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Abstract Depth First Search (DFS) tree is a fundamental data structure for graphs
used in solving various algorithmic problems. However, very few results are known for
maintaining DFS tree in a dynamic environment—insertion or deletion of edges. We
present the first algorithm for maintaining a DFS tree for an undirected graph under
insertion of edges. For processing any arbitrary online sequence of edge insertions,
this algorithm takes total O(n2) time.

Keywords Dynamic · Incremental · Undirected graph · Depth first search

1 Introduction

Depth First Search (DFS) is a well known graph traversal technique. This technique
has been reported to be introduced by Charles Pierre Trémaux, a nineteenth century
French mathematician who used it for solving mazes. However, it was Tarjan, who
in his seminal work [22], demonstrated the power of DFS traversal for solving vari-
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ous fundamental graph problems, namely, topological sorting, connected components,
biconnected components and strongly-connected components. Since then, DFS tra-
versal is one of the most widely used graph traversal techniques. Interestingly, the
role of DFS traversal is not confined to merely the design of efficient algorithms. For
example, consider the classical result of Erdős and Rényi [8] for the phase transition
phenomena in randomgraphs. There existmany proofs of this result which are intricate
and based on highly sophisticated probability tools. However, recently, Krivelevich
and Sudakov [14] designed a truly simple, short, and elegant proof for this result based
on the insights from a DFS traversal in a graph.

ADFS traversal is a recursive algorithm to traverse a graph. This traversal produces
a rooted spanning tree (or forest), called DFS tree (forest). Let G = (V, E) be an
undirected graph on n = |V | vertices and m = |E | edges. It takes O(m + n) time to
perform aDFS traversal and generate itsDFS tree (forest). For a given graph, theremay
exist many DFS trees rooted at a given vertex r ∈ V . However, if the DFS traversal
is performed strictly according to the adjacency lists, then there will be a unique DFS
tree rooted at r . The ordered DFS tree problem is to compute the order in which the
vertices get visited during this restricted traversal.

A DFS tree, say T , imposes the following relation on each non-tree edge (x, y) ∈
E\T .

R(x, y): Either x is an ancestor of y in T or y is an ancestor of x in T .
This relation defined by a DFS tree has played the key role in solving various graph

problems. Similar relations exist for a DFS tree in a directed graph.
Most of the graph applications in the real world deal with graphs that keep changing

with time. An algorithmic graph problem is modeled in the dynamic environment as
follows. There is an online sequence of insertion and deletion of edges and the aim
is to maintain the solution of the given problem after every edge update. To achieve
this aim, we need to maintain some clever data structure for the problem such that
the time taken to update the solution after an edge update is much smaller than that
of the best static algorithm. A dynamic graph algorithm is said to be fully dynamic if
it handles both insertion as well as deletion updates. A partially dynamic algorithm
is said to be incremental or decremental if it handles only insertion or only deletion
of edges respectively. In the last two decades, many elegant dynamic algorithms have
been designed for various graph problems such as connectivity [7,11–13], reachability
[19,21], shortest path [6,20], spanner [4,10,18], and min-cut [23].

Though an efficient algorithm is known for the static version of the DFS tree prob-
lem, the same is not true for its dynamic counterpart. Reif [16,17] was the first to
address the complexity of the DFS problem in a dynamic environment. He showed that
the ordered DFS tree problem is one of the hardest problems to dynamize in the entire
class P . Later,Milterson et al. [15] introduced a class of problems called non-redundant
polynomial (NRP) complete. They showed that if the solution of any NRP-complete
problem is updateable in O(polylog(n)) time, then the solution of every problem in
the class P is updateable in O(polylog(n)) time. The ordered DFS tree problem was
shown to be NRP-complete. So it is highly unlikely that any O(polylog(n)) update
time algorithm would exist for the ordered DFS tree problem in the dynamic setting.

Apart from showing the hardness of the ordered DFS tree problem, very little work
has been done on the design of any non-trivial algorithm for the problemofmaintaining
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any DFS tree in a dynamic environment. For the case of a directed acyclic graph
(DAG), Franciosa et al. [9] presented an incremental algorithm for maintaining a DFS
tree in O(mn) total time. Recently, again only for a DAG, Baswana and Choudhary [2]
presented a decremental algorithm formaintaining aDFS tree in expectedO(mn log n)

total time. These are the only non-trivial results available for the dynamic DFS tree
problem. Maintaining a DFS tree incrementally for an undirected graph (or general
directed graph) was stated as an open problem by Franciosa et al. [9]. The following
short discussion may help one realize the non-triviality of maintaining a DFS tree
incrementally in an undirected graph.

