edge from E(c, c′) for each pair of neighboring
clusters c, c′ ∈ C. Then the subgraph ES ∪ F ensures that P4i+1 holds for each edge in E.

c

v

x

≤ i edges

Figure 4: vertex v and a cluster c neighboring to it; adding a single edge (v, x) from E(v, c) ensures
P2i+1 for each edge in the set E(u, c).

In order to design a static algorithm for (2k − 1)-spanner, Baswana and Sen [8] used the above
observation and a hierarchy of clusterings. This hierarchy will play an important role in our fully
dynamic algorithms as well, so we describe it in the following section.
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2.1 A Hierarchy of Subgraphs and Clusterings

Given a graph G = (V, E), consider a hierarchy Hk of subsets of vertices defined as follows.

Definition 2.2 Given a graph G = (V, E), Hk denotes a hierarchy of k + 1 subsets of vertices
{S0, S1, . . . , Sk} formed by random sampling as follows. S0 is the same as V , whereas Sk is ∅. For
0 < i < k, the set Si is formed by selecting each vertex from Si−1 independently with probability
n−1/k.

We can use Hk to define k + 1 levels of subgraphs and clusterings as follows. Level i will have a
subgraph Gi = (Vi, Ei), and a clustering Ci which partitions Vi into clusters each centered at some
vertex of set Si ∈ Hk. The entire hierarchy of subgraphs and clusterings is built in a bottom-up
fashion. In order to describe it, we introduce a terminology here. A cluster c ∈ Ci is said to be a
sampled cluster at level i if its center belongs to Si+1 as well. Let Ri be the set of sampled clusters
in clustering Ci.

For level 0, the subgraph G0 is (V, E), the clustering C0 is {{v}|v ∈ V }. Graph Gk is defined as
an empty graph - Vk = ∅ = Ek, and so is the clustering Ck. The clustering and subgraph at level
i+1, 0 ≤ i < k−1, are defined by subgraph Gi, clustering Ci and the sampled clusters Ri as follows.

1. Vi+1 is the set of those vertices from Vi which either belong to or are adjacent to some cluster
from set Ri in subgraph Gi.

2. The clustering Ci+1 is defined as follows. Let Ni be the set of vertices at level i which do
not belong to any cluster from Ri, but are neighboring to one or more clusters from the set
Ri. Ci+1 is first initialized to Ri. Then each vertex v ∈ Ni concurrently joins (hooks on)
to a neighboring cluster, say c ∈ Ri through some edge from Ei(v, c), which will be called
hook(v, i) henceforth. This defines Ci+1. Essentially, each cluster of Ci+1 can be viewed as a
cluster from Ri with some additional layer of neighboring vertices from Vi. See Figure 5 for a
visual description of this process.

3. The set Ei+1 is defined as Ei(Ci+1, Ci+1).

Level i

Level i + 1

u

u

v

v

w

w
xhook(u, i)

Figure 5: Formation of clusters at level i+1. The shaded clusters at level i are the sampled clusters.
Vertex u is present at level i + 1 as well since it is neighboring to a sampled cluster, whereas vertex
x is not present at level i + 1.

The spanning forest Fi+1 for clustering Ci+1 is the union of the set of hooks selected during step
2 above and the spanning forest Fi confined to Ri. That is, Fi+1 = Fi(Ri)

⋃{hook(v, i)|v ∈ Ni}.
It follows from step 1 and 3 above that Vi+1 ⊆ Vi, Ei+1 ⊆ Ei, and hence Gi+1 is subgraph of Gi

for all i < k. We shall use Ck to denote the hierarchy of clusterings Ci, 0 ≤ i ≤ k as described above.
This hierarchy has the following important property which can be proved easily by induction on i.

Lemma 2.1 Ci with forest Fi is a clustering of Vi with radius i.
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Let F = ∪iFi. Now along the lines of Observation 2.1 (part 1), let us form a subset ES ⊆ E which
contains the edges implied by the following rule:

Each vertex v ∈ Vi\Vi+1 adds one edge from Ei(v, c) to ES for each neighboring cluster c ∈ Ci.

Lemma 2.2 The subgraph (V, F ∪ ES) constructed as described above is a (2k − 1)-spanner.

Proof: Consider any edge (u, v) ∈ E which is not present in F ∪ ES . Let i < k be the level such
that edge (u, v) is present in Ej , ∀j ≤ i, but is absent from Ei+1. Such a unique i must exist since
(u, v) ∈ E0, Ek = ∅, and Ej+1 ⊆ Ej , ∀0 ≤ j < k. It can be seen that the only reason (u, v) is not
present in Ei+1 is that either u and v both belong to the same cluster in Ci+1 or at least one of
them is not present in Vi+1. In the former case, it follows from Lemma 2.1 that there is a path of
length 2(i + 1) between u and v in F . For the latter case, let us assume without loss of generality
that v /∈ Vi+1. Let c ∈ Ci be the cluster containing u. It follows that c is neighboring to v at level
i. So the rule mentioned above implies that v will add an edge, say (v, w), from Ei(v, c) to ES . The
vertices u and w belong to the same cluster, so it follows from Lemma 2.1 that there is a path of
length 2i between u and w in F . This path concatenated with the edge (v, w) ∈ ES is a path of
length 2i + 1 between u and v in F ∪ ES . Hence P2i+1 holds for the edge (u, v) in the subgraph
(V, F ∪ES). Since i < k, we can conclude that (V, F ∪ ES) is a (2k − 1)-spanner. •

The hierarchy Ck of clusterings forms the back bone of the static algorithms [8, 9], and will be
the starting point for our dynamic algorithms as well. Therefore, for better understanding of the
dynamic algorithms, we provide a brief intuition as to why such a hierarchy of clusterings is a very
natural way to compute and maintain a (2k − 1)-spanner. An important outcome of this will be
the two invariants whose maintenance in a dynamic environment will ensure a (2k − 1)-spanner of
nearly optimal size.

Firstly, as follows from Observation 2.1, the very idea of clustering is aimed at achieving sparse-
ness for the spanner. However, we need to achieve precisely O(kn1+1/k) bound on the size and a
bound of 2k − 1 on the stretch of the spanner. The hierarchy Ck achieves these two tasks simulta-
neously in the following manner. Consider any clustering Ci, i < k from this hierarchy. Let v be
a vertex which belongs to Vi. If we add one edge from Ei(v, c) for each cluster c ∈ Ci neighboring
to v, it can be seen that the proposition P2k−1 gets ensured for all edges from Ei(v, c). However,
the problem in this naive approach is that this would lead to a large size spanner if v has too many
neighboring clusters in Ci. To overcome this problem, the random sampling of clusters plays a
crucial role - if v has large number of clusters neighboring to it from Ci, then at least one of them
must be sampled as well. So v just joins one such sampled cluster at the next level and contributes
only one edge to the spanner (in particular, to Fi+1). In this way the vertex v continues becoming
a member of clustering at higher levels as long as it has many neighboring clusters. Eventually,
it will reach a level where it has a few, i.e. O(n1/k), neighboring clusters so that it can afford to
add one edge per neighboring cluster. This event is bound to happen at some level ≤ k − 1 since
at level k − 1 there are expected O(n1/k) clusters and none of them is sampled. Using elementary
probability, it follows that the expected size of the spanner would be O(kn1+1/k). However, using a
more sophisticated analysis, Pettie [39] recently showed that the size would be O(kn+n1+1/k log k).

From the above insight into the hierarchical clusterings Ck, we can infer the following key obser-
vation which holds at each level i. The vertices belonging to sampled clusters at level i do not do
any processing; they move to level i+1 directly. However, each v ∈ Vi not belonging to any sampled
clusters at level i maintains exactly one of the following two invariants.

• clustering-invariant - If v is neighboring to one or more sampled cluster at level i, then it
hooks onto one of them and is present in the clustering at level i + 1.

• spanner-edge-invariant - If v is not neighboring to any sampled cluster at level i, then it
adds one edge from Ei(v, c) to the spanner for each c ∈ Ci neighboring to it. v will be absent
from level i + 1 onwards in this case.

The resulting (2k−1)-spanner consists of precisely those edges which get added as a consequence
of the two invariants mentioned above. Also note that, at the level k − 1, vertices maintain only
spanner-edge-invariant since kth level is just empty.
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In the dynamic environment, maintaining the hierarchy of clusterings Ck and the two invariants
mentioned above will directly imply a (2k − 1)-spanner of expected O(kn1+1/k) size at any stage.
As will become clear from the following section, this objective, though simple to state, is quite
challenging. First we describe the data structure kept by our algorithms in dynamic environment in
the following subsection.

2.2 Data structure

For a level i of the hierarchy, let Ci be the clustering and Ei be the edges, and u be a vertex
belonging to a cluster centered at w. There may be many clusters neighboring to u at level i as
shown in Figure 6 (i). We now give a description of the global data structure stored at level i, and
the local data structure stored at the vertex u.

Level i
u

u

v

v

vvv v
v

w

w w
w

x

x

x

y

y

y

z

z

z

hi(u)

Ci

(i)

(ii)

Ei(u)

3

Figure 6: (i)vertex u and its neighbors in clustering at level i, (ii) Data structure Di(u).

As a global data structure at level i in the hierarchy, we keep array Ci[ ] for storing the clustering
at level i. See Figure 6 (i). In addition, we also keep an array M [ ] to store the sampling status of each
vertex in the hierarchy Hk. For a vertex w, M [w] = j would imply that for all i ≤ j, w ∈ Si. Each
vertex u at level i keeps a data structure Di(u) locally which consists of the following components
(see Figure 6 (ii)).

1. a dynamic hash table hi(u):
Each vertex u keeps a dynamic hash table hi(u) for storing the centers of all clusters in Ci

neighboring to it. In addition, it stores the number of the edges with which the cluster is adja-
cent to u. Note that the existing dynamic hash tables, say by Pagh and Rodler [36], guarantee
worst case O(1) search time, and expected amortized O(1) time per insertion/deletion.

2. a linked list for Ei(u):
Vertex u keeps the edges Ei(u) arranged in a doubly linked list in such a way that, for each
neighboring c ∈ Ci, the edges Ei(u, c) will appear as a contiguous sublist in Ei(u). We shall
also keep pointers from the entry of c in the hash table hi(u) to the beginning and end of
this sublist storing Ei(u, c). Any insertion to Ei(u, c) will be made at the end of this sublist.
We shall also maintain a dynamic hash table storing neighbors of u at level i. The entry in
this hash table for a neighbor, say v, will point to the edge (u, v) in the list Ei(u). This will
facilitate removal or insertion of any edge from Ei(u) in O(1) time.
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3. spanner-label for every edge:
For each edge (u, v) present in the graph, we maintain a spanner-label which would determine
whether the edge is in the spanner currently. This label will be an integer variable such that
(u, v) is in the spanner if the value stored in the variable is positive. This label gets updated
by u and v as follows. While maintaining any of its invariants at some level i, if u decides to
add the edge (u, v) to the spanner, it increments the spanner-label of (u, v), and whenever it
decides to delete the edge from spanner, it decrements the spanner-label of (u, v).

The data structrue described above will prove to be very helpful in handling updates. Our fully
dynamic algorithms will employ a subroutine Restore-span-edge-invariant(u, c, i). This subrou-
tine will be invoked in the following scenario. Consider a vertex u which is maintaining spanner-

edge-invariant at level i. Suppose some edge incident on u from some cluster c ∈ Ci gets deleted
(or inserted). This may lead to violation of spanner-edge-invariant for u at level i. However,
using the data structure Di(u) described above, procedure Restore-span-edge-invariant(u, c, i)
restores it in O(1) time as follows. If c ceases to be neighboring to u due to the edge deletion,
it removes c from the hash table hi(u). Otherwise, using hash table hi(u), it accesses the sublist
Ei(u, c) and increments the spanner-label of the first edge in this sublist.

3 The Challenges in Maintaining Spanner Dynamically

For maintaining a (2k − 1)-spanner, let us explore the hurdles in maintaining the hierarchy Ck of
clustering and the two invariants mentioned above.

Consider any edge update, say deletion of an edge (u, v). The updates have to be processed
starting from level 0, and have to be passed to higher levels due to the dependency of upper level
objects (subgraphs and clustering) on the lower level objects of the hierarchy. It follows from the
hierarchy of clusterings that Ei+1(u) ⊆ Ei(u) for all i < k and u ∈ V . Therefore, for each edge
(u, v), there exists an integer i such that it is present in Ej for all j ≤ i, and absent in Eℓ for all
ℓ > i. So when the edge (u, v) is deleted, we remove it from all levels j < i. Let us consider the
processing required at level i. If the edge is not included in the spanner, then we just delete it from
Ei as well and stop. Let us consider the situation in which the edge is included in the spanner at this
level. Recall that it must have been included in the spanner because of one of the two invariants.

If the edge (u, v) was included in the spanner due to spanner-edge-invariant, it must be that
i is the last level for u or v. Without loss of generality let i be the last level for u and let v belongs
to cluster c at level i. In this case, vertex u executes Restore-span-edge-invariant(u, c, i) which
will take O(1) time using Di(u).

If the edge (u, v) was included in the spanner due to clustering-invariant, it must be serving
as a hook for one of its endpoints to join the clustering at next level. Without loss of generality, let
us assume that (u, v) was hook(u, i), and u belonged to cluster c at level i+ 1. In this case, deletion
of (u, v) is a very costly update as follows. If u has no sampled neighboring cluster at level i now,
then u can’t be present at level i + 1 and so will have to settle at level i only. As a consequence, we
shall have to delete all the edges incident on u at level i + 1, and restore spanner-edge-invariant

for each edge from Ei(u) at level i itself. Let us consider the other, more generic, case wherein u still
has some sampled neighboring clusters at level i. In this case u must join one such cluster, say c′, at
the next level in order to maintain clustering-invariant. So deletion of (u, v) leads to moving u
from cluster c to c′ at level i+1. Consider any neighbor of u at level i which is present at level i+1
too. This vertex will perceive this change as deletion of an edge incident from c and insertion of
an edge incident from c′. See Figure 7. Each such vertex has to process these updates individually
for maintaining clustering-invariant or spanner-edge invariant at level i + 1. Thus a single
edge deletion at level i may lead to Θ(|Ei(u)|) updates at level i + 1. In a similar fashion, a single
edge insertion at level i may force Θ(|Ei(u)) updates at level i + 1.

Therefore, it is obvious that a single edge insertion/deletion may cost Ω(n) computational work
for maintaining (2k − 1)-spanner if we have the naive dynamic version of the static algorithm [8].

In short, the main problem in dynamizing the static algorithm is that the updates at a level
which lead to change in clustering at the next level are very expensive. To overcome this hurdle,
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Figure 7: Upon deletion of hook(u, i) = (u, v), u might leave its old cluster c at level i + 1 and join
cluster c′. For each neighbor x of u at level i + 1, it is as if a new edge (shown solid) incident from
c′ has been inserted and an edge (shown dotted) incident from c has been deleted.

our two algorithms take completely different approaches and use randomization in a powerful way.

