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Abstract. Let G = (V,E) be an n-vertices m-edges directed graph.
Let s ∈ V be any designated source vertex, and let T be an arbitrary
reachability tree rooted at s. We address the problem of finding a set
of edges E ⊆ E\T of minimum size such that on a failure of any vertex
w ∈ V , the set of vertices reachable from s in T ∪ E\{w} is the same as
the set of vertices reachable from s in G\{w}.
We obtain the following results:

• The optimal set E for any arbitrary reachability tree T has at most
n− 1 edges.

• There exists an O(m log n)-time algorithm that computes the opti-
mal set E for any given reachability tree T .

For the restricted case when the reachability tree T is a Depth-First-
Search (DFS) tree it is straightforward to bound the size of the optimal
set E by n − 1 using semidominators with respect to DFS trees from
the celebrated work of Lengauer and Tarjan [13]. Such a set E can be
computed in O(m) time using the algorithm of Buchsbaum et. al [4].
To bound the size of the optimal set in the general case we define
semidominators with respect to arbitrary trees. We also present a sim-
ple O(m log n) time algorithm for computing such semidominators. As a
byproduct, we get an alternative algorithm for computing dominators in
O(m log n) time.

1 Introduction

Networks in most real life applications are prone to failures. Failures, though
unpredictable, are transient due to some simultaneous repair process that is
undertaken in the application. This motivates the research on designing fault
tolerant structures for various graph problems.

We distinguish between two models for fault tolerance. In the Pre-Design
fault-tolerant model the network is designed from scratch such that it will fulfill
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certain robustness requirements that are known at the design phase. In the Post-
Design fault-tolerant model the network already exists and it has to fulfill new
robustness requirements. This model reflects the scenario in which the network
is a physical network such as a road network or an electricity network. Such
networks are rarely redesigned from scratch but new robustness requirements
are introduced through the years.

In this paper we consider the fault tolerant reachability problem in the post-
design fault-tolerant model. From theoretical perspective this model is more
challenging as it is stronger than the pre-design model.

We now define the problem formally. Given a directed graph G = (V,E)
and a source vertex s, a subgraph H is said to be a Fault Tolerant Reachability
Subgraph (FTRS) if for any pair of vertices v, w ∈ V , v is reachable from s in
G\{w} if and only if v is reachable from s in H\{w}. We consider the following
problem. We are given an arbitrary reachability tree T of s and we are required
to find a smallest set E ⊆ E of edges which on addition to T gives an FTRS.
We show that for each tree T , the optimal set E is of size at most n− 1. We also
present an algorithm that computes this optimal set in O(m log n) time.

Parter and Peleg [15] considered the question of finding a sparse subgraph of
G that preserves the distances from s under a single vertex failure. They showed
that if G is an undirected unweighted graph then it has a subgraph H with
O(n3/2) edges such that for every v, x ∈ V , it holds that the distance from s
to v in H \ {x} is the same as in G \ {x}. They also showed a lower bound of
Ω(n3/2). Recently Parter [14] showed a bound of O(n5/3) for the case of dual
failure. She also showed that this result is tight. For the case of weighted graphs,
Demetrescu et al. [8] established a lower bound of Ω(m) for single source fault
tolerant shortest paths structure. Therefore, in light of these lower bounds, it
makes sense to relax the problem requirements in order to obtain a graph H of
linear (or almost linear) size, as required by many real world applications.

Baswana and Khanna [1] showed that if one is willing to consider only undi-
rected graphs and to settle for an approximation then there is a subgraph with
O(n log n) edges that preserves the distances up to a multiplicative error of 3.
Parter and Peleg [16] improved this result and obtained a subgraph with at most
3n edges.

Focusing on the reachability in directed graphs instead of approximation
of shortest paths in undirected graphs, can be viewed as a different type of
relaxation.

The fault tolerant reachability is closely related to the notion of dominators.
Given a directed graph G and a designated vertex s we say that vertex v domi-
nates vertex w if every path from s to w contains v. A vertex v is said to be the
immediate dominator of w if (i) v is a dominator of w, and (ii) every dominator
of w (other than v itself) is also a dominator of v.