Consider insertion of an edge (x, y). If R(x, y) holds, then no change is required
in the DFS tree. Such an edge is called a back edge. Otherwise, the relation R(x, y)
does not hold for the edge (x, y), and we call such an edge a cross edge. See Fig. 1
for a better visual description. Let w be the lowest common ancestor of x and y. Let
u and v be its children such that x ∈ T (u) and y ∈ T (v), where T (u) and T (v) are
the subtrees of the DFS tree rooted at u and v respectively. Insertion of the edge (x, y)
violates the property of a DFS tree as follows. Let S be the set of visited vertices when
the DFS traversal reaches w. Since T (u) and T (v) are two disjoint subtrees hanging
from w, the vertices of T (u) and T (v) belong to disjoint connected components in
the subgraph induced by V \S. However, the insertion of edge (x, y) connects these
components such that the vertices of T (u) ∪ T (v) have to hang as a single subtree
from w in the DFS tree. This implies that T (u) will have to be rerooted at x and hung
from y (or T (v) will have to be rerooted at y and hung from x). This rerooting will
force restructuring of T (u) because, in order to keep it as a DFS subtree, we need
to preserve the relation R for every non-tree edge in T (u). It is not obvious how to
perform this restructuring in an efficient manner.

1.1 Our Result

We present the first incremental algorithm for maintaining a DFS tree (or DFS forest if
the graph is not connected) in an undirected graph.Our algorithm takes a total of O(n2)
time to process any arbitrary online sequence of edges. In order to handle insertion of
cross edges efficiently, we use two principles. The first principle, calledmonotonic fall,

123



Algorithmica (2017) 79:466–483 469

ensures that the depth of each vertex never decreases during the algorithm. The second
principle,minimal restructuring, ensures that while rerooting a subtree upon insertion
of a cross edge, we perform minimal changes in the subtree in order to preserve the
relationR. While none of these two principles in isolation is effective, it is their novel
combination that leads to an efficient incremental algorithm for a DFS tree. Observe
that the amortized update time per edge insertion is Ω(n2/m), which is O(1) for the
case m = Θ(n2).

A standard way of storing any rooted tree is by keeping a parent pointer for each
vertex in the tree. We call this representation an explicit representation of a tree. Our
algorithm maintains a DFS tree explicitly at each stage. Baswana and Choudhary [2]
recently established a worst case lower bound of Ω(mn) for maintaining the ordered
DFS tree explicitly under insertion (or deletion) of edges. In the light of this lower
bound, our algorithm implies that maintaining a DFS tree explicitly in the incremental
environment is provably faster than maintaining an ordered DFS tree for dense graphs.

We also show the existence of a sequence of Θ(n) edge insertions such that any
incremental algorithm that obeys the principle of monotonic fall must require Ω(n2)
time for maintaining a DFS tree explicitly. Therefore, the O(n2) time complexity of
our algorithm is indeed tight even for sparse graphs.

Furthermore, our algorithm uses only O(m + n) extra space. Excluding the stan-
dard data structures for maintaining ancestors in a rooted tree [1,5], our algorithm
employs very simple data structures. These salient features make our algorithm an
ideal candidate for practical applications as well.

1.2 Organization of the Article

In Sect. 2, we describe various notations and tools used throughout our paper. Section
3 presents the overview of our algorithm including the two principles used by it.
Then in Sect. 4, we describe the rerooting procedure based on these principles. With
this rerooting procedure at its core, we describe our incremental algorithm gradually
in two steps. First we describe a basic incremental algorithm that achieves overall
O(n3/2m1/2) time in Sect. 5. In Sect. 6, we describe and analyze our main algorithm.
Interestingly, this algorithm is obtained by a small tweak to the basic incremental
algorithm; however, its careful analysis establishes a bound of O(n2) on its time
complexity. We later establish the tightness of the upper bound of our algorithm.

2 Preliminaries

Given an undirected graph G = (V, E) on n = |V | vertices and m = |E | edges, the
following notations will be used throughout the paper.

– T : A DFS tree of G at any time during the algorithm.
– r : Root of the tree T .
– par(v) : Parent of v in T .
– P(u, v) : Path between u and v in T .
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– level(v) : Level of a vertex v in T such that level(r) = 0, and
level(v) = level(par(v)) + 1.

– level(e) : Level of an edge e = (x, y) in T such that
level(e) = min(level(x), level(y)).

– T (x) : The subtree of T rooted at a vertex x .
– LC A(u, v) : The Lowest Common Ancestor of u and v in tree T .
– L A(u, k) : The ancestor of u at level k in tree T .

We explicitly maintain the level of each vertex during the algorithm. Since the tree
grows from the root in the downward direction, a vertex u is said to be at higher level
than vertex v if level(u) < level(v). Similarly an edge e is said to be higher than
edge e′ if level(e) < level(e′).