Algorithm I. Our First fully dynamic algorithm maintains a hierarchy of clusterings and sub-
graph similar to that of the static algorithm [8]. However, it ensures that the probability of any
edge update at level i to change clustering at level i + 1 is very small. To achieve this objective,
the algorithm strives to maintain the following property at every stage. For any edge (u, v) at level
i, the probability that “hook(u, i) = (u, v)” is bounded by O(1/|Ei(u)|). This property turns out
to be quite easy to maintain for 3-spanner. However, its extension to (2k − 1)-spanner requires a
couple of novel ideas. This property has the following important consequence. While processing an
update at level i, the expected amortized number of updates generated for level i + 1 is bounded
by a constant. The value of this constant turns out to be close to 7. This leads to an O(7k)
update time algorithm with a careful analysis. The update time is later improved to O(7k/2) by
reducing the levels of the clustering to k/2 and using part (ii) of Observation 2.1 at the top most level.

Algorithm II. One may note that the main source of the costly update operations in the straight-
forward dynamization of the static algorithm is the following. There is a huge dependency of
objects (clustering, subgraphs) at a level on the objects at the previous level, so a single edge inser-
tion/deletion at level i can lead to a huge number of updates at level i + 1. In our second algorithm
we essentially try to get rid of this dependency. For this, we use a novel clustering such that there
is no dependency between clusterings present at any two different levels. As a result we need to
maintain clustering and spanner-edge invariant at each level in a way almost independent of
other levels. We first design a decremental algorithm for spanners using this new clustering. This
clustering uses extra randomization which helps in achieving the following result. For any arbitrary
sequence of edge deletions, a vertex will change its cluster at any level expected O(polylog n) times.
We then extend the decremental algorithm to fully dynamic environment at the expense of increas-
ing the expected update time and size by log n factor. The ideas used in extending the decremental
algorithm to fully dynamic environment are similar to those used by Henzinger and King [33] and
Holm et al. [34] in the context of fully dynamic connectivity.

A common point between the two algorithms is the following. Both of them maintain hierar-
chies of subgraphs, clusterings, and slightly modified clustering-invariant and spanner-edge-

invariant. However, the approach of first algorithm is totally local. Exploiting this feature and
a couple of new observations, we later adapt it in distributed environment as well. The second
algorithm uses a mixture of local and non-local approaches. In particular, the second algorithm
employs a BFS tree like structure for maintaining the new clustering; and this is the reason for its
non-local nature.
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4 Fully Dynamic Algorithm - I

A distinct feature of this algorithm is its vertex centric approach described below.

4.1 Vertex centric approach in processing updates

An update (insertion or deletion of an edge) in the graph will be processed in a bottom up fashion
from level 0 to k − 1 of the underlying hierarchy maintained by the algorithm. An update reaching
a level i > 0 will be of one of the following types.

1. insertion of an edge or deletion of an edge

2. change in clustering of a vertex

Each update of the above type is meant for two or more vertices as follows. Insertion (or deletion)
of an edge will require processing by both endpoints of the edge. A change in clustering of a vertex
would require processing by all its neighbors at that level. Our fully dynamic algorithm will follow
a vertex centric approach wherein each vertex receives updates solely meant for it and it processes
them to maintain its invariants at that level. We shall call these updates atomic updates. For
this purpose, we shall express the two types of macro updates mentioned above in terms of atomic
updates as follows.

• For the macro update which is deletion (or insertion) of edge (u, v), there will be one atomic
update for the deletion of (u, v) to be processed by u, and one atomic update for the deletion
of (u, v) to be processed by v.

• For the macro update which is change of cluster of a vertex u, say from c to c′ at level i,
there will be a single atomic update for u for changing Ci[u] from c to c′. This update will
take just O(1) time. In addition to this atomic update which is solely for u, there will be two
atomic updates for every neighbor of u at level i: deletion of a single edge incident from c and
insertion of a single edge from c′.

It follows that, from perspective of any vertex u, each atomic update will be an insertion or
deletion of an edge incident on it from some cluster at level i or a change of Ci[u]. The latter
atomic update takes O(1) time now. The concept of atomic updates simplifies the description of the
algorithm : all that we need is to describe the processing of each atomic update by the respective
vertex. Every vertex u will process an atomic update so as to restore its invariants. Interestingly, this
processing will be completely local and won’t affect any other vertex at this level. However, it might
generate update for some neighbors of u only at the next level. The atomic representation of the
updates helps in the analysis for the time complexity as well. It turns out that the time complexity
of processing an atomic update at a level will be of the order of updates that its processing would
generate for the next level. From now onwards, each update would implicitly mean an atomic update.
First as a warm up, we describe our fully dynamic algorithm for 3-spanner. Later we shall use some
novel ideas to extend it to fully dynamic algorithm for (2k − 1)-spanner for any positive integer k.

4.2 Fully dynamic algorithm for 3-spanner

The fully dynamic algorithm for 3-spanner is designed by adding slight randomization to the static
algorithm for 3-spanner. Recall from subsection 2.1 that the static algorithm for 3-spanner uses
the hierarchy H2 = {S0, S1, S2}, where S0 = V, S2 = ∅, and S1 is formed by selecting each vertex
independently with probability 1/

√
n. Let R(u) be the set of vertices from S1 neighboring to u. The

algorithm computes two levels of subgraphs and clusterings as follows.

• Level 0 consists of original graph and clustering {{u}|u ∈ V }. Each vertex u ∈ V \S1 does the
following. If R(u) 6= ∅ then u hooks onto some vertex x ∈ R(u) (following the clustering-

invariant), and this defines clustering at level 1, otherwise it adds all its edges to spanner
(following the spanner-edge-invariant).

• At level 1, each vertex adds one edge per neighboring cluster to spanner (following the
spanner-edge-invariant).
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This completes the description of the static algorithm of 3-spanner. The fully dynamic algorithm
will also maintain two levels of subgraphs and clusterings. However, clustering at level 1 will be
slightly different from the static algorithm. Though it will consist of clusters centered at S1 but
the way the vertices of set V \S1 join clusters will employs randomization as follows. Each vertex
u ∈ V \S1 with |R(u)| ≥ 1 will maintain the following, somewhat restricted, clustering-invariant

throughout the sequence of edge updates:

∀v ∈ R(u) Pr[(u, v) = hook(u, 0)] =
1

|R(u)|

In other words, at any moment of time, u will belong to a cluster centered at a uniformly and
randomly selected vertex from R(u). An important consequence of the above invariant and the
randomization used in the construction of S1 is the following lemma.

Lemma 4.1 For a vertex u ∈ V \S1 with R(u) 6= ∅, any edge (u, v) is hook(u, 0) with probability
1

deg(u) .

The proof of the above lemma is based on the following observation from elementary probability.
Let there be a bag containing arbitrary number of balls. Consider a two level sampling to select
a winner ball from the bag - first select a sample of j balls uniformly randomly from the bag (for
some j ≥ 1), and then select one ball uniformly from the sampled balls and call it the winner. In
this two-level sampling experiment, each ball of the bag is equally likely to be the winner ball.

While processing the updates, the fully dynamic algorithm will maintain the spanner-edge-

invariant and the new, somewhat restricted, clustering-invariant mentioned above. Therefore,
the stretch of the spanner will still be 3, and the expected size of the 3-spanner will still remain
O(n3/2). We shall now describe how the dynamic algorithm handles the updates.

4.2.1 Handling deletion and insertion of edges

First observe that each vertex u ∈ V present at level 1 follows only spanner-edge-invariant

because there is no sampled cluster at level 1. Using data structure D1(u), it will take O(1) time
to process each update reaching level 1. Keeping this in mind, we need to focus on just the number
of updates reaching level 1 upon any edge insertion or deletion. We now describe the procedures to
handle any update.
Handling deletion of an edge. Suppose an edge (u, v) gets deleted. This will introduce two
updates at level 0, one each for u and v. Vertex u processes this update as follows (the vertex v
handles it in a similar fashion). There are the following two cases.

• Case 1: v ∈ S1

If vertex u also belongs to S1, then no invariant gets violated for u. Vertex u just deletes the
edge from D0(u). In this case a single update corresponding to deletion of (u, v) is passed onto
level 1. Let us consider the more interesting case when u is not a sampled vertex at level 0.
There are the following two cases here.

If hook(u, 0) = (u, v), then the deletion of (u, v) is quite catastrophic. If R(u) has become ∅,
then vertex u will have to maintain spanner-edge-invariant at level 0. This implies that u
will add all its edges to spanner and leave C1. However, if R(u) still has some vertices, then
vertex u will have to restore clustering-invariant at level 0, and so it selects some neighbor,
say z, from R(u) uniformly randomly and hooks onto it at level 1; thus u remains present in
C1 but changes its cluster. In each of these cases, one or two updates will be generated for
each neighbor of u at level 1. Thus a total of O(deg(u)) updates get generated for level 1.

If (u, v) 6= hook(u, 0), then deletion of (u, v) violates neither of the two invariants for u. In this
case, (u, v) is deleted from D0(u). Only a single update corresponding to deletion of (u, v) is
passed onto level 1.

• Case 2: v /∈ S1

u just deletes (u, v) from D0(u). If u is not present in C1, the edge (u, v) is deleted from
spanner as well. If u and v are present at level 1, the deletion of (u, v) is passed onto level 1.
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So handling deletion of an edge (u, v) by vertex u will require O(1) processing at levels 0 and 1
except when hook(u, 0) = (u, v); in which case it requires O(deg(u)) amount of processing. Applying
Lemma 4.1 just before deletion of (u, v), it follows that probability “(u, v) = hook(u, 0)” is 1/ deg(u).
Hence the expected amount of computation performed upon deletion of any edge (u, v) is of the order
of 1/ deg(u) ·O(deg(u)) + O(1) = O(1).
Handling insertion of an edge. Let (u, v) be the edge inserted. We describe the processing
done by u. There are the following two cases.

• Case 1: v ∈ S1

If vertex u was itself a sampled vertex at level 0, then no processing is required at level 0. The
insertion of edge (u, v) is passed onto level 1. Let us consider more interesting case when u
was not a sampled vertex at level 0.

If u was not neighboring to any sampled cluster at level 0, then it must have added all its
edges to the spanner. For this purpose, u would have incremented the spanner-label of each of
its edges. Insertion of (u, v) has made u neighboring to a sampled cluster {v}, so u decrements
the spanner-label of all its edges at level 0, makes hook(u, 0) = (u, v), and thus joins the cluster
centered at v in C1. All this will require O(deg(u)) amount of processing at level 0. If u was
neighboring to any sampled cluster at level 0, then in order to restore clustering-invariant

u does the following. With probability 1/|R(u)∪ {v}|, u selects (u, v) as hook(u, 0), leaves its
earlier cluster and joins the cluster centered at v in C1. In each of these cases, one or two
updates will be generated for each neighbor of u at level 1. Thus a total of O(deg(u)) updates
get generated for level 1.

• Case 2: v /∈ S1

u adds (u, v) to D0(u). If u is not present in C1, the edge (u, v) is added to the spanner and
no update is passed to level 1. However, if u and v are present at level 1, the insertion of (u, v)
is passed onto level 1.

So handling insertion of edge (u, v) by u will require O(1) processing at levels 0 and 1 except
when (u, v) becomes hook(u, 0); in which case it requires O(deg(u)) amount of processing. Applying
Lemma 4.1 just after insertion of (u, v), it follows that probability “(u, v) = hook(u, 0)” is 1/ deg(u).
Hence the expected amount of computation performed upon insertion of any edge (u, v) will be
1/ deg(u) ·O(deg(u)) + O(1) = O(1). We can thus conclude the following theorem.

Theorem 4.1 For an unweighted undirected graph on n vertices, a 3-spanner of expected size
O(n3/2) can be maintained fully dynamically with expected O(1) update time per edge insertion/deletion.

4.3 On generalizing the dynamic algorithm for arbitrary k

Inspired by the fully dynamic algorithm for 3-spanner, our fully dynamic algorithm for (2k − 1)-
spanner should aim to maintain the following property at any level i. For any edge (u, v) incident
on u at level i, probability that “hook(u, i) = (u, v)” is at most 1/|Ei(u)|. For the case of 3-spanner,
i = 1, and this property could be ensured by the random hooking edge principle. So, it is natural to
explore if the same principle alone would work for the fully dynamic algorithm for (2k− 1)-spanner.
A careful reader might have realized that this simple principle worked so well for 3-spanner due
to the following reasons. Firstly, there is uniformity in sampling the (singleton) clusters at level
0. Secondly, from perspective of u, there is a symmetry among all neighboring clusters at level 0,
that is, each of them is adjacent to u with the same number (just one) of edges. However, such
a symmetry can not be guaranteed at level i > 0. In order to realize how this asymmetry, i.e.
the skewed distribution of edges Ei(u) among neighboring clusters of u, causes a serious problem,
here is an example. Consider a level i where 0 < i < k − 1, and let u does not belong to any
sampled cluster at this level. Let there be ℓ = Θ(n1/k log n) clusters - c1, . . . , cℓ neighboring to u,
and let the edges Ei(u) are distributed among these clusters as follows. There is exactly one edge
between u and cj, ∀j < ℓ and all the remaining edges incident on u have their other endpoints in cℓ.
Potentially, ℓ ≪ |Ei(u)|. Now consider an edge (u, v) with v ∈ cj , j < ℓ. The probability that cℓ is
not sampled is 1 − n−1/k ≈ 1. So it can be seen that with high probability there will be O(log n)
edges incident on u from sampled clusters at level i. As a result, with high probability, u will hook
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onto some cluster cj , j < ℓ. So the random hooking edge principle would imply that the probability
that “hook(u, i) = (u, v)” is approximately 1/ℓ which is much larger than 1/|Ei(u)|.

We overcome the problem arising due to skewed distribution of Ei(u) by a novel idea of filtering
of edges. Interestingly, the reason this idea works has its roots in randomization too.

4.3.1 Key idea of filtering of edges

Let there be a coin which gives heads with probability p and tails otherwise. The following fact
is a folklore in probability theory. If there are large, i.e., Ω(1/p logn) numbers of coin tosses, then
with high probability, the number of heads will be concentrated around pth fraction of the total
number of tosses. We shall use the following reformulation of this fact. If the total number of tails

were large, i.e., Ω(1/p logn), then the number of heads is concentrated around pth fraction of the
total number of coin tosses.