In a celebrated work [13], Lengauer and Tarjan show that dominators can be
computed in O(mα(m,n)) time, where α(m,n) is the inverse Ackermann func-
tion. Buchsbaum et. al [4] showed how to implement the algorithm of Lengauer
and Tarjan in O(m) time. For more details on the work of dominators, see [4, 11,
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12]. To the best of our knowledge, all non trivial previous results are based on
an initialization phase in which a Depth-First-Search (DFS) tree is computed.

Given a DFS tree T rooted at s it is straightforward using the ideas of
Lengauer and Tarjan [13] to find an FTRS. This is implicit in [13] and is based
on the notion of semidominators for DFS trees. This solves the FTRS problem
in the weaker model of pre-design fault tolerant in which the tree can be chosen
at the network design phase and hence can be chosen to be a DFS tree.

Our main result is that given any arbitrary tree T , we can efficiently compute
an optimal set E whose addition to T gives an FTRS. This solves the FTRS
problem in the more general model of post-design. In order to achieve this we
define semidominators with respect to arbitrary reachability trees and not just
DFS trees. We expect that this definition could be of independent interest. As
a byproduct of our new definition of semidominators we obtain the first non-
trivial algorithm for computing dominators that does not rely on a DFS tree
computation. The algorithm, however, has a running time of O(m log n) which
is slower than the state of the art for this problem by a logarithmic factor.

1.1 Related work

Most of the previous work on fault tolerant structures is on all-pair shortest paths
(APSP). Demetrescu, Thorup, Chowdhury and Ramachandran [8] designed an
O(n2 logn) size data structure that can report the distance from u to v avoiding
x for any u, v, x ∈ V in O(1) time. Bernstein and Karger [3] improved the
preprocessing time of [8] to O(mn polylog n). Duan and Pettie [10] improved
the result of [8] by designing a data structure of O(n2 logn) size that can handle
two vertex faults.

Another closely related problem is the replacement paths problem. In this
problem we are given a source s and a target t and for each edge e on the shortest
path from s to t the algorithm computes the shortest path from s to t in the
graph without e. Many variants of this problem were studied along the years.
For a recent overview see [17] and reference therein.

The questions of finding graph spanners, approximate distance oracles and
compact routing schemes that are resilient to f vertex or edge failures were
studied in [5, 6, 9].

1.2 Organization of the paper

We describe notations and terminologies in Section 2. For sake of completeness
we provide an overview of the FTRS for a DFS tree in Section 3. Here we
also highlight the difficulty in extending the existing algorithm for DFS tree
to arbitrary tree. In Section 4, we generalize the concept of semidominators to
arbitrary tree. In Section 5, we show that for any arbitrary tree T , there exists
an optimal set E of at most n − 1 edges whose addition to T will make it an
FTRS. Furthermore, if we are given the semidominators for all vertices in T , the
set E of edges can be computed in O(n) time. In Section 6, we provide a simple
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O(m log n) time algorithm to compute semidominators. In Section 7, we show
the computation of dominators from semidominators.

2 Preliminaries

Given a directed graph G = (V,E) on n = |V | vertices and m = |E| edges, and a
source vertex s ∈ V , the following notations will be used throughout the paper.

– T : Any arbitrary tree of G rooted at s.

– T (v): The subtree of T rooted at a vertex v.

– par(v): The parent of v in T .

– lca(u, v): The Lowest Common Ancestor of u and v in tree T .

– path(a, b): The tree path from a to b in T . Here a is assumed to be an
ancestor of b.

– out(S): The set of all those vertices in V \S which have an incoming edge
from some vertex in set S.

– deg(S): The sum of the degrees of all vertices in the set S.

– sdom(v): Semidominator of v w.r.t. tree T .

– (σ,w): The sequence obtained by appending w at the end of a sequence σ.

– 〈P :: Q〉: The path formed by concatenating paths P and Q in G. Here it
is assumed that the last vertex of P is the same as the first vertex of Q.

Let P : 〈v1, v2, . . . , vn〉 be a sequence of the vertices V defined by any preorder
traversal of tree T . For notational convenience henceforth, a vertex will also be
denoted by its preorder numbering. Thus, u ≤ v would imply that the preorder
number of u is less than that of v.

Definition 1. A simple path P = (u0, u1, . . . , ut = v) in G is said to be a detour
with respect to a given tree T if u0 is an ancestor of v in T , and for 0 < i < t,
none of the ui’s is an ancestor of v in T .