We also maintain the following information about the DFS tree T during the algo-
rithm.

– Each vertex v keeps a pointer to par(v). For the root r , par(r) = r .
– For each v ∈ T , we keep a list of all its children in tree T . This facilitates the
traversal of T (v) from the vertex v.

– Each vertex v keeps a list B(v) which consists of all the back edges that originate
from T (v) and terminate at par(v). This, apparently uncommon and perhaps
unintuitive, way of keeping the back edges leads to efficient implementation of the
rerooting procedure. B(v) is maintained as a circular linked list to enable merging
of two lists in O(1) time.

Our algorithm uses the following results for the dynamic version of the Lowest Com-
mon Ancestor (LCA) and the Level Ancestors (LA) problems.

Theorem 1 [5] There exists a dynamic data structure for a rooted tree T that uses
linear space and can report LCA(x, y) in O(1) time for any two vertices x, y ∈ T .
The data structure supports insertion or deletion of any leaf node in O(1) time.

Theorem 2 [1] There exists a dynamic data structure for a rooted tree T that uses
linear space and can report LA(u, k) in O(1) time for any vertex u ∈ T . The data
structure supports insertion of any leaf node in O(1) time.

The data structure for the Level Ancestor problem, as stated in Theorem 2, can be
easily extended to handle the deletion of a leaf node in amortized O(1) time using the
standard technique of periodic rebuilding.

If the graph is not connected, we need to maintain a DFS tree for each connected
component. However, our algorithm, at each stage, maintains a single DFS tree which
stores the entire forest of these DFS trees as follows. We add a dummy vertex s to the
graph in the beginning and connect it to all the vertices. We maintain a DFS tree of
this augmented graph rooted at s. It can be easily seen that the subtrees rooted at the
children of s correspond to DFS trees of various connected components of the original
graph.

3 Overview of the Algorithm

Our algorithm is based on two principles. The first principle, called monotonic fall of
vertices, ensures that the level of a vertex may only fall or remain the same as the edges
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are inserted. Consider insertion of a cross edge (x, y) as shown in Fig. 1. In order to
ensure monotonic fall, the following strategy is used. If level(y) ≤ level(x), then
we reroot T (v) at y and hang it through edge (x, y). Otherwise, we reroot T (u) at
x and hang it through edge (y, x). This strategy surely leads to a fall in the level of
x (or y). However, this rerooting has to be followed by transformation of T (v) into
a DFS tree. An obvious, but inefficient, way to do this transformation is to perform
a fresh DFS traversal on T (v) from x as done by Franciosa et al. [9] in case of
DAG. We are able to avoid this costly step using our second principle called minimal
restructuring. Following this principle, only a path of the subtree T (v) is reversed and
as a result, major portion of the original DFS tree remains intact. In fact, this principle
also facilitates monotonic fall of all vertices of T (v). The rerooting procedure based
on this principle is described and analyzed in the following section.

Our algorithm updates DFS tree upon insertion of any cross edge as follows. Firstly,
we carry out rerooting based on the two principles mentioned above. As a result, many
back edges now potentially become cross edges. All these edges are collected in a pool,
virtually (re)-inserted back into the graph one by one, and processed as fresh insertions.
This simple iterative algorithm, when analyzed in a straightforwardmanner, has a time
complexity O(mn). However, using a more careful analysis, it can be shown that its
time complexity is O(n3/2m1/2), which is strictly sub-cubic. We also present a worst
case example proving the tightness of this analysis. In order to improve the time
complexity further, we process the pool of cross edges in a more structured manner.
In particular, we process the highest cross edge first. This leads to our final algorithm
that achieves O(n2) time complexity for any arbitrary sequence of edge insertions.
Subsequently, we also prove that this is the best possible time complexity even for
sparse graphs that can be achieved by any algorithm that is based on monotonic fall
. To establish this fact, we present a sequence of Θ(n) edge insertions such that any
such algorithm would require Ω(n2) total time.

4 Rerooting a Subtree

Consider insertion of an edge (x, y) which happens to be a cross edge with respect
to the DFS tree T . Let w be LCA of x and y, and let u and v be the two children
of w such that x ∈ T (u) and y ∈ T (v). Let level(y) ≤ level(x). See Fig. 2 for a
visual description. As discussed before, updating the DFS tree upon insertion of the
cross edge (x, y) entails rerooting of subtree T (v) at y and hanging it from x . We
now describe an efficient rerooting procedure for this task based on the principle of
minimal restructuring.

The underlying idea ofminimal restructuring is to preserve the current tree structure
as much as possible. Consider the path P(y, v) = 〈z1(=y), z2, . . . , zk(=v)〉. This
path appears from v to y in the rooted tree T . Rerooting reverses this path in T so
that it starts at y and terminates at v. In order to see how this reversal affects the DFS
structure, let us carefully examine T (v).