Recall that each cluster at level i is sampled (corresponds to heads) with probability p = n−1/k.
We partition the set of unsampled (corresponds to tails) clusters neighboring to vertex u at level i
into buckets so that the clusters incident with nearly the same number of edges belong to the same
bucket. There will be total O(log n) buckets. Now consider a bucket consisting of clusters which
are incident on u with Θ(s) edges for some s. If the bucket has large (i.e., Ω(n1/k log n)) number
of clusters, then the above probability fact implies the following. Out of all those clusters incident
on u with Θ(s) edges at level i, with high probability, close to n−1/kth fraction would be sampled
ones. Now consider a bucket having few, i.e., ≪ n1/k log n clusters. For such a small bucket, we
can’t make such an inference with high probability. We take care of small buckets by filtering away
all their edges at level i itself: We won’t let any of the edges incident on u from the clusters of
small buckets move to level i + 1. Instead, vertex u will add one edge per neighboring clusters from
every small bucket to the spanner so that proposition P2k−1 holds for all the filtered edges at level i
itself. Using the facts that a small bucket has very few clusters and there are O(log n) buckets, this
strategy will lead to an increase in the size of the spanner by poly-logarithmic factors only. However,
this filtering will have the following useful consequences. Let Ei(u) be the set of remaining edges
from Ei(u) after filtering away the edges incident from clusters of small buckets. Firstly, observe
that in case of change in clustering of u at level i + 1, u will introduce O(|Ei(u)|) updates instead
of Θ(|Ei(u)|). Secondly, with high probability (1 − ǫ)n−1/kth fraction of Ei(u) edges are incident
on u from sampled clusters at level i. As a result, the random hooking edge principle ensures that
any edge (u, v) ∈ Ei(u) is hook(u, i) with probability O(1/|Ei(u)|). Hence a single edge update on u
at level i will lead to expected O(1) updates at level i + 1. Recall, that this is what we wished to
achieve for our fully dynamic algorithm.

In the following subsection, we describe the bucket data structure for classifying the neighboring
clusters of a vertex based on the number of edges incident on it. This data structure will help
in implementing the idea of filtering of edges. Though the concept of bucket structure is used to
achieve better update time, this structure has to be dynamic. Maintaining bucket structures at
a level produces additional updates for the next level. However, we present an analysis of these
dynamic buckets in subsection 4.7 and show that the amortized number of these updates is quite
small.

4.4 Bucket structure associated with a vertex

First we state a theorem from probability theory. This theorem will be used to show how the idea
of filtering of edges achieves an important goal (stated in Lemma 4.3) on the way to design our first
fully dynamic algorithm for graph spanners.

Theorem 4.2 Let o1, . . . , oℓ be ℓ positive numbers such that the ratio of the largest to the smallest
number is at most b for some b > 1, and X1, ..., Xℓ be ℓ independent random variables such that Xi

takes value oi with probability p and zero otherwise. Let X =
∑

i Xi, and µ = E[X ] =
∑

i oip, and
a > 1. There exists a constant γ such that if ℓ ≥ abγ lnn

ǫ4p for any ǫ > 0 then the following bound
holds.

Pr[X < (1− ǫ)µ] < O(n−a−1)
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The above mentioned theorem can be viewed as an extension of the Chernoff bound [12]. In fact
for the case, when o1 = o2 = · · · = oℓ = 1, this theorem is identical to the Chernoff bound [12]. The
proof of this theorem is provided in Appendix.

Consider a vertex u at level i. The edges Ei(u) incident on u at level i are of two types : the edges
which are incident from sampled clusters and the edges which are incident from unsampled clusters.
We describe a bucket data structure Bi(u) for storing edges incident on u from all the neighboring
unsampled clusters at level i. It consists of log 1

ǫ
n buckets, wherein jth bucket stores adjacency

information between u and all those neighboring unsampled clusters which have at least (1
ǫ )j−1 (the

Lower-limit of jth bucket) and at most (1
ǫ )j+1 − 1 (Upper-limit of jth bucket) edges onto u.

The bucket structure Bi(u) can be built easily in time of the order of O(|Ei(u)|). We shall call a
bucket active if there are ℓ ≥ aγn1/k lnn

ǫ6 clusters in it for some constant a, and inactive otherwise.

Remark 4.2: The bucket structure is vertex specific, so the active or inactive status of a cluster
is not a universal categorization of clusters at a level - a cluster can belong to active buckets of some
neighboring vertices and to inactive buckets of other neighboring vertices.

Let Ei(u) be the set of all those edges which are incident on u from a sampled cluster or a cluster
belonging to an active bucket at level i. The following lemma establishes a lower bound on the
number of edges incident on u from sampled clusters in terms of Ei(u).

Lemma 4.3 The number of edges incident on a vertex u from sampled clusters at level i is at least
(1− ǫ)n−1/k|Ei(u)| with probability at least 1− n−a.

Proof: Partition all the clusters neighboring to u at level i into O(log1/ǫ n) groups such that jth

group has all those clusters which are incident on u with edges in the range [(1
ǫ )j−1, (1

ǫ )j+1−1]. We
call a group big if it has at least aγn1/k ln n

ǫ6 clusters, and small otherwise. Consider any big group
and apply Theorem 4.2 with ot being the number of edges incident on u from tth cluster of the
group, b = 1/ǫ2, and the sampling probability p = n−1/k. It follows that with probability at least
1 − n−a−1, the number of edges incident on u from sampled clusters of a big group will be at least
(1− ǫ)n−1/k fraction of all the edges incident from (the clusters of) the group. Let Ebig

i (u) ⊂ Ei(u)
be the edges incident on u from all big groups. Since there are only O(log n) big groups, applying
union bound for each big group, it follows that with probability at least 1−n−a the number of edges
incident from sampled clusters of all big groups is at least (1− ǫ)n−1/k fraction of |Ebig

i (u)|.
Now let us explore the relationship between the set Ebig

i (u) and the set Ei(u). Consider any edge
from Ei(u) which is incident on u from an unsampled cluster at level i. We shall show that this
edge is definitely present in Ebig

i (u) as well. In addition, observe that all edges incident on u from
sampled clusters at level i are present in Ei(u). Thus if we consider the fraction of edges incident
from sampled clusters, this fraction may only be bigger in Ei(u) than Ebig

i (u) (see Figure 8). From
the above analysis, this will conclude the proof of this lemma.

Ebig
i (u)

Ei(u)

Edges incident on u from unsampled clusters

Edges incident on u from sampled clusters

Figure 8: The relationship between Ebig
i (u) and Ei(u)

Consider any edge (u, v) ∈ Ei(u) incident on u from some unsampled cluster, say c ∈ Ci, con-
taining v. Let c belong to jth bucket. It follows from the construction of Ei(u) that this bucket
must be an active bucket and so has at least aγn1/k ln n

ǫ6 unsampled clusters. Notice that jth group
has the same range as the jth bucket. The only distinction is that the latter stores only unsampled
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clusters. Therefore, all those clusters that belong to jth bucket are present in jth group. So the jth
group will be a big group and all its edges, and hence (u, v), will be present in Ebig

i (u) as well. •

A note on dynamic bucket structures.
The bucket structure will have its own overhead in dynamic scenario which will contribute to the
update time achieved by the fully dynamic algorithm. To realize this fact, consider bucket structure
associated with vertex u at level i. Note that the bucket structure assigns each unsampled cluster,
say c, neighboring to u to its respective bucket according to the size of set Ei(u, c). As vertices
change clusters at level i, and as the edges are being inserted or deleted at level i, the size of Ei(u, c)
keeps changing. As a result, c may have to hop from one bucket to another bucket (of possibly
different activation status). This may lead to change in activation status of all the edges of set
Ei(u, c). Furthermore, due to such movement of clusters neighboring to u, activation status of an
entire bucket may also change. This may lead to change in activation status of even larger number
of edges incident on u. In this manner a single edge deletion/insertion from/to Ei(u, c) may lead
to a huge number of updates in the set Ei(u). All these updates may have to be communicated to
level i + 1. Notice that the cause of these updates is only the maintenance of bucket structure at
level i. However, by selecting parameters of the bucket structure carefully, we shall show that the
amortized number of updates generated for level i+1 due to maintenance of the bucket structure will
be quite small. For this purpose, we shall exploit the fact that the ranges of two adjacent buckets
are overlapping. In addition, we shall use different thresholds for activation and deactivation of
buckets. These two measures will ensure that sufficiently large number of insertion or deletions will
be required into the bucket structure of a vertex before a huge number of edges incident on it change
their activation status. The entire analysis is similar in spirit to the analysis of dynamic tables [15].
However, in order to avoid distraction from our main problem at this point, we have deferred the
complete analysis to subsection 4.7. Here we just state the following theorem.

Theorem 4.3 In processing one edge update for maintaining the bucket structure Bi(u) at level
i, the amortized number of additional updates introduced at level i + 1 is at most 4 + 10ǫ for any
0 < ǫ ≤ 1

4 .

4.5 Hierarchies and additional invariants maintained for 2k − 1-spanner

The backbone of the fully dynamic algorithm for (2k−1)-spanner is a hierarchy of clusterings induced
by Hk. As we shall soon see, this hierarchy differs from that of Ck due to added randomization
incorporated in the clustering and the idea of filtering of the edges at each level as described above.
The clustering and subgraph maintained at level i+1 by our algorithm are defined by the clustering
and subgraph at level i and the new invariants as follows.

• The set Vi+1 consists of those vertices of set Vi which belong to or are adjacent to sampled
clusters at level i.

• Clustering at level i + 1 is defined as follows. Let Ri be the set of sampled clusters in Ci

and let Ni be the set of those vertices from Vi which don’t belong to, but are adjacent to one
or more clusters from Ri. Each cluster of Ci+1 will be a sampled cluster from Ri with an
additional layer of some neighboring vertices from Ni hooking onto it. However, each vertex
u ∈ Ni selects the neighboring sampled cluster to hook onto randomly ensuring the following
invariant.

new-clustering-invariant : ∀(u, v) ∈ Ei(u) with Ci(v) ∈ Ri, Pr[(u, v) = hook(u, i)] =
1

|Ri(u)|

where Ri(u) is the set of edges incident on u from clusters of set Ri.

• Each vertex u ∈ Ni keeps the bucket structure Bi(u) for its neighboring clusters to maintain
Ei(u). The set Ei+1 will be defined as follows. Consider an edge (u, v) ∈ Ei such that both u
and v are present in Vi+1 too. The edge (u, v) will be present in Ei+1 only if u and v belong
to different clusters in Ci+1 and one of the following conditions hold.

– at least one of u and v belongs to a sampled cluster at level i.
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– (u, v) belongs to Ei(u) as well as Ei(v).

• The spanning forest for Ci is defined as Fi+1 = Fi(Ri)
⋃{hook(u, i)|u ∈ Ni}

Let F = ∪iFi. The edges of this set are contributed by the new-clustering-invariant. We now
define the set ES which contains the edges contributed by new-spanner-edge-invariant. Each
vertex u ∈ Vi belonging to unsampled cluster at level i maintains this invariant defined as follows.
new-spanner-edge-invariant : If u is not present at level i + 1, then u contributes one edge
from Ei(u, c) in the set ES for each neighboring cluster c ∈ Ci. If u is present at level i + 1, then u
contributes one edge from Ei(u, c) to ES for each neighboring cluster c ∈ Ci belonging to inactive
bucket in Bi(u).

The set F ∪ES will be the spanner maintained by the algorithm at any stage. Along same lines
to Lemma 2.2, it follows that F ∪ ES will be a (2k − 1)-spanner at each stage. We now prove the
following lemma which follows from these invariants and the bucket structure.

Lemma 4.4 Probability that an edge (u, v) ∈ Ei is hook(u, i) is bounded by 1+2ǫ
|Ei(u)| , for any constant

0 < ǫ < 1/2.

Proof: First note that an edge (u, v) can be hook(u, i) only if it is present in Ei(u). Let X be the
random variable for the number of edges incident on u from sampled clusters at level i. It follows
from Lemma 4.3 that X is less than (1 − ǫ)n−1/k|Ei(u)| with probability at most n−a. Let us now
consider an edge (u, v) ∈ Ei(u), and let v belong to cluster c ∈ Ci. The necessary condition for (u, v)
to be hook(u, i) is that the cluster c must be a sampled cluster at level i, the probability of which is
n−1/k. Furthermore, the following inequality follows due to independence incorporated in sampling
the clusters.

Pr[X ≤ d|c ∈ Ri] ≤ Pr[X ≤ d] for any constant d > 0 (2)

Applying the new clustering invariant, we can bound the probability for edge (u, v) to be hook(u, i)
as follows.

Pr[hook(u, i) = (u, v)] =





∑

d≥1

Pr[X = d|c ∈ Ri]

d



Pr[c ∈ Ri]

= n−1/k
∑

d≥1

Pr[X = d|c ∈ Ri]

d

≤ n−1/k Pr[X ≤ d|c ∈ Ri]

1
+ n−1/k Pr[X > d|c ∈ Ri]

d
{for any d ≥ 1}

≤ n−1/kPr[X ≤ d] + n−1/k 1

d
{using Equation 2}

≤ n−1/kn−a + n−1/k 1

(1− ǫ)n−1/k|Ei(u)| {for d = (1− ǫ)n−1/k|Ei(u)|}

≤ n−a +
1

(1− ǫ)|Ei(u)| ≤
1 + 2ǫ

|Ei(u)| {for ǫ <
1

2
}.

•

We now analyse the size of the spanner maintained by our algorithm.

Lemma 4.5 The expected size of the spanner built by following the new invariants and bucket
structure is O(k/ǫ8n1+1/k log2 n).

Proof: A vertex, at any level, adds at most one edge to maintain new-clustering-invariant, and
one edge per neighboring cluster belonging to inactive buckets. The latter edge is added to maintain
new-spanner-edge-invariant. Thus the edges added by any vertex at any level is bounded by
the number of neighboring clusters belonging to inactive buckets.

We shall use different thresholds for activation and deactivation of buckets. An active bucket
will be marked as inactive as soon as it has fewer than β clusters, where β = Θ(n1/k log n

ǫ6 ). However,
an inactive buckets is not marked as active until it contains at least β/ǫ2 clusters. Thus in the worst
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case, an inactive bucket can have at most Θ(n1/k log n
ǫ8 ) clusters. There are O(log n) buckets storing

the clusters neighboring to u at level i, and there are k levels. Thus a vertex contributes at most
O(k/ǫ8n1/k log2 n) edges to the spanner, and the lemma follows. •

4.6 Handling the updates by the dynamic algorithm

Upon a single edge insertion/deletion in the graph, we first add the two updates, each meant for
one of the endpoints of the edge, at level 0. The fully dynamic algorithm processes the updates
in a bottom up fashion starting from level 0. The processing of updates at level i will restore the
invariants at level i and generate the updates for level i + 1. Once all the updates for level i have
been processed, we move to level i + 1 and proceed in a similar manner. Instead of analysing the
updates generated and processed at all levels together, we may focus on just two consecutive levels
i and i + 1 only. This is because our fully dynamic algorithm essentially achieves the following
objective which is somewhat stronger than we require.

Consider any subgraph and clustering at level i. Let each cluster at level i be sampled inde-
pendently with probability n−1/k. Each vertex at level i maintains new-clustering-invariant

and/or new-spanner-edge-invariant and this completely defines subgraph and clustering at level
i+1. Consider any set of updates at level i. These include insertion/deletion of edges and change in
clustering of vertices. As remarked earlier, change in clustering of a vertex v at level i is equivalent to
at most two updates for each of its neighbors. Each vertex will process these updates in a sequential
manner to restore its invariants. Our algorithm ensures that by processing each update at level i,
the expected amortized number of updates generated for level i + 1 would be 7 + 14ǫ.