A detour from u to v can be seen as an alternate path to v when some
intermediate vertex on path(u, v) fails. It follows from Definition 1 that an edge
(u, v) ∈ T is also a detour for vertex v. However, such a detour cannot be used
to handle any failures. The next definition is important to characterize those
detours that are important for fault tolerant.

Definition 2. A detour to v with respect to T that emanates from the ancestor
of v with minimal preorder number is called a highest detour of v.

We denote the highest detour of v with HD(v). In case that there is more
than one highest detour we pick one arbitrarily.
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3 DFS tree versus arbitrary tree

Lengauer and Tarjan [13] presented an algorithm for computing immediate dom-
inators. As part of their work they defined semidominators over a DFS tree T .
Their definition of semidominators can be reformulated as follows:

Definition 3 (Semidominators in DFS Tree). Let T be a DFS tree. For
any vertex v (v 6= s), the semidominator sdom(v) is defined to be the highest
ancestor of v from which there is a detour to v. In other words, sdom(v) is equal
to the first vertex on HD(v).

It can be shown that a subgraph H of G that is composed of a reachability
tree T and the highest detours of all the vertices with respect to T is an FTRS
of G. For the case when T is a DFS tree, Lengauer and Tarjan [13] gave an
O(mα(m,n)) time algorithm for computing such an FTRS with at most 2n− 1
edges. In order to prove the 2n− 1 bound they used a crucial property of DFS
tree which in simple words can be re-stated as follows.

Property 1. If (sdom(v), v) is not an edge in G then we can always find a highest
detour HD(v) for v which can be represented as 〈HD(w) :: path(w, y) :: (y, v)〉,
where y is an in-neighbor of v and w is either equal to y or an ancestor of y.

For the case when T is an arbitrary tree, and not a DFS tree, Property 1 no
longer holds. A simple example that illustrates the situation for general trees is
shown in Figure 1. Thus it is not immediately clear whether we can obtain an
FTRS by adding at most n− 1 edges to an arbitrary tree given by an adversary.
In order to achieve our goal, we define semidominators for arbitrary trees in the
next section.

u

v y

w

a

b

Fig. 1. The highlighted and dashed paths in the figure represent respectively the high-
est detours HD(v) and HD(w) for vertices v and w. Detour HD(v) cannot be expressed
as 〈HD(w) :: path(w, y) :: (y, v)〉 because HD(w) passes through an ancestor of v.
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4 Semidominators with respect to arbitrary trees

Given an arbitrary tree T , let D be a detour from a vertex u to a vertex v with
minimum number of non-tree edges. Let (u1, v1) be the first edge in D and let
(u2, v2), (u3, v3), . . . , (uk, vk) be the sequence of non-tree edges in the order they
appear in D \ (u1, v1). Here u1 = u and vk = v. Consider the edge (ui, vi), where
1 < i ≤ k. Since the segment of D from vi−1 to ui is a path in T it follows
that ui ∈ T (vi−1). Moreover, vi /∈ T (vi−1) as if vi ∈ T (vi−1) we can replace the
segment of D from vi−1 to vi by path(vi−1, vi), thereby reducing the number of
non-tree edges.

Consider now only the vertices (u, v1, v2, . . . , vk). From the above discussion
it follows that these vertices satisfy the relation that v1 ∈ out(u), and for
1 < i ≤ k, vi ∈ out(T (vi−1)). This motivates us to define the notion of a valid
sequence as follows.

Definition 4 (Valid sequence). A sequence of vertices (u, v1, v2, . . . , vk = v)
is said to be a valid sequence with respect to tree T if the following two conditions
hold:

(i) (u, v1) is an edge in G.
(ii) for 1 < i ≤ k, vi ∈ out(T (vi−1)).

Let u and v be any two vertices such that u is an ancestor of v in T . It follows
from Definition 4 that if there exists a detour from u to v in T , then there exists
a valid sequence from u to v. However, the other direction is not always true,
that is, a valid sequence from u to v in T may not correspond to a detour in T .
For example, consider the sequence σ = (u, b, w, v) in Figure 1. This is a valid
sequence but there is no detour from u to v. The one to one correspondence
between detours and valid sequences holds only when T is a DFS tree.