The subtree T (v) can be visualized as a collection of disjoint trees hanging from the
path P(v, y) as follows. Let T1 denote the subtree T (y) and let T2 denote the subtree
T (z2)\T (z1). In general, Ti denotes the subtree T (zi )\T (zi−1). Upon reversing the
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Fig. 2 Rerooting the tree T (v) at y and hanging it from x . Notice that some back edges may become cross
edges (shown dotted) due to this rerooting

path P(v, y), notice that each subtree remains intact but their ordering gets reversed.
Furthermore, the level of each vertex in every subtree Ti surely falls. (see Fig. 2). Let
us find the consequence of reversing P(v, y) on all those back edges whose at least
one endpoint belongs to T (v). Observe that the back edges which originate as well as
terminate within the same Ti continue to remain as back edges since tree Ti remains
intact. Likewise, any back edge from these subtrees which terminates at any ancestor
of v also continues to remain a back edge. However, the back edges originating in T (v)

and terminating on w (i.e., LC A(x, y)), which were earlier stored in B(v), will now
have to be stored inB(u) . Recall thatB(v) contains the back edges that originate from
T (v) and terminate at par(v). Also, notice that the tree edge (w, v) now becomes a
back edge and has to be added toB(u). The remaining back edges are only those which
originate from some Ti and terminate at some z j , j > i . All these edges are present
in B(z j−1). Some of these back edges may become cross edges due to the reversal of
P(v, y) (see Fig. 2). Their presence violates the DFS property (relationR) of the new
tree. We simply collect these edges in a set ER and remove them temporarily from
the graph. In summary, our rerooting algorithm just does the following: It traverses
the path P(v, y) from y to v, collects B(z j ) for each 1 ≤ j < k in ER , and reverses
the path P(v, y). The pseudocode of the rerooting process is described in Procedure
Reroot.

The following lemma holds based on the above discussion.

Lemma 1 Tree T at the end of Procedure Reroot is a DFS tree for the graph
(V, E\ER).

We introduce some terminology to facilitate compact and clean reference to the
entities of the rerooting procedure. The lower and higher end vertices x and y of the
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Procedure Reroot(u,v,x ,y): reroots subtree T (v) at vertex y and hangs it through
edge (x, y). It also updates the data structure B for every vertex on P(y, v) and
u, where u is the sibling of v s.t. x ∈ T (u). It returns the set of back edges ER
which could potentially be cross edges after rerooting.

1 B(u) ← B(u) ∪ B(v) ∪ {(par(v), v)};
2 ER ← φ;
3 z ← y ; /* z is the first vertex of path P(y, v) */
4 p ← x ;
5 while z 	= par(v) do
6 if z 	= v then ER ← ER ∪ B(z);
7 B(z) ← φ;
8 next ← par(z);
9 par(z) ← p ; /* updating the parent of z */

10 p ← z;
11 z ← next ; /* z is now the next vertex on path P(y, v) */
12 end
13 Return ER

inserted edge (x, y) are called prime and conjugate vertices respectively. Notice that
the restructured subtree now hangs from the prime vertex. We define prime path as
the path from the prime vertex x to u and conjugate path as the path from conjugate
vertex y to v, where u and v are children of LC A(x, y) s.t. x ∈ T (u) and y ∈ T (v).

Each vertex of subtree T (v) suffers a fall in its level due to Reroot(u, v, x, y). We
shall now calculate this fall exactly. Let Δ = level(x)− level(y). As a result of the
rerooting, y has become child of x . Hence it has suffered a fall in its level by Δ + 1.
Since T1 = T (y) and T1 remains intact, so each vertex of T1 also suffers the same fall
(of Δ + 1 levels) as y. Consider a vertex zi which is the root of Ti for some i > 1.
This vertex was earlier at level i − 1 higher than y(=z1) and now lies at i − 1 level
below y. Hence overall level of zi (and hence that of every vertex of Ti ) has fallen by
Δ + 2i − 1. This leads us to the following lemma.

Lemma 2 Let Δ be the difference in the levels of prime and conjugate vertices before
rerooting. After rerooting, the ith vertex on the conjugate path (starting from the
conjugate vertex) falls by Δ + 2i − 1 levels.

Let us analyze the time complexity of Procedure Reroot(u, v, x, y). It first adds
B(v) and the edge (w, v) to B(u); this step takes O(1) time since we are merging two
lists. Thereafter, the procedure traverses (and reverses) the conjugate path P(y, v),
and collects the edges B(z) for each z ∈ P(y, v)\{v} in ER . Hence, we can state the
following lemma.

Lemma 3 The time complexity of the Procedure Reroot is O(k + |ER |), where k is
the length of the conjugate path and ER is the set of edges returned by the procedure.