We now highlight one more interesting feature of our algorithm. Consider deletion or insertion
of an edge (u, v) ∈ Ei to be processed by u. If this edge is incident on u from sampled cluster, then
new-clustering-invariant for u gets violated and has to be restored but the bucket structure
of u will remain intact. On the other hand, if the edge is incident from unsampled cluster, the
bucket structure may have to be updated in order to maintain new-spanner-edge-invariant,
but the new-clustering-invariant remains intact. Therefore, new-clustering-invariant and
the bucket structure can be maintained independent of each other. This feature helps in a cleaner
description and analysis of the algorithm. We now describe the procedure for handling deletion or
insertion of an edge at level i.

Handling an edge deletion. Consider deletion of an edge, say (u, v), to be processed by u.
If v belongs to a sampled cluster in Ci, then the deletion of (u, v) may violate the clustering-

invariant only if hook(u, i) = v. We proceed as follows in this situation. If Ri(u) is non-empty, then
we select another hook for u from Ri(u) uniformly randomly, and change the cluster of u at level i+1
accordingly. If Ri(u) has become empty, then vertex u leaves clustering Ci+1 and starts maintaining
new-spanner-edge-invariant at level i. In each of these cases, for each (u, w) ∈ Ei(u), at most
two updates get generated for level i + 1.

If v belongs to an unsampled cluster in Ci, we restore new-spanner-edge-invariant and
update the bucket structure Bi(u) if needed. Using Theorem 4.3, amortized 4 + 10ǫ number of
additional updates get generated for level i + 1 in this case.

The deletion of (u, v) will have to be passed to level i if (u, v) ∈ Ei+1. In addition to this update,
additional updates will also be passed onto level i + 1 which get generated due to its processing at
level i as described above. It follows from Lemma 4.4 that the probability of “hook(u, i) = (u, v)”
before deletion of (u, v) is bounded by 1+2ǫ

|Ei(u)| , and only in that case, at most 2|Ei(u)| updates are
generated for level i+1. Hence, the expected amortized number of updates introduced at level i+1
when vertex u processes deletion of an edge from Ei(u) is bounded by

1 +

(

1 + 2ǫ

|Ei(u)|2|Ei(u)|+ 4 + 10ǫ

)

≤ 7 + 14ǫ

Handling an edge insertion. Consider insertion of an edge, say (u, v), to be processed by u.
If v belongs to a sampled cluster at level i, then clustering-invariant has to be restored.

If there were s edges incident from sampled clusters at level i prior to the insertion, then with

20



probability 1/(1 + s), the edge (u, v) would be selected as hook(u, i). In this case, the cluster of u
at level i + 1 changes and at most 2|Ei(u)| updates are passed to level i + 1. However, if hook(u, i)
is not changed to (u, v), then just a single update is passed onto the next level.

If v belongs to an unsampled cluster at level i, vertex u processes the insertion of (u, v) to restore
new-spanner-edge-invariant and updates the bucket structure if needed. Using Theorem 4.3,
amortized 4 + 10ǫ number of additional updates gets generated for level i + 1 in this case.

The insertion of (u, v) will have to be passed to level i if u and v belong to different clusters in
Ci+1. In addition to this update, additional updates will also be passed onto level i + 1 which get
generated due to its processing at level i as described above. To analyze the expected number of
total updates, we apply Lemma 4.4 after the insertion. It follows that “hook(u, i) = (u, v)” with
probability (1 + 2ǫ)/|Ei(u)|, and only in that case at most 2|Ei(u)| updates would have to be passed
to level i+1. Hence combining together various cases and their associated probabilities, the expected
amortized number of updates introduced at level i + 1 when vertex u processes insertion of an edge
into Ei(u) is

1 +

(

1 + 2ǫ

|Ei(u)|2|Ei(u)|+ 4 + 10ǫ

)

≤ 7 + 14ǫ

So we can conclude the following lemma.

Lemma 4.6 While processing any update at level i for maintaining the two invariants and the
bucket structure of a vertex u, the expected amortized number of updates introduced at level i + 1 is
at most 7 + 14ǫ for any 0 < ǫ ≤ 1/4.

Computing the updates for level i + 1 from updates at level i.
Consider any sequence of updates at level i to be processed by a vertex, say x. It processes these
updates in a sequential manner as described above and generates updates for its neighbors at level
i + 1. However, many of these new updates will be superfluous as explained by the following two
cases.

1. While processing the updates which involve maintenance of new-spanner-edge-invariant,
a cluster neighboring to x may hop to many buckets of different activation status. However, it
is only the final bucket which it joins that determines the new activation status of (the edges
incident on x from) that cluster. All the intermediate changes are superfluous.

2. While processing the updates which involve maintenance of new-clustering-invariant,
let x changes hook(x, i) more than once. In this situation it is only the final hook(x, i) that
determines the clustering of x at level i+1; the rest of them are all transient. From perspective
of all neighbors of u, the updates associated with these transient hooks of x are superfluous.

Among all the updates which x generates for level i + 1 by processing updates at level i, all
the superfluous updates will be eliminated. The task of eliminating the superfluous updates can be
done easily in time of the order of the number of updates generated by x. This produces the list
of updates generated by x for level i + 1. All lists of updates, generated by different vertices at
level i, are joined together to form the list of updates for level i + 1. An interesting consequence of
eliminating these superfluous updates is that any vertex x at level i will generate at most O(deg(x))
updates for level i + 1. This leads to the following important corollary.

Corollary 4.3.1 Upon any insertion or deletion of an edge, the number of updates generated by the
algorithm for level i will be O(m).

4.6.1 Subtle technical points of the algorithm

Before we analyse the time complexity of our fully dynamic algorithm, we would like to mention the
following subtle technical points about the fully dynamic algorithm described above.

1. Processing of updates by vertices of a sampled cluster

If v belongs to a sampled cluster at level i, then it does not have to do any processing. This is
because it does not maintain any invariant. However, in this case, v updates its data structure
Di(v) whenever it receives any edge update at level i and passes on the same update to level
i + 1 if necessary.
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2. Order of processing updates at a level

Each vertex processes its updates at level i in a sequential manner. The set of updates
generated for level i + 1 may depend upon the order in which vertex v processes its updates
at level i. This can be understood through the following example.

Suppose there are some insertions and deletions of edges incident on a vertex v at level i.
Furthermore, suppose the other endpoint of each of these edges belong to the same cluster
c ∈ Ci, and the number of edge insertions is at least the same as the number of edge deletions.
Let the cluster c be on the verge of becoming inactive in Bi(v) just before the sequence of
these updates. If all the edge deletions appear before all the edge insertions in this sequence,
then the activation status of c will become inactive, and this will lead to a substantial number
of updates for level i + 1. On the other hand, if all the edge insertions appear before all the
deletions, activation status of c will not change.

3. The bound on the number of updates generated

It follows from point 2 above that at any given intermediate stage, the number of updates
generated for level i + 1 may depend upon the type (insertion/deletion) of updates processed
at level i and the order in which they are processed. However, this does not contradict the
claim of Lemma 4.6 that processing an update at a level i generates expected amortized 7+14ǫ
updates for level i+1. In particular, the bound 7+14ǫ holds independent of the type (insertion
or deletion) of updates we process. The reason for this is as follows. This bound is derived
using the fact that the invariants associated with the processing vertex hold just before the
update, and the processing of each update restores the invariants after each update as well.

4. conflicting updates

Notice that each vertex processes its updates quite locally, as a result, it is possible that
endpoints of an edge, say (u, v), generate conflicting update for level i+1. To understand this
point, consider the following example. Let (u, v) belongs to active bucket in the data structure
of u and inactive bucket in the data structure of v. While processing some updates at level i,
the activation status of edge (u, v) changes in bucket structures of u as well as v. As a result, u
would generate an update of deletion of edge (u, v) for level i + 1 while v generates an update
of insertion of edge (u, v). As follows from definition of Ei+1, such a conflict is resolved by
allowing deletion to override insertion.

5. bucket structures at level 0 and k − 1

Notice that the role of a bucket structure at any level i is to ensure the claim stated in Lemma
4.4. But maintaining the bucket structures also have an additional overhead in terms of update
time and space. However, there is no need to keep bucket structure for any vertex at levels
k − 1 and 0 due to the following reasons. At level k − 1, we just have to maintain spanner-

edge-invariant and so there is no need to ensure Lemma 4.4 for i = k−1. At level 0, Lemma
4.4 already holds as shown in the fully dynamic algorithm for 3-spanner.

6. a vertex hoping from a sampled cluster to an unsampled cluster

Suppose u belongs to a sampled cluster at level i. Notice that vertices belonging to a sampled
cluster do not have to maintain any invariant. Suppose there is an update that makes u
leave its current cluster and join some unsampled cluster at level i. In this case, it will have
to maintain new-spanner-edge-invariant and hence the bucket structure. So there is an
additional overhead of building the bucket structure which will take O(|Ei(u)|) time. But
notice the following two points here. Firstly this overhead is for level i only. Secondly, there
will certainly be Θ(|Ei(u)|) updates in this situation at level i. This is because whenever a
vertex changes its cluster at level i, there are definitely Θ(|Ei(u)|) updates to be processed by
its neighbors at level i. Considering these two points, we can see that the overhead of building
the bucket structure is subsumed by the computation which the neighbors of u will anyway be
doing.
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4.6.2 Analysis of the algorithm

Let Zi be the random variable for the number of updates that reach level i upon a single edge update
in the graph. Then using Lemma 4.6 it follows that

E[Zi] =
∑

α

E[Zi|Zi−1 = α]Pr[Zi−1 = α]

=
∑

α

(7 + 14ǫ) α Pr[Zi−1 = α] = (7 + 14ǫ)E[Zi−1]

The processing cost of an update at a level is of the order of the number of updates it generates
for the next level. Hence the time complexity of maintaining (2k − 1)-spanner upon an edge inser-
tion/deletion is of the order of the sum of the number of updates generated at all levels. Combining
this observation with the above equation, it follows that the expected amortized time to update the
spanner upon any single edge insertion or deletion is of the order of (7 + 14ǫ)k for any 0 < ǫ ≤ 1/4.
Choosing ǫ < 1

2k and using Lemma 4.5, we can conclude the following Theorem.

Theorem 4.4 Given an undirected unweighted graph on n vertices and an integer k, we can main-
tain a (2k− 1)-spanner of the graph fully dynamically in expected amortized O(7k) time per update.
The expected size of the spanner at any stage will be O(k9n1+1/k log2 n).

The expected update time can be improved further to O(7k/2) by reducing the number of levels
in the hierarchy of clusterings from k to k/2. Note that we used k levels since at level k − 1, the
expected number of clusters is only n1/k and we can add a single edge between a vertex and every
neighboring clusters at this level. We basically used part (i) of Observation 2.1. There is an alternate
solution to achieve expected O(kn1+1/k) size of spanner based on part (ii) of Observation 2.1. In
this solution, we keep hierarchy up to level ⌊k

2 ⌋ only. There will be expected n1− 1
k
⌊ k

2
⌋ number of

clusters at top level in this solution.

• if k is odd, then for each pair of neighboring clusters c ∈ C⌊k/2⌋, c
′ ∈ C⌊k/2⌋ at level ⌊k

2 ⌋, we
keep one edge between them in the spanner.

• if k is even, then for each pair of neighboring clusters c ∈ Ck/2, and c′ ∈ Ck/2−1, we keep one
edge between them in the spanner.

It follows from part (ii) of Observation 2.1 that for all edges at the highest level ⌊k
2 ⌋ of hierarchy,

the proposition P2k−1 holds true and the expected number of edges added to the spanner at this
level will be O(n1+1/k). Following this and 5th technical point, it can be seen that the number of
levels at which we need to keep bucket structure will be reduced to ⌊k/2⌋ − 2. We conclude with
the following theorem.

Theorem 4.5 Given an undirected unweighted graph on n vertices and an integer k, we can main-
tain a (2k−1)-spanner of the graph fully dynamically in expected amortized O(7k/2) time per update.
The expected size of the spanner at any stage will be O(k9n1+1/k log2 n).

Remark 4.7: It follows from Corollary 4.3.1 that the worst case update time guaranteed by our
algorithm will be O(km). The worst case update time guaranteed by the algorithm of Elkin [25] is
O(m).

4.7 Analysis of dynamic buckets

First we briefly explain how the data structure Di associated with a vertex at any level i (see
Subsection 2.2) is augmented and extended to incorporate bucket data structure. Each vertex u will
keep an array bu[ ] of size O(log1/ǫ n) such that bu[j] would store a doubly linked circular list for the
centers of those clusters neighboring to u which are present in jth bucket. It also stores the total
count of these clusters. In addition to it, the hash table hu storing the clusters neighboring to u also
stores, for each neighboring cluster, the bucket to which it belongs at a given moment. As clusters
move from one bucket to another, the entries of array bu[] are updated accordingly. Using these data
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jth bucketj − 1th bucket j + 1th bucket

(i)

(ii)

(a− 1)ℓ clusters join

(a− 1)ℓ clusters leave active bucketinactive bucket

deletion of ≥ (g − 1)αj−1 edges incident from u to c insertion of ≥ (g − 1)αj edges incident from u to c

c cc

Figure 9: (i) Change in the activation status of a bucket, (ii) cluster c hopping from jth bucket to
its neighboring buckets.

structures, it is easy to determine in O(1) time if an edge incident on u at level i is incident from a
cluster of active bucket or inactive bucket.

Let us now address the maintenance of bucket data structure under deletion/insertion of edges.
It can be seen that there may be the following kinds of changes in the bucket data structure : The
number of edges Ei(u, c) between u and a cluster c changes as we insert or delete edges. It may
change to such an extent that |Ei(u, c)| either falls below lower-limit of the bucket or goes over
the upper-limit of the bucket. So we have to move the cluster to another bucket and if the new
bucket has different activation status than the previous one, then the activation status of all the
edges of the cluster will also change. Furthermore, due to the movement of these clusters, the size
of buckets also change, and so an active bucket may become inactive and vice versa. In order to
enhance clarity and compactness of notations, we shall describe and analyze the following generic
bucket structure maintained by a vertex u at a level j > 0. The exact bound (mentioned in Theorem
4.3) will seamlessly follow if we just set proper values to the free parameters used here.

• The jth bucket will have clusters whose neighborhood size (number of edges with which the
cluster is incident on u) is in the range [αj/g, gαj] for some constant g > 1. The geometric
mean of the two extremes of this range is αj , and hence we call it the mid-size of the bucket. It
is that critical size at which clusters hop into this bucket. The mid-sizes are related as follows:
αj+1 = gαj . So a cluster enters into jth bucket when its size is αj and hops to (j +1)th bucket
(or (j − 1)th bucket) when its size rises to gαj (drops to αj/g).

• We shall use the convention that a bucket is inactive if its size (the number of clusters in it)
is less than ℓ, and it is active if its size is greater than aℓ for some a, ℓ > 1. The bucket with
size in the range [ℓ, aℓ] is allowed to have any activation status in the beginning. An inactive
bucket will be activated when its size reaches aℓ; and an active bucket will be deactivated
when its size falls to ℓ.

Figure 9 provides a sketch of the generic dynamic bucket structure described above. There are two
major events that we need to handle and analyze in the dynamic maintenance of bucket structure.