We will now define semidominator with respect to arbitrary trees using valid
sequence. In arbitrary trees, it will turn out that if there is a valid sequence from
sdom(v) to v and sdom(v) 6= par(v), then there are two vertex disjoint paths
from sdom(v) to v. Our FTRS for any tree given tree T will store these vertex
disjoint paths in a compact manner.

Definition 5. A vertex u is semidominator of v if (i) u is an ancestor of v,
(ii) there is a valid sequence from u to v, and (iii) there is no other vertex on
path(s, u) which has a valid sequence to v.

Remark 1. There is a detour from an ancestor u of v to v in a DFS tree if and
only if there is a valid sequence from u to v. Hence in the case of DFS tree,
Definition 5 degenerates to Definition 3.

The following lemma provides an alternative definition to semidominators.
We shall use these two definitions interchangeably henceforth.

Lemma 1. Let u be a vertex with minimum preorder number such that there
exists a valid sequence from u to v. Then u is the semidominator of v.
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Proof To prove the lemma it suffices to show that u must be an ancestor
of v. Let us assume, towards a contradiction, that u is not an ancestor of v.
Thus, there is a vertex w such that w = lca(u, v), w 6= v and w 6= u. Let
(u = v0, v1, v2, . . . , vk = v) be a valid sequence from u to v. Let w1 and w2

be the children of w such that v0 = u ∈ T (w1) and vk = v ∈ T (w2). Let vj
be the first vertex of the sequence that doest not lie in T (w1). If j = 1, then
the in-neighbor v0 of v1 lies in T (w1). If j > 1, then vj has an in-neighbor
say uj that lies in T (vj−1) ⊆ T (w1). Thus, vj ∈ out(T (w1)). The sequence
σ = (w,w1, vj , vj+1, . . . , vk) is also a valid sequence that reaches v, and since
w < u, we get a contradiction. �

5 FTRS for any arbitrary tree

In this section we provide the construction of an optimal size FTRS containing
any given arbitrary tree. Our starting point is the following lemma that will be
used to show that in order to have two vertex disjoint paths from sdom(v) to v,
for each v, we need to keep only one extra incoming edge per vertex.

Lemma 2. Let u, v, w ∈ V be three vertices such that v ∈ out(T (w)), v /∈
out(u), and u is some common ancestor of v and w. Let H be a subgraph of G
containing tree T and an edge (y, v), where y ∈ T (w). If H contains two vertex
disjoint paths from u to w, then H also contains two vertex disjoint paths from
u to v.

Proof Let us assume towards a contradiction that H does not contain two
vertex disjoint paths from u to v. Then it follows from Menger’s Theorem that
there exists a vertex x (other than u, v) such that every path from u to v in H
passes through x, therefore vertex x is on path(u, v). Let P and Q be two vertex
disjoint paths from u to w in H (see Figure 2). Since w 6= x, at least one out of
these two paths, say Q, does not pass through x. Now 〈Q :: path(w, y) :: (y, v)〉
gives a path from u to v not passing though x. (Though this concatenated
path may contain loops, but we can remove all these loops). Thus we get a
contradiction. So H must contain two vertex disjoint paths from u to v. �

u

v
y

wP

Q

Fig. 2. Two vertex disjoint paths P and Q from u to w.
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We now show that a subgraph of G containing a tree T is an FTRS if it
contains 2 vertex disjoint paths from sdom(v) to v, for each possible vertex v.

Lemma 3. Any subgraph H of G satisfying the following conditions is an FTRS:
(i) H contains tree T , (ii) If v is any vertex such that sdom(v) 6= par(v), then
there exists two vertex disjoint paths from sdom(v) to v in H.

Proof Consider the failure of an ancestor x of a vertex w in T . Suppose w
is reachable from s in G \ {x}. Then there must exist a detour D from u to v,
where u and v are respectively vertices lying above and below x in path(s, w).
Now a detour from u to v implies that there exists a valid sequence from u to
v. So the semidominator of v is either equal to u or an ancestor of u. Since here
sdom(v) 6= par(v), H contains two vertex disjoint paths, say P and Q from
sdom(v) to v. Without loss of generality we can assume that x does not lie in P .
Thus 〈path(s, sdom(v)) :: P :: path(v, w)〉 is a replacement path to w (avoiding
x) contained in subgraph H . �

For the rest of this section, let σ(v) denote a valid sequence from sdom(v) to v
of minimum possible length. The following lemma will be used in the construction
of an optimal size FTRS containing any arbitrary tree T .