It follows from the rerooting procedure that any back edge getting converted to a
cross edge is surely collected in ER . However, not all the edges collected in ER have
necessarily become cross edges after Procedure Reroot. In order to understand this
subtle point, observe that ER contains all those edgeswhich originate from some vertex
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in Ti and terminate at some z j , i < j < k. Consider any such edge (a, z j ), a ∈ Ti .
If a 	= zi (root of Ti ), then surely (a, z j ) has become a cross edge after reversal of
P(v, y). But if a = zi , then it still remains a back edge. So we can state the following
lemma which will be crucial in our final algorithm.

Lemma 4 If an edge collected in ER is a back edge with respect to the modified DFS
tree, then both its endpoints must belong to the conjugate path.

5 Algorithm for Incremental DFS

We now describe our algorithm for incremental maintenance of a DFS tree. Consider
the insertion of an edge (t, z). In order to update the DFS tree, our algorithmmaintains
a set E of edges which is initialized as {(t, z)}. The algorithm then processes the set
E iteratively as follows. In each iteration, an edge (say (x, y)) is extracted from E
using Procedure Choose. If the edge is a back edge, the edge is inserted in the set of
back edges B accordingly and no processing is required. If (x, y) is a cross edge, it is
processed as follows. Let w be LCA of x and y, and let v be the child of w such that
y is present in subtree T (v). Without loss of generality, let level(x) ≥ level(y).
Procedure Reroot(u, v, x, y) is invoked which reroots subtree T (v) at y and returns a
set of edges collected during the procedure. All these edges are extracted from E and
added to E . This completes one iteration of the algorithm. The algorithm terminates
when E becomes empty (see Algorithm 1 for pseudocode). The correctness of the
algorithm follows directly from the following invariantwhich ismaintained throughout
the algorithm:

Invariant: T is DFS tree for the subgraph (V, E\E).

Algorithm 1: Processing insertion of an edge (t, z)

1 E ← {(t, z)} ; /* E is a set of edges to be inserted. */
2 while E 	= φ do
3 (x, y) ← Choose(E) ; /* Let level(x) ≥ level(y). */
4 w ← LCA(x, y);
5 u ← LA(x, level(w) + 1) ; /* u is the child of w s.t. x ∈ T (u) */
6 v ← LA(y, level(w) + 1) ; /* v is the child of w s.t. y ∈ T (v) */
7 if w 	= y then /* (x, y) is a cross edge. */
8 E ← E∪ Reroot(u, v, x, y);
9 end

10 end

Furthermore, the LCA and LA data structures introduced in Theorems 1 and 2 have
to be updated after every iteration of the algorithm. Also, since we maintain the level
of each vertex explicitly, level(z) has to be updated for each z ∈ T (v). Following
section describes how to perform these updates efficiently.
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Procedure Choose(E): Chooses and returns an edge from E .
Remove an arbitrary edge (x, y) from E .
Return (x, y).

5.1 Maintaining LCA and LA Dynamically

Algorithm 1 requires us to answer LCA and LA queries efficiently. The data structures
introduced in Theorems 1 and 2 maintain LCA and LA in the dynamic setting and
answer each query in O(1) time. These data structures allow only leaf updates in the
underlying tree (in our case T ). However, Procedure Reroot inserts an edge (x, y) and
deletes an edge (w, v) in T that leads to rerooting the subtree T (v) at the vertex y (see
Fig. 2). These edges may not be the leaf edges hence these operations are not directly
supported by these data structures.

To perform these updates all the edges in T (v) are deleted by iteratively deleting
the leaves of T (v). Now the subtree T (y) is rebuilt at y iteratively by a series of leaf
insertions. We know that each vertex in T (v) falls by at least one level during the
rerooting event. Note that each falling vertex leads to exactly one leaf insertion and
exactly one leaf deletion during this update process, each taking O(1) amortized time.
Also, for every falling vertex z ∈ T (v) we can update level(z) in O(1) time. Since
each vertex can fall at most n times during the algorithm (ensured by monotonic fall),
the overall time taken to maintain these data structures (for maintaining level, LCA
and LA) throughout the algorithm is O(n2).