1. A cluster hopping to a new bucket.

2. A bucket changing its activation status.
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When the first event occurs, the activation status of all the edges coming from the cluster has
to be changed if the activation status of the new bucket is different from that of the old one. When
the second event occurs, the activation status of all the edges in the bucket has to be changed. So
whenever these major events occur, a large number of edges could change their activation status.
Potentially all these changes may have to be communicated to level i + 1. In this way, an edge
update can trigger a huge number of updates to be passed to level i + 1. However, by using a credit
based amortized analysis, it can be shown that the number of activation changes of all the edges in
the bucket structure of u at level i is of the order of the number of edge updates (insertion/deletion)
reaching u at level i. The whole analysis is similar in spirit to the analysis of the well-known data
structure of dynamic tables (Chapter 18, [15]). Consider an edge update reaching level i which is
to be processed by u. Let it be insertion or deletion of some edge (u, v). We shall give some credits
to this update. These credits will be passed onto the cluster (in the bucket structure of u) to which
v belongs. Let the amount of this credit be πi for edge insertions, and πd for edge deletions. The
credits obtained by a cluster will be partially used for the change in its own activation status when
it moves to another bucket. And the remaining credit will be passed to the current bucket as well
as the bucket to which the cluster will move in next hop in order to pay for any possible change in
the activation status of these buckets.

Clearly there is a hierarchical structure in the movement of credits: an edge update passes
credits to its cluster, and a cluster passes credits to the buckets that contains it (or will contain it
in immediate future). So to find out the appropriate values for πi and πd, we take the following
backward approach.

We have to ensure that whenever a bucket changes its activation status, it has accumulated
enough credits to pay for the change in the activation status of all its edges. Let us analyze the
transition of jth bucket from being inactive to becoming active. Consider the moment when the
bucket had just become inactive. At that moment it had ℓ clusters, and so a maximum of gℓαj

edges. From that moment to the present, when the bucket becomes active, there must be at least
(a − 1)ℓ clusters which have joined it. Each such cluster joined with αj edges. To each of these
(a − 1)ℓ new clusters, some new edges incident from u might have got inserted ever since it joined
the bucket. However, while activating the entire bucket, the activation cost for these new edges will
be paid by themselves. So we need to only bother about the activation of the remaining edges in the
bucket : which consists of old gℓαj edges and αj edges per new cluster. Dividing this cost equally

over the new (a − 1)ℓ clusters, each cluster must transfer a credit of (a−1)+g
a−1 αj to the jth bucket

at the time of joining it. Now let us consider deactivation of jth bucket. From the moment it was
activated to the moment it became inactive, it must have lost at least (a− 1)ℓ clusters. Now there
are ℓ clusters, each with at most gαj edges, left in the bucket, and their deactivation cost has to be
paid by the clusters that left the bucket when it was active. So a credit of g

a−1αj must be paid by
each cluster that leaves the jth bucket.

Now let us analyze movement of a cluster from bucket j to j + 1 (or j − 1). At the time the
cluster moved to bucket j, it had exactly αj edges. If it moves to the (j + 1)th bucket by increasing

its size to gαj , it must carry with it a credit of (a−1)+g
a−1 gαj for activating the (j + 1)th bucket in

future, and transfer a credit of g
a−1αj for deactivating the old bucket. In addition, if the current

activation status of (j + 1)th bucket differs from that of jth bucket, it must pay for the change in
its own activation status with a credit of gαj. All these costs must be attributed to the edges that
are inserted to it ever since it joined jth bucket, these edges are at least (g− 1)αj in number. So for

each edge insertion it suffices to assign πi = 2g(a−1)+g2+g
(a−1)(g−1) credits. If the cluster moved to (j − 1)th

bucket after decreasing its size to αj/g, then it must carry with it a credit of a−1+g
a−1

αj

g for activating
the new bucket in future, and a credit of g

a−1αj has to be paid to the old bucket for its deactivation.
At the time it moves to bucket j− 1, it must also use αj/g credits for the possible change of its own
activation status. All these costs have to be paid by edges that were deleted from the cluster during
this period, they are at least αj − αj/g in number. So for each edge deletion it suffices to assign

πd = 2(a−1)+g2+g
(a−1)(g−1) credits. Comparing πi with πd, and using g > 1 we can conclude the following

Lemma.

Lemma 4.8 A single edge insertion or deletion in the bucket structure of a vertex u leads to a

change in the activation status of amortized at most 2g(a−1)+g2+g
(a−1)(g−1) additional edges in Ei(u).
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In other words, a single edge update in the bucket structure leads to insertion or deletion of

amortized 2g(a−1)+g2+g
(a−1)(g−1) additional edges in Ei(u). Recall that whether an edge (u, v) belongs to

Ei+1 is determined by both u and v - the edge belongs to Ei+1 if (u, v) ∈ Ei(u) and (u, v) ∈ Ei(v).
So whether the deletion (or insertion) of an edge, say (u, v) to Ei(u) will be reflected in Ei+1 is
determined by the status of (u, v) in the bucket structure of v as well. The latter information can be
computed in O(1) time using the augmented data structure Di. In case the insertion (or deletion)
of the edge in Ei(u) implies insertion (or deletion) of the edge in Ei+1, it would be equivalent to
two updates for level i + 1 to be processed by each endpoint of the edge separately. Thus we may
conclude the following lemma.

Lemma 4.9 For each edge update processed by bucket structure of u at level i, the amortized number

of additional updates to be sent to the level i + 1 will be at most 2 2g(a−1)+g2+g
(a−1)(g−1) .

Choosing g = 1/ǫ and a = g2 for suitably small value of ǫ, Lemma 4.9 leads to Theorem 4.3.

5 Fully Dynamic Algorithm - II

We first present a decremental algorithm for maintaining a (2k−1)-spanner with expected amortized
O(k2 log n) update time per edge deletion. We then extend it to the fully dynamic environment using
the idea of periodic rebuilding which is a standard idea in the area of dynamic algorithms [33, 34].
Interestingly, this extension is achieved at the expense of increasing the spanner size and update time
by just a logarithmic factor. Since k = O(log n), the expected amortized update time guaranteed
by this fully dynamic algorithm is always O(log4 n). Therefore, for large values of stretch, this
algorithm has a significant advantage over fully dynamic algorithm I described earlier.

At the core of the efficient decremental algorithm lies a new kind of clustering of vertices. We
now describe this new clustering along with its construction and maintenance.

5.1 New clustering

Consider a triplet (S, i, σ), where S is a subset of vertices, i is a positive integer, and σ is a per-
mutation of S. We shall use the notation σ(x) < σ(y) for x, y ∈ S, if vertex x precedes y in the
permutation σ. Let us now consider the set of those vertices of the graph which are within distance
i from any vertex in S. The triplet (S, i, σ) defines a clustering on this set as follows. For a vertex
v of this set, the center of the cluster to which v belongs is the vertex x ∈ S such that for every
y ∈ S\{x}, the following relation is satisfied.

δ(v, x) < δ(v, y) or δ(v, x) = δ(v, y) and σ(x) < σ(y)

In other words, vertex v selects the nearest vertex from S as its cluster center; and in case v has
multiple nearest vertices, it selects that vertex among them which appears first in the permutation
σ. The uniqueness of the cluster center for v follows immediately. This clustering defined by the
triplet (S, i, σ) will be denoted by C(σ(S), i) henceforth.

Let us address the maintenance of clustering C(σ(S), i) while the edges are being deleted. Let
C[ ] denote the array used for storing the clustering C(σ(S), i). At any instance, let d[v] denote the
distance δ(v, S). We say that clustering C(σ(S), i) changes for vertex v due to an edge deletion if
the deletion leads to either an increase in d[v] or a change in C[v]. For any fixed σ, there may exist
a sequence of edge deletions during which the clustering may change for v arbitrarily large number
of times. However, if we select the permutation σ randomly uniformly, this number will be quite
small on expectation as shown by the following lemma.

Lemma 5.1 Let v be a vertex in V \S and d[v] ≤ i in the beginning. Consider any sequence of edge
deletions. If σ is a uniformly random permutation of S, the expected number of times the clustering
C(σ(S), i) changes for vertex v during this sequence is O(i log n).

Proof: Observe that d[v] ≥ 1 in the beginning, and d[v] can only increase during edge deletions. So
we can partition any given sequence of edge deletions into maximal contiguous subsequences such
that d[v] remains unchanged during each subsequence. Note that v ceases to belong to C(σ(S), i)
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once d[v] exceeds i, so we just need to consider at most i such subsequences. Consider any ℓ ≤ i,
and let A be the subsequence during which d[v] = ℓ. We shall show that the clustering C(σ(S), i)
would change for v only O(log n) times on expectation during the entire subsequence A.

Let O ⊆ S be the set of vertices lying at distance exactly ℓ from v just before the beginning of
subsequence A. So vertices of set O are the only potential centers whose clusters v can join during
A. Furthermore, if v ever leaves a cluster, say centered at x ∈ O, it will never join the cluster
centered at x again during A. Thus we just need to show that there are expected O(log n) cluster
centers from O whose cluster v joins during A.

For each o ∈ O, there exists an edge in the subsequence A whose deletion causes δ(v, o) to become
greater than ℓ. Let 〈o1, ..., ot〉 be the sequence of vertices of O arranged in the (chronological) order
in which they cease to be at distance ℓ from v. Conditioned on this sequence, what is the probability
that v ever joins the cluster centered at oj duringA for a given 1 ≤ j ≤ t ? For this to happen, oj must
appear first among {oj , ..., ot} in the permutation σ. Since σ is a uniformly random permutation,
the probability of this event is 1/(t− j + 1). Hence, applying linearity of expectation, the expected
number of centers from O whose clusters v joins during A is

∑t
j=1

1
t−j+1 = O(log n). •

Though Lemma 5.1 ensures that the expected number of changes in the clustering C(σ(S), i) will
be quite small when the edges are being deleted, we would need a data structure to detect these
changes and to update the clustering efficiently. It turns out that computing and maintaining the
clustering C(σ(S), i) is similar to building and maintaining a breadth first search (BFS) tree upto
depth i + 1.

5.2 Efficient construction and maintenance of the new clustering

We first address the issue of efficient initialization of the array C[ ] which stores the clustering
C(σ(S), i). Note the following observation which can be inferred from the definition of C(σ(S), i).

Observation 5.1 In order to compute C[v] for a vertex v in the clustering C(σ(S), i) it suffices to
know C[x] for each neighbor x of v which lies closer to S than v, i.e., d[x] = d[v]− 1.

This observation suggests that if we know C[x] for each x with d[x] = j, then we may compute
C[v] for all vertices with d[v] = j + 1. Based on this idea, Algorithm 1 computes the clustering
C(σ(S), i) in the beginning. A proof by induction on the distance of vertices from S shows that C[ ]

Algorithm 1: Computing C(σ(S), i).

foreach v ∈ V do visited(v)← false;
foreach s ∈ S do

C[s] = s;
visited[s]← true;
d[s]← 0;

F ← ∅;
Let Q be a queue which stores vertices of S in the order defined by σ;
while Q 6= ∅ do

x← Dequeue(Q);
foreach (x, y) ∈ E do

if visited(y)=false then
visited(y) ← true;
C[y]← C[x];
F ← F ∪ {(x, y)};
d[y]← d[x] + 1;
if d[y] < i then Enqueue(y, Q)

stores the clustering C(σ(S), i). This algorithm also computes a forest F spanning (and defining)
the clustering C(σ(S), i). Each tree in this forest corresponds to a spanning tree of a cluster of
radius i centered at some vertex in S. Hence radius of clustering C(σ(S), i) is i.
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A careful reader might find Algorithm 1 similar to the standard algorithm for computing a BFS
tree from a vertex in a graph. In fact a forest F defining the clustering C(σ(S), i) can be associated
with a truncated BFS tree in a slightly modified graph in the following way. Add a dummy vertex g
and the edges {(g, s)|s ∈ S} to G; now do a BFS traversal upto depth i+1 from g with the following
constraints. Firstly, visit the neighbors of g in the order σ(S); and secondly, process the vertices
in the order they are visited. As a result, we shall obtain a BFS tree all of whose edges, excluding
{(g, s)|s ∈ S}, correspond to the forest F defining the clustering C(σ(S), i). This insight about
Algorithm 1 implies that maintaining C(σ(S), i) under deletion of edges amounts to maintaining
this BFS tree under deletion of edges. Even and Shiloach [29] designed an algorithm which maintains
one BFS tree (out of potentially many BFS trees) of depth i under edge deletions. However, a BFS
tree associated with the clustering C(σ(S), i) has some additional constraints as explained above.
Therefore, in order to maintain the clustering we suitably modify this algorithm.

We shall maintain the following two additional fields for each vertex v. First field is parents(v)
which is the set consisting of every neighbor w of v such that d[w] = d[v] − 1 and C[w] = C[v].
For F , we may select one edge from parents(v) for each v in the clustering. The second field is
children(v) which is the set of neighbors x of v such that v ∈ parents(x).

Consider deletion of an edge (u, v); without loss of generality, let d[u] ≤ d[v] at the time of
deletion of (u, v). Procedure Update-clustering updates the clustering upon deletion of edge
(u, v). It returns two sets Y, Z defined as follows. Y consists of triplets of the form 〈x, c, c′〉 which
represents that vertex x has changed its cluster from c to c′ in clustering C(σ(S), i) due to the
edge deletion. Similarly Z consists of pairs of the form 〈x, c〉 which represents that vertex x, which
belonged to cluster c ∈ C(σ(S), i) earlier, now ceases to belong to any cluster in clustering C(σ(S), i)
after deletion of (u, v). We now provide an overview of this procedure. Observe that deletion of
edge (u, v) may lead to a change in the clustering only if u ∈ parents(v). The procedure begins with
deletion of u from parents(v) and deletion of v from children(u). If parents(v) is still non-empty,
there is no change in the clustering. However, if parents(v) is empty, then the clustering of v will
change. Note that the change in clustering of v will lead to change in clustering of those children of
v whose parents field consists of v only. In this manner, the deletion of (u, v) may cause a change
in clustering of many descendants of v. During the procedure Update-clustering all such vertices
are computed in the increasing order of their distance d[] and their new clustering information is
updated as follows. A while loop is iterated starting from j = d[v]. The jth iteration processes a
queue Qj of vertices. The following invariant holds before execution of jth iteration for all j ≤ i+1.

I(j): The clustering has been updated for every vertex x whose new distance d[x] ≤ j− 1. Queue
Qj consists of all those vertices y with initial d[y] ≤ j and new d[y] ≥ j whose clustering changes
due to deletion of (u, v).

We now describe the processing done in jth iteration. Vertices are extracted from Qj , and this is
how any vertex x fromQj is processed. Firstly, for each y ∈ children(x), we delete x from parents(y)
and delete y from children(x). If parents(y) is empty now, it would imply that clustering of y will
also change, and so we add y to Qj+1. If x has some neighbor at level j − 1, then x will settle at
level j and compute its new cluster center (see Observation 5.1). Otherwise, final d[x] has to be
greater than j and so x enters queue Qj+1 so as to be processed in the next iteration.