Lemma 4. Consider a vertex v and its minimum length valid sequence σ(v) =
(u = v0, . . . , vk−1, vk = v). Let w = vk−1 be the second last vertex in σ(v). If
|σ(v)| > 2, then sdom(w) = sdom(v) and |σ(w)| < |σ(v)|.

Proof To prove this lemma we use the alternative definition of semidomina-
tors as given in Lemma 1. If sdom(w) < sdom(v), then (σ(w), v) will be a valid
sequence for v starting from a vertex whose preorder number is less than that
of sdom(v). This is because v ∈ out(T (w)). Similarly, if sdom(v) < sdom(w),
then σ(v) \ {v} will be a valid sequence for w starting from a vertex whose
preorder number is less than that of sdom(w). Thus sdom(w) must be equal
to sdom(v). Now suppose |σ(v)| ≤ |σ(w)|. Then σ(v) \ {v} would be a valid
sequence from sdom(w) to w of length strictly less than |σ(w)|. Hence |σ(w)|
must be less than |σ(v)|. �

Let L be the list of vertices in G arranged in the non-decreasing order of
length of σ(v). The following theorem presents an algorithm for computing an
FTRS of optimal size assuming that the minimum length valid sequences for all
vertices is known.

Theorem 1. Given any arbitrary reachability tree T rooted at s, Algorithm 1
computes an optimal set E such that T ∪ E is an FTRS. Moreover, the size of E
is always bounded by n− 1.

Proof Note that H already contains the tree T . So it follows from Lemma 3
that it is sufficient to prove that for any vertex v if sdom(v) 6= par(v), then H
contains two vertex disjoint paths from sdom(v) to v. The proof is by induction
on list L. Consider a vertex v such that sdom(v) 6= par(v). If (sdom(v), v) is a
forward edge, then the tree path from sdom(v) to v, and the edge (sdom(v), v)
are two vertex disjoint paths from sdom(v) to v in H . Thus let us consider the
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Algorithm 1: Computing an FTRS H containing an arbitrary tree T .

1 H ← T ;
2 foreach v ∈ L do

3 if (sdom(v), v) is a forward edge then

4 H ← H ∪ (sdom(v), v);
5 else if |σ(v)| > 2 then

6 w ← Second last vertex in σ(v);
7 y ← In-neighbor of v lying in T (w);
8 H ← H ∪ {(y, v)};

9 end

10 end

case when |σ(v)| > 2. Let w be the second last vertex of σ(v) and y be an in-
neighbor of v lying in T (w). So Lemma 4 implies that sdom(w) = sdom(v), and
w precedes v in list L.

We first consider the case when sdom(w) 6= par(w). Since w will appear
before v in L, by induction hypothesis H contains two vertex disjoint paths from
sdom(w) to w. Now the edge (y, v) lies inH , so Lemma 2 implies thatH contains
two vertex disjoint paths from sdom(v) to v also. Next let us consider the case
when sdom(w) = par(w). Since v lies outside T (w) but in the subtree rooted
at par(w) = sdom(v), we have that sdom(v) = lca(w, v) = lca(y, v). Thus in
this case path(sdom(v), v) and path(sdom(v), y)::(y, v) form two vertex disjoint
paths from sdom(v) to v. Hence, it can be seen that Algorithm 1 computes an
FTRS containing tree T .

Note that we add an extra incoming edge to v only if sdom(v) 6= par(v). In
this case, there exist two vertex disjoint paths from sdom(v) to v in G. So v will
be reachable from s even after failure of par(v). Thus any FTRS must keep an
additional incoming edge to v in this case. Hence the subgraph H is indeed a
minimum size FTRS containing tree T . �

Remark 2. Given sdom(v) and a minimum length σ(v) for each v, Algorithm 1
takes O(n) time to compute optimal FTRS containing any given tree T .

In the following section, we present an O(m logn) time algorithm for computing
sdom(v) and a minimum length σ(v) for all v. This implies that given any tree
T , we can compute an optimal FTRS containing T in O(m log n) time.