5.2 Analysis

The computation cost of collecting and processing each edge e ∈ E can be associ-
ated with the rerooting event in which it was collected. Thus, the time spent by the
incremental algorithm in processing any sequence of edge insertions is of the order of
the time spent in all the rerooting calls invoked and the time spent in maintaining the
data structures level, LCA and LA. Furthermore, using Lemma 3 we know that the
time spent in Procedure Reroot is of the order of the number of edges in ER that were
collected during the rerooting event and the length of the corresponding conjugate
path. However, the cost of traversing the conjugate path can be associated with the fall
of vertices on the conjugate path. Therefore, in order to calculate the time complexity
of the algorithm, it suffices to count all the edges collected during various rerooting
calls and the cost associated with the fall of vertices. Note that this count of collected
edges can be much larger than O(m) because an edge can appear multiple times in
E during the algorithm. As described earlier in Sect. 5.1, the overall cost associated
with the fall of vertices is O(n2). It follows from Lemma 2 that whenever an edge is
collected during a rerooting call, the level of at least one of its endpoints falls. Since
level of any vertex can fall only up to n, it follows that the computation associated
with a single edge during the algorithm is of the order of n. Hence, the O(mn) time
complexity of the algorithm is immediate. However, using a more careful insight into
the rerooting procedure, we shall now show that the time complexity is much better.
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Consider any execution of the rerooting procedure. Let 〈(y =)z1, z2, . . . , zk(=v)〉
be the path that gets reversed during the rerooting process (see Fig. 2). The procedure
collects the edges B(zi ) for each i < k. We shall now charge each edge collected to
the fall of one of its endpoints. Let τ be a parameter whose value will be fixed later.
Consider any edge (a, zi ) that is collected during the rerooting process. Note that level
of each of a and zi has fallen due to the rerooting. If i ≤ τ , we charge this edge to the
fall of vertex a. In this way, there will be at most τ edges that get charged to the fall
of a. If i > τ , we charge this edge to the fall of zi . It follows from Lemma 2 that zi
falls by at least 2i − 1 > τ levels in this case.

Consider any vertex v in the graph. During a single rerooting event if v falls by less
than τ levels, we call it a short fall; otherwise we call it a long fall for v. It follows
that v can be charged for O(τ ) edges in each of its short falls. The number of short
falls for v is O(n), so overall cost charged to v due to all its short falls is O(nτ). On
the other hand, v can be charged for O(deg(v)) edges in each of its long falls. The
number of long falls of v during the entire algorithm is less than n/τ . So the overall
cost charged to all the long falls of v will be O(deg(v) · n/τ). Hence for all vertices,
the total computation charged will be O(n2τ + mn/τ). Fixing τ = √

m/n, we can
conclude that the overall computation performed during processing of any sequence
of m edge insertions by the algorithm is O(n3/2m1/2).

Theorem 3 For an undirected graph G on n vertices, a DFS Tree can be maintained
incrementally in O(n3/2m1/2) total time for any arbitrary sequence of edge insertions.

It follows from Theorem 3 that even for any sequence of Θ(n2) edge insertions,
the total update time in maintaining DFS tree is O(n2.5) which is strictly sub-cubic.
In the following section we describe an example to demonstrate the tightness of our
analysis.

5.3 Tightness of Analysis

We now describe a sequence of Θ(m) edge insertions for which Algorithm 1 takes
Θ(n3/2m1/2) time. Consider a graphG = (V, E)where the set of vertices V is divided
into two sets V ′ and I , each of sizeΘ(n). The vertices in V ′ are connected in the form
of a chain (see Fig. 3a) and the vertices in I are isolated vertices. Thus, it is sufficient
to describe only the maintenance of DFS tree for the vertices in set V ′, as the vertices
in I will exist as isolated vertices connected to the dummy vertex s in the DFS tree
(recall that s is the root of the DFS tree).

We divide the sequence of edge insertions into n p phases, where each phase is
further divided into ns stages. At the beginning of each phase, we identify three
vertex sets from the set V ′, namely A = {a1, . . . , ak}, B = {b1, . . . , bl} and X =
{x1, . . . , xp}, where k, l, p ≤ n are integers whose values will be fixed later. The
value of l is p in the first phase and decreases by k in each subsequent phase. Figure
3a shows the DFS tree of the initial graph. We add pk edges of the set A × X to
the graph. Clearly, the DFS tree does not change since all the inserted edges are back
edges. Further, we extract two sets of verticesC = {c1, . . . , ck} and D = {d1, . . . , dk}
from I and connect them in the form of a chain as shown in Fig. 3b.
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Fig. 3 Example to demonstrate the tightness of the Algorithm 1. a Beginning of a phase with vertex sets A,
B and X . b Phase begins with addition of two vertex sets C and D. The first stage begins with the addition
of the back edge (a1, bk+1) and the cross edge (b1, ck ). c The rerooted subtree with the edges in A × X
and (bk+1, a1) as cross edges. d Final DFS tree after the first stage. e Final DFS tree after first phase. f
New vertex sets A′, B′ and X for the next phase