Figure 10 shows an example of execution of Procedure Update-clustering on a clustering.
This clustering is defined by σ(S) =≺ w, u, x ≻, and has radius 3. It is captured by a BFS tree
rooted at a dummy vertex g (see Figure 10(i)). The solid edges constitute the forest spanning the
clustering. Upon deletion of edge (u, v), the clustering gets updated as shown in the Figure 10(ii).
Vertices v, q, and p move from the cluster centered at u to the cluster centered at x, whereas vertex
h leaves the clustering since its distance from S gets more than 3, the radius of the clustering.

Let us analyze the total time spent in maintaining C(σ(S), i) over any sequence of edge dele-
tions. Consider an execution of procedure Update-clustering for deletion of an edge (u, v). Let
the main while loop got iterated from j = d[v] to j = t. Then the computation time spent by
the procedure is dominated by the processing of the vertices of queues Qj, . . . ,Qt. It follows from
invariant I(j) that only those vertices enter the queue Qj during Update-clustering whose clus-
tering (cluster membership or d[]) has changed due to the deletion of (u, v). A vertex x dequeued
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Procedure Update-clustering(C,i,(u,v)): updates clustering C of radius i upon deletion
of edge (u, v)

j ← d[v]; Qj ← ∅;
Y ← ∅; Z ← ∅;
if u ∈ parents(v) then

delete u from parents(v);
delete v from children(u);
if parents(v) = ∅ then

Enqueue(v,Qj);
while j ≤ i and Qj 6= ∅ do
Qj+1 ← ∅;
while Qj 6= ∅ do

x←− Dequeue(Qj);
for each y ∈ children(x) do /* Updating clustering for children(x) */

delete y from children(x);
delete x from parents(y);
if parents(y) = ∅ then Enqueue(y,Qj+1);

if ∃ some neighbor w of x with d[w] = j − 1 then /* Ci[x] gets updated */

c← C[x];
Compute C[x] by scanning all neighbors of x;
Y ← Y ∪ {〈x, c, C[x]〉};
for each neighbor y of x do

if d[y] = j − 1 and C[y] = C[x] then
add y to parents(x);
add x to children(y);

else /* distance d[x] increases by 1 */

d[x]← d[x] + 1;
Enqueue(x,Qj+1);

j ← j + 1;

while Qi+1 6= ∅ do /* Processing vertices which left the clustering Ci */

x← Dequeue(Qi+1);
Z ← Z

⋃{〈x, C[x]〉};
C[x]← 0;

return (Y, Z);

from Qj involves O(deg(x)) amount of computation which we charge to x itself. After this com-
putation, either its new clustering has been computed or it enters Qj+1. In the latter case, d[x]
increases by 1. Thus we conclude that over the entire sequence of edge deletions, a vertex will incur
O(deg(x)) amount of computation every time clustering C(σ(S), i) changes for x. The clustering
will change for x expected O(i log n) times only as follows from Lemma 5.1. So the expected pro-
cessing cost charged to a vertex x while maintaining clustering C(σ(S), i) over any sequence of edge
deletions is O(i deg(x) log n). Analysing each vertex along similar lines, we can conclude that the
expected computation for maintaining clustering C(σ(S), i) under any sequence of edge deletions is
O(im log n).

Theorem 5.1 Given a graph G = (V, E), an integer i ≥ 0 and a uniformly random permutation
σ of a set S ⊆ V , we can maintain the clustering C(σ(S), i) and its spanning forest F in expected
amortized O(i log n) time per edge deletion.
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Figure 10: Updating the clustering upon deletion of (u, v). Thick edges define the spanning forest
for the clustering

5.3 Decremental Algorithm for (2k − 1)-spanner

The algorithm uses the hierarchy Hk = {Si|0 ≤ i ≤ k} of subsets of vertices which was used in the
static algorithm described in [8] as well as the first fully dynamic algorithm for (2k − 1)-spanner.
Hierarchy Hk induces a hierarchy of subsets of vertices Vi, 0 ≤ i ≤ k in a natural way as follows.

• V0 = V and Vk = ∅.

• For 0 < i < k, Vi = {v ∈ V |δ(v, Si) ≤ i}.

In simple words, Vi is the subset of all those vertices in the graph G which lie within distance i from
Si. Notice that, for any i > 1, Vi+1 need not be a subset of Vi though Si+1 is a subset of Si. As its
randomization ingredient, our decremental algorithm constructs a uniformly random permutation σi

of vertices of set Si for each i < k. The algorithm maintains a clustering Ci for Vi and the following
two invariants at each level 0 ≤ i < k.

new-clustering-invariant : Clustering Ci is the clustering C(σi, i) of the set Vi in G. Let
F be the union of all edges from the spanning forests of these clusterings.

new-spanner-edge-invariant : For every integer i < k and every v ∈ Vi, if v /∈ Vi+1 then
v includes one edge from E(v, c) in the spanner for each neighboring cluster c ∈ Ci.

Let ES be the set of edges contributed by all vertices for maintaining new-spanner-edge-

invariant. We now state and prove a crucial lemma.

Lemma 5.2 For a given graph undergoing edge deletions, the subgraph (V, ES ∪ F) is a (2k − 1)-
spanner at every stage, and its expected size is O(kn1+1/k).

Proof: First we shall show that ES ∪ F is a (2k − 1)-spanner for the graph at each stage. Note
that V0 = V and Vk = ∅, so it follows that there is at least one level j < k such that both u and
v belong to Vj and at least one of u or v is not present in Vj+1. Without loss of generality, let u
be absent from Cj+1. Let c be the cluster to which v belongs in clustering Cj . Therefore, as part
of new-spanner-edge-invariant, vertex u must have contributed an edge from the set E(u, c) to
ES . Now note that the clustering Cj = C(σj , j) has radius j by construction. So it follows from
Observation 2.1 (part 1) that the proposition P2j+1 holds for edge (u, v). Since j < k, it follows
that the set ES ∪ F is a (2k − 1)-spanner.

Now we analyze the size of the spanner. The collection of spanning forests F would contribute
O(nk) edges to the spanner. We shall now show that the expected number of edge contributed to
ES at any level i < k is O(n1+1/k). For this purpose, fix the clustering Ci for any arbitrary sample
set Si and its permutation σi. Let v be any vertex in Vi. Let x1, . . . , xℓ be the vertices from Si

lying within distance i + 1 from v. From the construction of hierarchy Hk, it follows that each
vertex from {x1, . . . , xℓ} is present in Si+1 independently with probability n−1/k. If at least one of
{x1, . . . , xℓ} is present in Si+1, v is bound to be present in Ci+1 and so won’t contribute any edge
to ES . Otherwise, for maintaining new-spanner-edge-invariant v will add (to ES) one edge
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Procedure Handling-edge-deletion(u,v)

for i = 0 to k − 1 do
if u ∈ Vi and v ∈ Vi then

if Ci[u] 6= Ci[v] then
Delete (u, v) from Di(u);
if Ci+1[u] = 0 then Restore-span-edge-invariant(u, Ci[v], i);
Delete (u, v) from Di(v);
if Ci+1[v] = 0 then Restore-span-edge-invariant(v, Ci[u], i)

else
(Y, Z)← Update-clustering(Ci, i, (u, v));
for each 〈x, c〉 ∈ Z do //Processing vertex x which left clustering

for each (x, w) ∈ E(x) with w ∈ Vi do
Delete (x, w) from Di(w);
if Ci+1[w] = 0 then Restore-span-edge-invariant(w, c, i);

Ci[x]← 0 ; //x leaves clustering at level i
if Ci−1[x] 6= 0 then

for each c ∈ Ci−1 neighboring to x do
Restore-span-edge-invariant(x, c, i− 1)

for each 〈x, c, c′〉 ∈ Y do //Processing vertex x which changed cluster

for each (x, w) ∈ E(x) and w ∈ Vi do
Di(w) processes the change in cluster of x;
if Ci+1[w] = 0 then

Restore-span-edge-invariant(w, c, i);
Restore-span-edge-invariant(w, c′, i);

from E(v, c) for each neighboring cluster c ∈ Ci. Now observe that the center of each cluster c ∈ Ci

neighboring to v must belong to the set {x1, ..., xℓ}. Hence there are ℓ clusters neighboring to v
at level i, and the probability that none of {x1, . . . , xℓ} is selected in Si+1 is (1 − n−1/k)ℓ. This
implies that the expected number of edges contributed to ES at level i by vertex v is bounded by
ℓ(1 − n−1/k)ℓ, which is O(n1/k) for all possible values of ℓ. Hence the expected number of edges
contributed to ES at level i by all vertices is O(n1+1/k). This completes the proof. •

Lemma 5.2 suggests that for maintaining a (2k − 1)-spanner under deletion of edges, it suffices
to maintain the hierarchy of subgraphs and clusterings, and the two invariants as described above.

5.3.1 Handling deletion of an edge

We describe Procedure Handling-edge-deletion for handling deletion of any edge (u, v). It pro-
ceeds in a bottom up fashion starting from level 0 to k − 1. Unlike fully dynamic algorithm I,
processing at any level i is done quite independent of other levels. Observe that if either u or v does
not belong to Vi, then the clustering Ci as well as the invariants remain unaffected, so nothing needs
to be done at level i in this case. In case u, v ∈ Vi, the deletion of (u, v) is processed at level i as
follows.

If Ci[u] 6= Ci[v], the deletion of (u, v) does not change clustering Ci. However, it may violate
new-spanner-edge-invariant if either of u or v is absent at level i + 1. Using data structure
Di(u) (and Di(v)), it would require O(1) time to restore new-spanner-edge-invariant for u (for
v).

If Ci[u] = Ci[v], the deletion of (u, v) may change the clustering Ci. So we execute the procedure
Update-clustering(Ci, i, (u, v)). This procedure outputs the changes in clustering Ci through two
subsets Y, Z (see Figure 10). A triplet 〈y, c, c′〉 ∈ Y represents that y changed its cluster from c
to c′. So we need to communicate this information to neighbors of y in Vi and restore their new-
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spanner-edge-invariant if needed. A pair (z, c) ∈ Z represents that z ceases to belong to Ci.
We need to communicate this information to neighbors of z in Vi and restore their new-spanner-

edge-invariant. In addition, we need to restore new-spanner-edge-invariant for z at level
i− 1 if it is present in Ci−1.

In order to analyse the time complexity of the decremental algorithm described above, we analyse
the total computation time spent by the algorithm at a level i < k over any sequence of edge
deletions in the graph. Processing an edge deletion at level i takes O(1) time except when it leads
to a change in clustering Ci. In this case, the procedure Update-clustering gets invoked. It
follows from Theorem 5.1 that the expected amortized computation performed by this procedure
will be O(i log n) per edge deletion. This procedure returns the set of vertices which either changed
their cluster in Ci or cease to belong to it. For each such vertex x, a computation of the order
of |E(x)| is incurred in communicating this change to its neighbors at level i and restoring their
new-spanner-edge-invariant if needed. For analysis purpose we shall assign this cost to vertex
x itself. It follows from Lemma 5.1 that a vertex can change its cluster in Ci expected O(i log n)
number of times before leaving it. Hence the expected amount of the total computation time spent
in the processing done at level i for any sequence of edge deletions is O(mi log n). Since there are
total k levels, expected amount of total computation performed in maintaining (2k − 1) spanner by
the decremental algorithm is O(mk2 log n). So we can conclude the following Theorem.

Theorem 5.2 An undirected unweighted graph G = (V, E) can be processed to build a data structure
B(V, E) which maintains a (2k − 1)-spanner of expected size O(kn1+1/k) under deletion of edges.
For any arbitrary sequence of edge deletions, the expected total time spent in maintaining this data
structure is O(k2m log n).

Remark 5.3: Randomization is used at two places in the decremental algorithm described above.
The randomization underlying the hierarchy Hk is used to get a bound on the expected size of the
spanner. The randomization used in the clustering C(σi, i) helps in achieving better update time.

5.4 Extending the decremental algorithm to the fully dynamic environ-

ment

We shall now employ the decremental algorithm from Theorem 5.2 to design a fully dynamic algo-
rithm for (2k − 1)-spanner. The algorithm is based upon the following simple observation.

Observation 5.2 For a given graph G = (V, E), let E1, ..., Ej be a partition of the set of edges E,
and let E1, ..., Ej be respectively the t-spanners of subgraphs G1 = (V, E1), ..., Gj = (V, Ej). Then
∪iEi is a t-spanner of the original graph G = (V, E).

Based on the above observation, the fully dynamic algorithm can be summarized as follows : The
algorithm maintains a partition of the graph into O(log n) subgraphs, and concurrently maintains
a decremental data structure as defined in Theorem 5.2 for each subgraph. In order to handle edge
insertions, each of these subgraphs is redefined periodically after certain intervals of updates and
the corresponding data structure is rebuilt accordingly. Now we provide complete details of the
algorithm. Let ℓ0 be the greatest integer such that 2ℓ0 ≤ n1+1/k. The algorithm will maintain the
following objects and data structures at each stage.

1. A partition of edges E into subsets E0, ..., Ej , j = ⌈log2 n1−1/k⌉ such that |Ei| ≤ 2i+ℓ0 holds
for each i ≤ j throughout the sequence of edge updates. Some of these subsets may be empty.
For each edge (u, v), we maintain an additional field, index(u, v) which stores the integer i
such that (u, v) ∈ Ei.

2. For each subset Ei, i > 0, the data structure Bi = B(V, Ei) from Theorem 5.2 which maintains
a (2k − 1)-spanner (V, Ei) for the subgraph (V, Ei).

3. A binary counter C which counts from 0 to n(n−1)
2 , with the least significant bit at 0th place.

In the beginning, the partition is : Ej = E and Ei = ∅ for all i < j; and the counter C is
set to 0. The fully dynamic algorithm handles deletion and insertion of edges using procedures
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Procedure Handling deletion

of an edge(u, v)

i← index(u, v);
update Bi for deletion of (u, v);
update the spanner Ei accordingly.

Procedure Handling insertion of an

edge(u, v)

Increment the counter C;
Let g be the highest bit of counter C which gets
flipped;

if g ≤ ℓ0 then //ℓ0 = ⌊log2 n1+1/k⌋
E0 ← E0 ∪ {(u, v)};
E0 ← E0 ∪ {(u, v)};

else
h← g − ℓ0; Eh ← Eh ∪ {(u, v)} ;
Eh ← ∪0≤i≤hEi;
for 0 ≤ i < h do

Ei ←− ∅;
Ei ← ∅

rebuild Bh.

Figure 11: Handling insertion and deletion of edges

shown in Figure 11. Consider deletion of an edge. We first compute its index, say i. Then the
data structure Bi processes the deletion of the edge and updates the spanner Ei accordingly. Let
us consider insertion of an edge. First, we increment counter C, and let g be the highest bit of C
which gets flipped. If g ≤ ℓ0, we just insert the edge to E0 and E0. Otherwise, we insert the edge to
Eh, where h = g − ℓ0, and move all the edges from Ei, i < h to Eh. At this moment, Ei = ∅ for all
i < h. The data structure Bh and the spanner Eh associated with (V, Eh) are then rebuilt.