6 Algorithm for computing semidominators and valid

sequences

Our algorithm for computing semidominators is an iterative algorithm. It pro-
cesses the vertices in the increasing order of the preorder numbering P of T . Let
vi denote the vertex at the ith place in P . During ith iteration, the algorithm
computes the set Wi consisting of all those vertices whose semidominator is vi.
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Consider a vertex vi. Let B denote the set of all those vertices w for which
there exists a valid sequence starting from vi and ending at w. The set B can
be computed as follows. We initialize B as the out-neighbors of vi. Next we add
out(T (w)) to B for each w in B, and proceed recursively. By the alternative
definition of semidominators as in Lemma 1 we have that Wi = B \ (∪j<iWj).

In order to design an efficient implementation of the algorithm outlined
above, there are two requirements. The first requirement is that while computing
valid sequences from vi we should not process those vertices whose semidomi-
nator have already been computed. For this purpose, we keep a flag variable
active/inactive corresponding to each vertex w in G. At any instant of time the
active vertices are those vertices whose semidominator has not yet been com-
puted. The second requirement is that given any vertex w we should be able
to compute the set of active nodes in out(T (w)) efficiently. In order to fulfill
these requirements, we use a data structure D that supports the following two
operations efficiently.

1. ActiveOutNghbrs(D, T (w)): return the set of active nodes in out(T (w)).

2. MarkInActive(D, S): mark the vertices in set S as inactive. This is done
by simply deleting from D the incoming edges to all vertices present in set
S.

The data structure D is a suitably augmented segment tree formed on an Euler
tour of the tree T . The data structure takes O(deg(A) log n)) time to perform
ActiveOutNghbrs(D, T (w)) operation, where A is the set of vertices reported.
It takes O(deg(S) logn) time to perform MarkInActive(D, S) operation. We
provide the complete details of the data structure in Subsection 6.1.

Algorithm 2 gives the pseudo code for computing semidominators. It main-
tains a queue Q throughout the run of algorithm. The semidominator of the
vertices is computed in the order they are enqueued. Initially all the vertices in
G except root are marked as active. A vertex is marked inactive as soon as it is
enqueued in Q. In the ith iteration the algorithm computes the set of all those
vertices whose semidominator is vi as follows. First it computes the set S of all
the active out-neighbors of vi. This set is enqueued and for each w ∈ S, σ(w) is
set as (vi, w). Next while Q is non empty, it removes the first vertex say x from
Q. For each active node w in out(T (x)), σ(w) is assigned as (σ(x), w) and w
is enqueued in Q. This process is repeated until Q becomes empty. Vertex vi is
assigned as semidominator of all the vertices enqueued in the ith iteration.

Figure 3 illustrates the execution of our algorithm. Figure 3(a) depicts the
first iteration which is supposed to compute W1. The vertices that are enqueued
before the while loop are 〈2, 14〉. The execution of the while loop will place
vertices 15 and 16 into the queue in this order. It can be visually inspected that
these vertices constitute W1. Similarly Figure 3(b) depicts the second iteration
that is supposed to compute W2. The vertices that are enqueued before entering
the while loop are 〈3, 7, 12〉. The execution of the while loop will place vertices
5,10,4,8,11 into the queue in this order. It can be visually inspected that these
vertices constitute W2.
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Algorithm 2: Computing semidominator and the corresponding valid se-
quence

1 Q ← ∅;
2 for i = 1 to n do

3 S ← Set of active vertices lying in out(vi);
4 Enqueue(Q, S);
5 MarkInActive(D, S);
6 foreach w ∈ S do σ(w) = (vi, w);
7 while (Q 6= ∅) do
8 x← Dequeue(Q);
9 sdom(x)← vi;

10 S ← ActiveOutNghbrs(D, T (x));
11 Enqueue(Q, S);
12 MarkInActive(D, S);
13 foreach w ∈ S do σ(w) = (σ(x),w);

14 end

15 end
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(a) (b)

Fig. 3. The filled vertices in Figure (a) and (b) respectively constitute the sets W1 and
W2. Figure (b) shows that all the vertices in W1 are marked inactive in round 2.

For each vertex u, let σ(u) denote a valid sequence from sdom(u) to u of
minimum possible length. Let L be the list of vertices in G arranged in the
non-decreasing order of |σ(u)|. Then it can be proved by induction on L that
Algorithm 2 correctly computes (i) semidominator of u, and (ii) a minimum
length valid sequence from sdom(u) to u, for each vertex u in G.