Now, the first stage of each phase starts with the addition of the back edge (a1, bk+1)

followed by the cross edge (b1, ck). As a result Algorithm 1 will reroot the tree T (a1)
as shown in the Fig. 3c [extra O(1) vertices from I are added to C to ensure the fall
of T (a1) instead of T (c1)]. This rerooting makes (bk+1, a1) a cross edge. Moreover,
all pk edges of set A × X also become cross edges. Algorithm 1 will collect all these
edges and add them to E in Ω(pk) time. Since the algorithm can process the edges
in E arbitrarily, it can choose to process (bk+1, a1) first. It will result in the final DFS
tree as shown in Fig. 3d, converting all the cross edges in A × X to back edges and
bringing an end to the first stage. Note the similarity between Fig. 3b, d: the set C is
replaced by the set D, and the set D is replaced by the top k vertices of B. Hence, in the
next stage the same rerooting event can be repeated by adding the edges (ak, b2k+1)

and (bk+1, dk), and so on for the subsequent stages. Now, in every stage the length
of B decreases by k vertices. Hence, the stage can be repeated ns = O(l/k) times in
the phase, till A reaches next to X as shown in Fig. 3e. This completes the first phase.
Now, in the next phase, first k vertices of the new tree forms the set A′ followed by the
vertices of B ′ leading up to the previous A as shown in Fig. 3f. Since the initial size of
I is Θ(n) and the initial size of B is l < n, this process can continue for n p = O(l/k)
phases. Hence, each phase reduces the size of I as well as B by k vertices.

Hence, at the beginning of each phase, we extract 2k isolated vertices from I and
add pk edges to the graph. In each stage, we extract O(1) vertices from I and add
just 2 edges to the graph in such a way that will force our algorithm to process pk
edges to update the DFS tree. Thus, the total number of edges added to the graph is
pk · n p and the total time taken by our algorithm is pk · n p · ns , where n p = O(l/k)
and ns = O(l/k). Substituting l = n, p = m/n and k = √

m/n we get the following
theorem for any n ≤ m ≤ (n

2

)
.
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Theorem 4 For each value of n ≤ m ≤ (n
2

)
, there exists a sequence of m edge

insertions for which Algorithm 1 requiresΘ(n3/2m1/2) time to maintain the DFS tree.

Remark The core of this example is the rerooting event occurring in each stage that
takes Θ(m3/2/n3/2) time. This event is repeated systematically ns · n p times to force
the algorithm to take Θ(n3/2m1/2) time. However, this is possible only because our
algorithm processes E arbitrarily: processing the cross edge (bk, a1) first amongst all
the collected cross edges. Note that, had the algorithm processed any other cross edge
first, we would have reached the end of a phase in a single stage. The overall time
taken by the algorithm for this example would then be just Θ(m). Interestingly, with
just a more structured way of processing the edges of E , we can even achieve a worst
case bound of O(n2) for our algorithm. We provide this improved algorithm in the
following section.

6 Achieving O(n2) Update Time

The time complexity of Algorithm 1 is governed by the number of edges in E that are
processed during the algorithm. In order to get an improved algorithm, let us examine
E carefully. An edge from E can be a cross edge or a back edge. Processing of a cross
edge always triggers a rerooting event which, in turn, leads to fall of one or more
vertices. Hence, the total number of cross edges processed during the algorithm is
O(n2). All the remaining edges processed in E during the entire algorithm are back
edges. There are two sources of these back edges.

Firstly, some edges added to E by Procedure Reroot are back edges. Let us analyze
their count throughout the algorithm. It follows from Lemma 4 that both endpoints of
each such back edge belong to the conjugate path associated with the rerooting event.
Notice that i th vertex on the conjugate path falls by at least 2i − 1 levels (see Lemma
2). So, if � is the length of the conjugate path, the total fall in the level of all vertices
on the conjugate path is more than �(�− 1)/2 which is an upper bound on the number
of edges with both endpoints on the conjugate path. Since the total fall in the level of
vertices cannot be more than O(n2), the number of such back edges throughout the
algorithm is O(n2).

Secondly, some edges added to E by Procedure Reroot are cross edges at the time
of their collection, but become back edges before they are processed. This may happen
due to rerooting initiated by some other cross edge from E . In order to understand this
subtle point, see Fig. 4. Here e1, e2, e3, e4 and e5 = (x, y) are cross edges present in
E at some stage. While we process (x, y), T (v) gets rerooted at y and hangs through
the edge (x, y). As a result e1, e2, e3 and e4 become back edges.

In order to bound these cross edges getting transformed into back edges during
rerooting of T (v), let us carefully examine one such cross edge. Let vh and vl be
respectively the higher and lower endpoints of the resulting back edge. The edge
(vh, vl) was earlier a cross edge, so vh now has a new descendant vl . Similarly vl now
has a new ancestor vh . Note that the descendants of only vertices lying on prime and
conjugate paths are changed during rerooting. Also the ancestors of only the vertices
in T (v) are changed during rerooting. Hence the following lemma holds true.
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Fig. 4 Some cross edges in E become back edges due to the rerooting of T (v)

Lemma 5 Cross edges getting converted to back edges as a result of rerooting T (v)

are at most |T (v)| times the sum of lengths of prime and conjugate paths.