It follows easily from the fully dynamic algorithm described above that {Ei|i ≤ j} is a partition
of E at each stage. For each i ≤ j, the data structure Bi maintains a (2k−1)-spanner Ei for subgraph
(V, Ei). So using Observation 5.2, it follows that at each stage ∪iEi is a (2k − 1)-spanner of E. To
analyze the update time of the new fully dynamic algorithm, we first state an important lemma.

Lemma 5.4 For each 0 ≤ i ≤ j, |Ei| ≤ 2i+ℓ0 holds at each stage.

Proof: During the algorithm, maximum number of edges in the graph is at most n(n−1)
2 and so

|Ej | ≤ 2j+ℓo . Let us analyze Ei for i < j. Observe that tth bit of the binary counter is reset after
every 2t increment operations. Each increment operation in the counter is triggered by an edge
insertion operation. Therefore, it follows from the algorithm that each set Ei is set to empty set
after every 2i+ℓ0 edge insertions. Hence |Ei| ≤ 2i+ℓ0 holds at each stage. •

In order to bound the update time of the fully dynamic algorithm, it suffices to bound the
update time incurred in maintaining Bi for each i. Consider any arbitrary sequence of µ edge
updates. The data structure Bi is rebuilt after every 2i+ℓ0 insertions, and hence will be rebuilt
at most µ

2i+ℓ0
times. It follows from Theorem 5.2 that the expected total number of operations

for building the data structure and maintaining it under arbitrary sequence of edge deletions (till
next rebuilding) is bounded by O(|Ei|k log2 n). Applying Lemma 5.4, O(|Ei|k log2 n) is bounded
by O(2i+ℓ0k log2 n). Hence for any sequence of µ edge updates, the expected number of operations
performed for rebuilding and maintaining data structure Bi is O( µ

2i+ℓ0
2i+ℓ0k2 log n) = O(µk2 log n).

Since there are O(log n) instances of the data structure B used in the algorithm, it follows that the
expected update time for handling µ edge updates (insertion/deletion) is O(µk2 log2 n). In other
words, expected amortized update time per edge insertion/deletion achieved by the algorithm is
O(k2 log2 n).

Theorem 5.3 There exists a fully dynamic algorithm which can maintain a (2k − 1)-spanner of
an undirected unweighted graph on n vertices such that the expected amortized time per edge inser-
tion/deletion is O(k2 log2 n) and the expected size of the spanner at each stage is O(kn1+1/k log n).
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6 Fully Dynamic Distributed Algorithm for (2k− 1)-Spanner

As a warm up, first we show that our fully dynamic centralized algorithm I (Theorem 4.4) adapts
seamlessly in a synchronous distributed environment. The quiescence time complexity achieved is k
and expected amortized communication complexity per update is O(7k). However, this algorithm
would achieve O(k2m) quiescence message complexity. We then extend this algorithm suitably to
reduce quiescence message complexity to O(km) as well. In this algorithm, a message communicated,
if any, along an edge during a round consists of O(log n) bits.

Note 6.1 It is expected that the reader fully understands the fully dynamic centralized algorithm I
before studying its implementation in the distributed environment.

6.1 Key properties of the fully dynamic centralized algorithm I

We now summarize various key properties of our fully dynamic algorithm I which will play an
important role in its extension to distributed environment.

• Atomic and local nature of updates. In the centralized algorithm, let v be a vertex present at
level i. An update concerning v there is either deletion/insertion of an edge incident on v or a
change in clustering of v at level i. Moreover, the processing of any such update by v requires
only local information - the clustering information of itself and its neighbors at level i.

• Acyclic nature of updates. The processing of an update by a vertex at a level i does not
generate updates for itself or its neighbors at level i. Instead, this processing may generate
update only for level i + 1.

• Superfluousness of the transient updates. Processing of a sequence of updates at level i by
a vertex during a round may generate multiple updates for a single neighbor at level i + 1.
As discussed earlier, only the final update needs to be communicated to the neighbor. The
remaining updates, which are just transient, can be ignored.

Recall the hierarchy Hk = {S0 = V, S1, . . . , Sk = ∅} of subsets defined by our first centralized
algorithm. Hk and the hierarchy of clusterings form the backbone of our centralized algorithm. We
first show that these can be built and maintained in the distributed environment as well.
Hierarchy of sampled vertices and clusterings in distributed environment. The hierarchy
Hk is constructed by performing random sampling at each level from 0 to k− 1 wherein each vertex
from set Si is sampled for the set Si+1 independently with probability n−1/k. The independence
employed in the random sampling enables construction of Hk in the distributed environment as well.

For each vertex u ∈ V , let max(u) be the highest non-negative integer j such that u ∈ Sj. For
maintaining clustering in distributed environment, we require some mechanism using which a vertex
can know if its own or its neighbor’s cluster is sampled at level i. For this purpose, each vertex u
maintains its clustering information at a level i using an ordered pair (v, j) where v is the center of
the cluster to which u belongs and j = max(v). It can be observed that the cluster centered at v
(to which the vertex u belongs at level i) is a sampled cluster at level i if j > i.

6.2 Adapting the fully dynamic centralized algorithm I in distributed

environment

The fully dynamic algorithm I processes each update in the graph in a bottom-up fashion. The
entire algorithm can be seen as execution of k iterations - ith iteration begins with a set of updates
at ith level of the hierarchy. These updates are processed so as to restore the invariants at level i
of the hierarchy. Notice that the updates concerning a vertex at level i are generated either by its
neighbors or itself at level i− 1. As a result, each such update can be communicated directly to the
vertex by the respective neighbor in the distributed environment. The atomic and local nature of
updates implies the following. Firstly, length of each message corresponding to an update will be
O(log n) bits. Secondly, once every vertex receives its updates at level i, each vertex can process
these updates independent of other vertices present at level i. Therefore, the entire computation
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of ith iteration of the centralized algorithm can be performed concurrently in a single round of the
synchronous distributed environment.

Consider the entire time scale partitioned into rounds. Let some updates take place in the graph
during round τ . It follows from acyclic nature of updates that by the end of (τ + i)th round, the
invariants have been restored at all levels upto i − 1 and the wave of updates which originated at
level 0 during round τ has propagated to level i. Let there be some additional updates in the graph
in some subsequent round τ ′. Notice that the two waves of updates will always have a time gap of
τ ′ − τ rounds in their reaching any level i of the hierarchy (see Figure 12(i)). During any round,
processing done at level i will be for those updates only which occurred i round ago. Therefore, the
updates that occur in different rounds can also be processed concurrently without any interference.
This concurrent processing at all levels looks very much like a pipe-line of length k as shown in Figure
12(ii). Based on these insights, we can summarize the adaptation of the centralized algorithm in
the distributed environment in just one sentence- In each round updates are communicated through
respective edges; and each vertex plays its role at all levels concurrently and independently. In
particular, v does the following activity during a round.

• In the beginning of each round, v concurrently sends (and receives) updates to (and from) its
neighbors for each level i < k.

• v concurrently does the following computation for each level i < k:
v processes updates for level i sequentially. This results in generation of updates for level i+1
to be communicated in the next round. However, if there are multiple updates generated for a
neighbor at a level i+1, only the final update will be communicated to that neighbor, and the
transient ones will be discarded. (This is justified due to the superfluousness of the transient
updates as mentioned above)

The following lemma about the distributed algorithm follows from the discussion above.

Lemma 6.1 Let the last update occurred in round q. At the end of round (q + i), there will be no
update message to be processed at any level i or below.

It is a simple corollary of Lemma 6.1 that the quiescence time complexity of the distributed algorithm
is k. Notice that a message communicated during any round is always associated with some update
generated at some level in the previous round. The distributed algorithm described above is an
exact adaptation of our first centralized algorithm (Theorem 4.4). Hence expected amortized O(7k)
number of messages will be communicated per edge insertion/deletion in the graph. An important
consequence of the superfluousness of the transient updates which is exploited in the algorithm is
the following lemma.

Lemma 6.2 Let v be a vertex at level i and x be some neighbor of v which is present at level i + 1.
After processing any sequence of updates at level i during a round, v will have at most one message
(update) of O(log n) bits for x at level i + 1.

It follows from Lemma 6.2 that the number of messages, each of length O(log n), communicated
along an edge in a round will be O(k). Thus the quiescence message complexity of the algorithm is
O(k2m). This leads us to the following theorem.

Theorem 6.1 A (2k − 1)-spanner of expected O(k9n1+1/k log2 n) size can be maintained in syn-
chronous distributed environment with quiescence time k and quiescence message complexity O(k2m).
The message complexity per update in the graph will be expected amortized O(7k). The worst case
length of all messages communicated along an edge in a round will be O(k log n) bits.

With the above warm-up, we now design our fully dynamic distributed algorithm for maintaining
(2k − 1)-spanner with O(km) quiescence message complexity.

6.3 Fully dynamic algorithm in synchronous distributed environment

The reason for O(k2m) quiescence message complexity is that, during a round, a vertex plays its
role at each level i concurrently and thus can generate a total of Θ(k) updates to be communicated
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Figure 12: (i)two waves of updates originating during round τ and τ ′, (ii)processing the updates in
a pipe-line manner in the synchronous distributed model

along an edge. To reduce this bound, in our distributed algorithm, a vertex will play its role at only
one level during a round. The algorithm can be summarized for each vertex v ∈ V as follows.

After exchanging messages with its neighbors in the beginning of a round, let i be the lowest
level for which there exists an unprocessed update for v. v processes all updates of level i in a
sequential manner. If v received, during the same round, an update for level j > i communicated
by a neighbor, say u, then it is stored in a buffer. This update will either be processed in some
future round when there is no update for v for any level below j. However, this update may get
overwritten in case u communicates another update for v at level j.

We now provide complete details of the algorithm. First we provide description of the types of
messages exchanged during the algorithm.

6.3.1 Types of messages

In the distributed environment, we just need the following two types of messages, each of size
O(log n), to communicate any update along an edge.

• ClusteringInfo message. This message informs the receiver about the cluster to which sender
belongs at a level i. For example, consider an edge (u, v). The ClusteringInfo(u, v, x, i,max(x))
message from u to v means that vertex u belongs to cluster centered at x at level i. Recall
that max(x) is the highest level upto which the cluster centered at x remains sampled.

• EdgeDeletion message. An EdgeDeletion message at level i communicates to the receiver that
the sender has deleted the edge from level i and above in the hierarchy while maintaining
either of the invariants at level i− 1.

Consider a vertex v at level i and consider any neighbor of v, say u, at level i− 1. Let us explore
the situations during the algorithm in which u will have to communicate the messages mentioned
above to v along the edge (u, v). Recall that u maintains the set Ei−1(u) of active edges at level i−1.
While processing updates at level i − 1, edge (u, v) may enter and leave the set Ei−1(u). Since the
edges at level i are defined in terms of the active edges maintained at level i−1, therefore, whenever
(u, v) enters Ei−1(u), it can potentially lead to insertion of (u, v) at level i. Vertex u communicates
this update by ClusteringInfo message. Vertex u also uses this message whenever u changes its
cluster at level i. Similarly, whenever edge (u, v) leaves Ei−1(u), it leads to deletion of (u, v) at level
i. Vertex u communicates this update by EdgeDeletion message to v.

Note that updates for a vertex v at level i could also be generated by vertex v itself at level
i− 1. These update could be insertion/deletion of an edge or a change in clustering of v at level i.
These updates are basically like other updates which are communicated by neighbors of v though
they need not be communicated through any edge. Hence these updates will be stored by v locally.
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6.3.2 Data structure kept by a vertex

In addition to the local data structures, namely Di(v) and bucket structure Bi(v), each vertex v will
keep the following data structures in the distributed setting.

• an array Lv such that Lv[i] would store the list of updates for v at level i which got generated
while v restores its invariants at level i− 1.

• For each edge (u, v), an array Qv
u such that Qv

u[i] stores the most recent message received by
v along the edge (u, v) ∈ Ei−1. It also stores a bit with Qv

u[i] which is set whenever a new
message is received along the edge (u, v) for level i and is reset as soon as the corresponding
update gets processed by v.

• An array Output to store the update messages generated for the neighboring vertices during
processing of any round.

Procedure SynRound gives the complete description of the protocol which a vertex v follows
during the dynamic distributed algorithm.

Procedure SynRound(v)

/*Recording the insertion/deletion of edges incident on v */

foreach edge (u, v) added to the network in previous round do
add ClusteringInfo(u, v, u, 0,max(u)) message to Output;

foreach edge (x, v) deleted from network in previous round do
add EdgeDeletion message of level-0 in the list Lv[0];

/*Communicating the updates */

foreach message ∈ Output do
send the message to the concerned neighbor;

foreach message received from neighbor, say u, for level i do
write the message in Qv

u[i] and set the corresponding bit;

/*Processing the updates */

Let i be the lowest level for which v has some unprocessed update;
foreach unprocessed update at level i do

process the update and restore the invariants for level i

Among the new updates generated for level i + 1 eliminate the transient ones;
The new updates for neighbors at level i + 1 get stored in Output;
The new updates for v at level i + 1 get stored in Lv[i + 1] ;

A few technical points about processing the updates

1. In our first fully dynamic centralized algorithm, consider any two vertices u, v belonging to
different unsampled clusters at level i. Note that u as well as v maintain subsets Ei−1(u),
Ei−1(v) of active edges at level i− 1 using their bucket structures. A necessary condition for
the edge (u, v) to be present at level i is that it is present in Ei−1(u) as well as Ei−1(v). In
case the edge (u, v) gets removed from either of the sets Ei−1(u) and Ei−1(v), the edge should
remain absent from Ei. So to maintain consistency between Ei(u) and Ei(v), u (as well as
v) must know the activation status of the edge (u, v) in the bucket structure of v (of u) at
level i− 1. In the distributed environment, the latest message stored in Qv

u[i] can be used to
infer this information by v (likewise by u) as follows. If Qv

u[i] stores ClusteringInfo message,
it implies that (u, v) ∈ Ei−1(u); whereas if Qv

u[i] stores EdgeDeletion message then it would
imply that (u, v) /∈ Ei−1(u).

2. At each level i, each vertex v adapts the following overwriting policy in the buffers Lv[i] and
Qv

u[i] for the updates associated with any edge (u, v) ∈ Ei−1. Let some update be generated
for edge (u, v) at level i. This update could be generated by v itself at level i− 1 (and hence
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to be stored in Lv[i]) or it could be generated by u at level i − 1 (and hence to be stored in
Qv

u[i]). In case there is already some update in the corresponding buffer, then the new update
overwrites the old update.

3. Qv
u[i] has to store the most recent update received along an edge (u, v) ∈ Ei−1 even after it is

processed. This is to infer the activation status of (u, v) in the bucket structure of u at level
i− 1 (see point 1 above). However, an update stored in Lv[i] may be discarded as soon as it
is processed.

6.3.3 Analysis of the algorithm

Lemma 6.1 holds for the new distributed algorithm as well, so its quiescence time complexity is also
k. Since along each edge in a round, at most one message of O(log n) bits is communicated in either
direction, the quiescence message complexity is O(km). Using Lemma 4.6, it would follow that the
expected amortized number of messages communicated per update will be O(7k).