We now analyze the time complexity of Algorithm 2. The total time taken
by Step 3 in the algorithm is O(m). The time taken by steps 5, 10, and 12 is
O(log n) times the sum of degrees of vertices enqueued in Q. Since each vertex
is enqueued at most once, the running time of the algorithm is O(m log n).

Theorem 2. There exists an O(m log n) time algorithm that for any given graph
with n vertices and m edges, and any given reachability tree T , computes the
semidominator and a minimum length valid sequence for each vertex in G.
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From Theorems 1 and 2, we directly get the following result.

Theorem 3. There exists an O(m log n) time algorithm that for any given graph
G with n vertices and m edges, and any given reachability tree T rooted at source,
computes an optimal set E such that T ∪ E is an FTRS for G.

6.1 Data structure

Let T be a segment tree [2] whose leaf nodes from left to right correspond to the
sequence 〈v1, ..., vn〉 (see Figure 4). Our data structure will be T whose nodes
are suitably augmented as follows. Let (u, v) be an edge in G. We store a copy
of the edge as the ordered pair (u, v) at all ancestors of u (including itself) in
tree T . Thus each edge in G is stored at O(log n) levels in T . Let E(b) be the
collection of edges stored at any node b in T . We keep the set E(b) sorted by the
second endpoint of the edges in a doubly link list. For each edge (u, v) ∈ E, we
also store pointer to all logn copies of it in T . The size of the data structure is
O(m log n) in the beginning.

1

Tree T

2

3

4

5

6 7

8

Segment tree T

1 2 3 4 5 6 7 8

(5,2) (6,3) (5,6) (5,7) (6,7) (5,8)

∅

1 2 3 4 5 6 7 8

w z

← Vertices of T

Fig. 4. Data Structure.

The operation MarkInActive(D, S) involves deletion of incoming edges to
all the vertices in set S. Since we store pointers to all log n copies of an edge, a
single edge can be deleted from the data structure in O(log n) time. So the time
taken by this operation is O(deg(S) log n).

We now show thatD can perform the operationActiveOutNghbrs(D, T (w))
quite efficiently. Let S0 be the set of active nodes in out(T (w)). Note that the
preorder numbering of the vertices in T (w) will be a contiguous subsequence of
[1, .., n], and w would be the vertex of minimum preorder number in T (w). Let
z be the vertex with maximum preorder number in subtree T (w) (This informa-
tion can be precomputed in total O(n) time for all vertices in the beginning).
So [w, .., z] denotes the set of vertices in T (w).

Notice that any contiguous subsequence of [1, .., n] can be expressed as dis-
joint union of at most log n subrees in T . Let τ1, ..., τℓ denote these subrees for
the subsequence [w, .., z]. For i = 1 to ℓ, let Ei denote the set of all those edges
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(x, y) such that x is a leaf node of τi and y lies outside the set [w, .., z]. It can be
observed that the desired set S0 corresponds to the set of second-endpoints of
all edges in the set ∪ℓi=1Ei. Let b1, ..., bℓ respectively denote the roots of subtrees
τ1, ..., τℓ in T . Then set Ei can be computed by scanning the list E(bi) from
beginning (and respectively end) till we encounter an edge (u, v) with v lying in
range [w, .., z]. (See Figure 4). Thus the time taken by the operation Active-

OutNghbrs(D, T (w)) is bounded by O(deg(S0) + logn), where S0 is the set of
vertices reported.

This data structure can be preprocessed in O(m logn) time as follows. First
we compute set E(b) for each leaf node b of T . This takes O(m) time. Now E(b)
for an internal node b can be computed by simply merging the lists E(b1), E(b2)
where b1 and b2 are children of b. The space complexity of D is also O(m log n).

Theorem 4. Given a graph G, it can be preprocessed in O(m logn) time to
build a data structure of size O(m log n) to perform the following operations.

1. ActiveOutNghbrs(D, T (w)): return the set of active nodes in out(T (w)).
2. MarkInActive(D, S): mark the vertices in set S as inactive.

The time taken by both of the above operations is O(deg(S) log n) where S is
the set of vertices reported in the first case, and S is the set of vertices marked
inactive in the second case.