Though the new distributed algorithm is efficient and has a compact description, it is not im-
mediate if the spanner maintained is a (2k − 1)-spanner of expected size O(k9n1+1/k log2 n). The
reason for this is as follows. Consider the set of all the updates communicated for any level i during
any round by the algorithm. While some of these updates may be processed in the next round, the
remaining ones may either be processed in some future round or may even be overwritten as well.
However, as we shall show, the algorithm is robust against such apparent irregularities. The algo-
rithm assumes the validity of only the following principle which holds for all synchronous distributed
environment.

Well ordering principle along an edge
Consider a vertex v. Along an edge (u, v), v receives messages in the order they are communicated
by u, and it processes these update messages in the order they are received. However, there is a
possibility of an update message to be overwritten by an update message which follows it.

Let the last network update be observed during round q. Notice that each vertex present at a
level i maintains the invariants depending upon its neighborhood at level i. Recall from the static
as well as the fully dynamic centralized algorithm I that these invariants ensure that the spanner
maintained at any moment is a (2k − 1)-spanner and has expected size O(k9n1+1/k log2 n). The
structures (subgraph and clustering) at level (i + 1) are defined solely by the invariants maintained
over the structures at level i. Thus, all that is needed to establish the correctness of our fully
dynamic distributed algorithm is the following assertion. At the end of (q + i + 1)th round, the
structures at level (i + 1) are in accordance with the final updates communicated from level i. Using
well ordering principle along an edge, we can prove the validity of this assertion as follows.

Consider the snapshot of neighborhood of a vertex v at level i + 1 in the beginning of the
algorithm. Compared to it, the neighborhood of v might have changed by the end of round (q + i).
There might have been many updates for v at level (i + 1) during this time span. Some of these
updates would have been processed by v, while some updates would have been overwritten. What
can we say about the final update for level i+1 communicated by u to v along edge (u, v)? Note that
the final update message along (u, v) communicated by u represents the final status of u at level i+1
as follows. If the final message is ClusteringInfo message, then it would convey to v the cluster to
which u belongs at level i+1. If the final message is EdgeDeletion message, then it would mean that
(u, v) is not present at level i + 1. Now it follows from the well ordering principle mentioned above
that the final message communicated by u will also be the final message received and processed by
v through edge (u, v). Hence, once all the update messages for level i + 1 received from level i have
been processed, the clustering of v and its neighborhood at level (i + 1) is in complete accordance
with the final updates communicated from level i. Therefore, the spanner maintained at the end of
q + k rounds will be a (2k − 1)-spanner of expected size O(k9n1+1/k log2 n).

Theorem 6.2 A (2k − 1)-spanner of expected O(k9n1+1/k log2 n) size can be maintained in syn-
chronous distributed environment with quiescence time k rounds and quiescence message complexity
O(km). In addition, the expected amortized message complexity achieved per update is O(7k), with
worst case O(log n) bit message communicated along an edge in any round.
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Remark 6.3: Our fully dynamic centralized algorithm I (and distributed algorithm) for (2k− 1)-
spanner achieves time complexity (and message complexity) per update which is exponential in k.
This makes the algorithm suitable for small stretch spanner only. However, the following point is
worth consideration: If an application has to maintain a spanner of size close to O(n polylog n)
instead of O(n), stretch value can be made smaller than log n by a suitable constant factor. In this
case, the time (message complexity) per update achieved by the algorithm can be made arbitrarily
close to O(nǫ), for any constant ǫ > 0. In particular, a O(2

3
2ǫ n polylog n) size spanner of stretch

< 4ǫ
3 log n can be maintained with O(nǫ) expected amortized time per update for any value of ǫ > 0.

7 Improved fully dynamic algorithm for approximate short-

est paths

The problem of maintaining all-pairs shortest paths (APSP) in graphs is defined as follows. There
is an on-line sequence of edge insertions/deletions interspersed with query about shortest path or
distance between any pair vertices in the graph. The objective is to maintain a data structure
which can answer any shortest path query efficiently and handle any update efficiently too. This
problem has gained a lot of attention in the past fifteen years. The best known amortized update
time achieved for the fully dynamic APSP with O(1) query time is O(n2 polylog n). This bound is
achieved by an algorithm designed by Demetrescu and Italiano [18], followed by a slight improvement
by Thorup [46]. The algorithm works for directed weighted graphs. The update time is almost the
best one can achieve if one has to explicitly maintain an all-pairs distance matrix. However, for
undirected unweighted graphs, there exist algorithms which can report approximate distance and
achieve subquadratic update time if the graph is sparse. Two most efficient fully dynamic algorithms
for the problem of all-pairs approximate shortest paths (APASP) are as follows.

• Roditty and Zwick [43] designed the first fully dynamic algorithm for all-pairs approximate
distances. The algorithm achieves better update time at the expense of larger query time. For
any t <

√
m and ǫ > 0, the algorithm achieves amortized O(mn

ǫt ) time per update and takes
O(t) time to report O(1 + ǫ)-approximate distance between any pair of vertices.

• Bernstein [10] designed an algorithm for maintaining all-pairs approximate distances with the
fastest update time. This algorithm works for weighted graphs as well. The algorithm takes
O(log log log n) time to report (2 + ǫ)-approximate distance between any pair of vertices and

achieves O(mn
√

log 3
ǫ
/ log n)) expected amortized time per update for any ǫ > 0.

Elkin [25] showed that a dynamic algorithm for (2k − 1)-spanners can prove to be useful for
improving the update time of algorithm of Roditty and Zwick [43] even further, but at the expense
of increased stretch. The overall strategy devised by Elkin [25] is quite generic, and can be described
as follows.

Maintain a spanner of the graph dynamically and use the dynamic algorithm for APASP on
this spanner instead of the original graph. The updates in the graph are communicated to the
dynamic algorithm for spanner, which in turn generates updates in the spanner. The updates in the
spanner are communicated to the data structure for maintaining APASP which is used for answering
approximate distance query between any pair of vertices. See Figure 13 for details.

Let a fully dynamic algorithm for (2k − 1)-spanner achieves O(µn,k) update time and generates
νn,k updates in the spanner upon a single update in the graph. It can be observed that combining
this algorithm with algorithm of Bernstein [10] as described above would achieve expected amortized

time O(νn,k ·n1+1/k+
√

log 3
ǫ
/ log n +µn,k) per update. The distance reported between any two vertices

will have stretch (2k−1)(2+ǫ). In order to achieve subquadratic update time, both νn,k and µn,k have
to be suitably small. Interestingly, our fully dynamic algorithm II meets both these requirements.

It follows from Theorem 5.3 that our fully dynamic algorithm II for (2k − 1)-spanner achieves
µn,k = O(k2 log2 n). Observe that νn,k is upper bounded by µn,k. Now consider the fully dynamic
algorithm designed by Bernstein [10] for all-pairs (2+ǫ)-approximate shortest paths and set ǫ = 1/k.
This algorithm combined with our fully dynamic algorithm II in the way described above leads to
the following theorem.
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query for APASP

updates in the graph

A1

A2

updates in
the spanner

A2 : dynamic algorithm for (2k − 1)-spanner

A1 : dynamic algorithm for APASP

Figure 13: Combining dynamic algorithms for spanner and APASP for better update time.

Theorem 7.1 Given any undirected unweighted graph on n vertices, and any integer k > 1, all-
pairs 4k-approximate distances can be maintained in the graph fully dynamically with O(log log log n)

query time and O(n1+1/k+
√

log 3k/ log n polylog n) expected amortized time per update.

Remark 7.1: Algorithm stated in Theorem 7.1 is the first fully dynamic algorithm for APASP
which guarantees subquadratic update time and nearly constant query time for any unweighted
undirected graph.

8 Conclusion and open problems

We presented fully dynamic algorithms for maintaining spanners of unweighted graphs in central-
ized as well as distributed environments. These algorithms achieve near optimal performance for
maintaining a (2k − 1)-spanner. We would like to conclude with the following open problems.

1. Our fully dynamic centralized algorithm I (and distributed algorithm) achieves a huge poly-
logarithmic blow up in the size of the spanner that is maintained. It would be interesting to
get rid of this poly-logarithmic factor.

2. Simple randomization principles played key roles in our algorithms. It would be interesting to
explore whether similar results are achievable deterministically too.

3. Our fully dynamic distributed algorithm is for synchronous environment only. It would be
interesting to extend it for asynchronous environment as well.

4. In a very impressive result, Elkin et al. [26] showed that every weighted connected graph on n
vertices contains as a subgraph a spanning tree which achieves average stretch O(log2 n log log n).
They also designed a very efficient static algorithm for constructing such a spanning tree. It
would be an interesting and challenging problem to design dynamic algorithms for maintaining
such spanning trees.
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Appendix A: Proof of Theorem 4.2

We first prove the following Theorem.

Theorem 8.1 Let o1, . . . , oh be h positive numbers in the range [1, b] where b ≤ 3/2. Let Xi,
1 ≤ i ≤ h be h independent random variables such that Xi takes value oi with probability p and zero
otherwise. Let X =

∑

i Xi and µ = E[X ] =
∑

i oip. Then the following variant of Chernoff like
bounds holds for a given 0 < ǫ ≤ 1/4.

Pr[X < (1− ǫ)µ] < e−
ǫ2

5
µ

Proof:

Pr[X < (1 − ǫ)µ] = Pr[−X > −(1− ǫ)µ]

= Pr[exp(−tX) > exp(−(1− ǫ)tµ)]

≤ E[exp(−tX)]

exp(−(1− ǫ)tµ)
=

A(t)

B(t)

The last inequality follows from applying Markov Inequality. We shall now simplify A(t) and B(t)
and evaluate them at t = ln 1

1−ǫ .

A(t) = E[exp(−
∑

i

tXi)]
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= E[Πi exp(−tXi)]

= ΠiE[exp(−tXi)]

= Πi(p.e−toi + (1− p).1)

= Πi(1 + p(e−toi − 1))

≤ Πi expp(e−toi−1) {since 1 + x < ex ∀ x ∈ R}.

= exp

(

p
∑

i

(e−toi − 1)

)

= exp

(

p
∑

i

((1 − ǫ)oi − 1)

)

= exp

(

p
∑

i

((1 − oiǫ +
oi(oi − 1)

2
ǫ2 + ...)− 1)

)

In the expansion of (1− ǫ)oi , the sum of the terms with exponent of ǫ greater than 2 can be bounded
as follows.

≤ oi(oi − 1)

2 · 3 ǫ2[ǫ + ǫ2 + · · ·]

≤ oi(oi − 1)

2 · 3 ǫ2
ǫ

1− ǫ

≤ oi(oi − 1)

2 · 3 ǫ2
1

3
{for ǫ ≤ 1/4}

Using the above bound, we can get an upper bound on A(t) as follows.

A(t) ≤ exp

(

p
∑

i

(−oiǫ +
10

9

oi(oi − 1)

2
ǫ2

)

= exp

(

p
∑

i

(−oiǫ +
5oi

18
ǫ2)

)

{since oi ≤
3

2
}

= exp

(

(−ǫ +
5

18
ǫ2)
∑

i

poi

)

= exp

(

−(ǫ− 5

18
ǫ2)µ

)

Let us simplify B(t) at t = ln 1
1−ǫ .

B(t) = (1 − ǫ)(1−ǫ)µ > (exp(−ǫ + ǫ2/2))µ {for every δ ∈ (0, 1] }

= exp(−(ǫ− 1

2
ǫ2)µ)

Combining the simplified expressions of A(t) and B(t) at t = ln 1
1−ǫ , we get

Pr[X < (1− ǫ)µ] ≤ e−
2ǫ2

9
µ < e−

ǫ2

5
µ

•

Corollary 8.1.1 Let o1, . . . , oh be h positive numbers such that ratio of the largest number to the
smallest number is at most 3/2. Let Xi, 1 ≤ i ≤ h be h independent random variables such that Xi

takes value oi with probability p and zero otherwise. Let X =
∑

i Xi and µ = E[X ] =
∑

i oip. For a
constant a and ǫ ≤ 1

4 , if µ > 5a ln h
ǫ2 ,

Pr[X < (1 − ǫ)µ] < h−a
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We shall now extend the above results to the case where the ratio of the largest to smallest
constant can be arbitrary value b. This is exactly the Theorem 4.2.

Theorem 8.2 Let o1, . . . , oℓ be ℓ positive numbers such that the ratio of the largest to the smallest
number is at most b, and X1, ..., Xℓ be ℓ independent random variables such that Xi takes value oi

with probability p. Let X =
∑

i Xi and µ = E[X ] =
∑

i cip. If ℓ = Ω( b log b
ǫ3p ln n) for any n > log b

then the following bound holds for any a > 1.

Pr[X < (1 − ǫ)µ] < O(n−a)

Proof: We fix ℓ to be a number greater or equal to 40(a+1)b log b
ǫ3p lnn. Let us group the numbers (and

the associated random variables) into sub-groups Gj , j < log b such that ith sub-group consists of
oi’s in the range [(3

2 )i−1, (3
2 )i − 1]. We shall use G(oi) to denote the group to which oi belongs. Let

Yj =
∑

oi∈Gj
Xi and µj = E[Yj ]. Further we shall say that a sub-group Gj is big if there are more

than 20(a+1) ln n
ǫ2p constants in this sub-group, and small otherwise. Let Xbig and Xsmall be the sum

of the random variables from big groups and small groups respectively. Clearly X = Xbig + Xsmall.
Let µbig = E[Xbig ] and µsmall = E[Xsmall]. In order to get an upper bound on the probability of X
being less than (1 − ǫ)µ, we proceed as follows. Firstly we show that the probability of Xbig being
less than (1 − ǫ

2 )µbig is very small. Here we essentially use Corollary 8.1.1 for each big subgroup
and use the union bound. Then we use the fact that µbig > (1 − ǫ

2 )µ by showing that µsmall < ǫ
2µ.

Together it leads to very small probability for deviation of X from (1− ǫ)µ. we provide the details
below.

For a big subgroup Gj , it follows from the Corollary 8.1.1 that

Pr[Yj < (1− ǫ

2
)µj ] ≤ n−(a+1)

Hence arguing for each big group, and using union bound, we get

Pr[Xbig < (1− ǫ

2
)µbig] < n−(a+1) log b ≤ n−a (3)

Now let us bound µsmall as follows.

µsmall = p
∑

i:G(oi) is small

oi ≤ pb log b
20(a + 1) lnn

ǫ2p
≤ p

ǫ

2
ℓ ≤ ǫ

2
µ

Here we used the fact that there are at most log b small sub-groups and each small sub-group has
less than 20(a+1) ln ℓ

ǫ2p elements. It follows that µbig ≥ (1− ǫ
2 )µ. Combining it with Equation 3 we get,

Pr[Xbig < (1− ǫ)µ] < Pr[Xbig < (1− ǫ

2
)2µ] ≤ Pr[Xbig < (1− ǫ

2
)µbig] < n−a

Since X ≥ Xbig, so X < (1− ǫ)µ implies Xbig < (1− ǫ)µ. Hence

Pr[X < (1 − ǫ)µ] < n−a

•
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