7 Computation of dominators from semidominators

A vertex u 6= v is said to be a dominator of v if every path from s to v passes
through u. Thus u is a dominator of v if and only if either u = s, or v becomes
unreachable from s on removal of u from G. For each vertex v, we use D(v) to
denote the set of dominators of v. In order to compute the set D(v) it suffices
to compute idom(v) defined as follows.

Definition 6 ([13]). Vertex u is said to be immediate dominator of v, denoted
by u = idom(v), if u is a dominator of v and every other dominator of v (other
than vertex u itself) is also a dominator of u.

The algorithm for computing immediate dominators from semidominators is
almost the same as for the restricted case when T is a DFS tree. For the sake of
completeness, we now provide this algorithm. The starting point is the concept
of relative dominators defined as follows.

Definition 7 ([4]). A vertex w is said to be a relative dominator of v if w
is a descendant of sdom(v) on path(sdom(v), v) for which sdom(w) has the
minimum preorder numbering.

The following relationship between relative dominators, immediate domina-
tors, and semidominators was shown by Buchbaum et al. [4] for DFS tree. We
show that this relation holds even for any arbitrary tree as well.
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Lemma 5 ([4]). For any vertex v, if sdom(rdom(v)) = sdom(v), then idom(v)
= sdom(v), otherwise, idom(v) = idom(rdom(v)).

Proof Let w be a relative dominator of v, and u = idom(w). For the case
when w = v, it is easy to see that idom(v) = sdom(v). Thus we consider the
case w 6= v. In this case, in order to prove that idom(v) = u, we need to show
that u is a dominator of v and there does not exists any other dominator of v
on path(u, v).

We first show that v is unreachable from s in G \ {u}. Since u = idom(w),
we have that w is unreachable from s in G\{u}. Assume towards a contradiction
that there is a path from s to v in G\{u}. Then there must exist a detour D
from a to b where a is an ancestor of u and b is a descendant of w belonging
to path(w, v). Since detour D implies existence of a valid sequence from a to
b, it follows that sdom(b) ∈ path(s, a). This contradicts that w is a relative
dominator of v. Hence v is unreachable from s in G\{u}. Thus u is a dominator
of v.

In order to show that u is the immediate dominator of v, it suffices to
show that there does not exist any vertex on path(u, v)\{u} whose removal
disconnects v from s. Assume towards a contradiction that there exists such
a vertex x. Since there are two vertex disjoint paths from sdom(v) to v, so x
can not lie on path(sdom(v), v)\{sdom(v), v}. Also note that x can not lie on
path(u,w)\{u,w} as there are two vertex disjoint paths from idom(w) to w.
Since sdom(v) is an ancestor of w, this contradicts the existence of x. �

Lemma 5 suggests that once we have computed relative dominators, the
immediate dominators can be computed in O(n) time by processing the vertices
of T in a top down manner. The task of computing relative dominators can be
formulated as a data structure problem on a rooted tree as follows.

Each tree edge (u, y) is assigned a weight equal to sdom(y). It can be seen
that if (a, w) is minimum weight edge on path(sdom(v), v), then w is a relative
dominator of v. So in order to compute relative dominators, all we need is to
compute the least weight edge on any given path of tree T . This problem turns
out to be an instance of Bottleneck Edge Query (BEQ) problem on trees with
integral weights. Demaine et al. [7] recently presented the following optimal
solution for this problem.

Theorem 5 (Demaine et al. [7]). A tree on n vertices and edge weights in
the range [1, n] can be preprocessed in O(n) time to build a data structure of
O(n) size so that given any u, v ∈ V , the edge of smallest weight on path(u, v)
can be reported in O(1) time.

We process tree T in a top down order to compute idom(v) as follows. We
first compute rdom(v) in O(1) time by performing BEQ query between v and
sdom(v). Using the data structure stated in Theorem 5, it takes O(1) time.
Let w = rdom(v). If w = v, then we set idom(v) ← sdom(v). Otherwise, we
set idom(v) ← idom(w). Since we process the vertices in a top down fash-
ion, idom(w) has already been computed. Hence it takes O(1) time to compute
idom(v). So it can be concluded that we can compute immediate dominators of
all vertices in O(n) time only if we know semidominators of all vertices.
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