Observe that the total sum of the fall of vertices of T (v) during the rerooting event
is at least |T (v)| · (Δ + 1) (see Fig. 4). However, the sum of the lengths of prime and
conjugate paths may be much greater than Δ + 1. Hence, the number of cross edges
getting transformed into back edges is not bounded by the total sumof fall of vertices of
T (v). This observation, though discouraging, also gives rise to the following insight:
If there were no cross edges with level higher than level(y), the number of cross
edges converted to back edges will be at most the total sum of fall of vertices of T (v).
This is because the possible higher endpoints of such edges on the prime or conjugate
path will be limited. This insight suggests that processing higher cross edges from E
first will be more advantageous than the lower ones. Our final algorithm is inspired
by this idea.

6.1 The Final Algorithm

Our final algorithm is identical to the previous algorithm in Sect. 5 except
that instead of invoking Procedure Choose we invoke Procedure ChooseHigh.

Procedure ChooseHigh(E): Chooses and returns the highest edge in E .
Remove the highest edge (x, y) from E .
Return (x, y).

The algorithm thus processes the edges of set E in a non-decreasing order of their
levels. To achieve this we require a data structure that maintains E and allows retrieval
of edges in the desired order. This data structure should also support insertion of new
edges and change in the level of edges due to fall of a vertex efficiently.

123



480 Algorithmica (2017) 79:466–483

This can be achieved by keeping a binary heap on endpoints of the edges in E , where
the key of each endpoint is its level in T . Thus, each of the two operations mentioned
above can be performed in O(log n) time taking total O(n2 log n) time throughout
the algorithm. However, this can be improved to total O(n2) time using a simple data
structure that is described in the following section.

6.2 Data Structure to Maintain Set of Edges E

Our data structure is an array H where H [i], i ∈ [1, n], stores a list of all the vertices
at level i that have at least one of its edges in E . In addition, each vertex v stores a list
L(v) of all its edges that are present in E . It can be observed that upon insertion of an
edge in E or update in the level of a vertex in T , H can be updated in O(1) time.

Consider insertion of any cross edge, say e = (x, y) in the graph. Initially the data
structure H is empty. We insert x and y at their corresponding levels in H . We then
add e to both L(x) and L(y). We now start a scan of H from level(e) to process the
edges in E in a non-decreasing order of their levels as follows.

Suppose i is the currently scanned index of H . If H [i] is non-empty, we process
edges of L(v) for each v ∈ H [i] one by one. Processing of an edge may cause a
rerooting event that may result in addition of new edges to E . We insert these edges
and their corresponding endpoints in H accordingly. In addition, this rerooting may
result in the fall of some vertices already present in H . We move these vertices to their
new position in H accordingly. After processing an edge, say e = (u, v), e is removed
from L(u) and L(v). If L(u) (likewise L(v)) becomes empty, we remove u (likewise
v) from H . As a result, all the vertices in H [i] will be removed and H [i] will become
empty. Notice that all the edges collected in E during any rerooting event that occurs
while processing H [i]will be at a level lower than i . This is because all these collected
edges will be from the subtree now hanging from the edge that caused the rerooting
event. Thus, we just need to continue scanning H in the rightward direction until E
becomes empty.

It follows that the data structure H facilitates processing of the edges in E in non-
decreasing order of their levels. It requires O(1) time for inserting an edge in E and
updating the level of a vertex. The only overhead in maintenance of H is the time
required for scanning through the cells of H . This factor becomes significant only
when a lot of empty cells have to be scanned in H to find the next highest edge
in E . This cost can be charged to the fall of endpoints of edges in E as follows.
Consider any edge e ∈ E which is collected during a rerooting event caused by
processing some edge, say e0. The level of edge e may fall several times before it is
finally processed and removed from E . The entire cost of scanning through H from
level(e0) to the eventual level of e when it is finally processed is charged as follows.
After the rerooting event caused by processing e0, the difference between level(e0)
and level(e) is always less than the fall of the endpoint of e on the conjugate path.
Any subsequent change in level(e) will be charged to the fall of that endpoint of
e which led to this change. Hence, the time spent in scanning through H during
the entire algorithm is bounded by the total sum of fall of vertices in T , which is
O(n2).
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6.3 Analysis

In order to establish O(n2) bound on the running time of our final algorithm, it follows
from the preceding discussion that we simply need to show that the number of cross
edges getting converted to back edges throughout the algorithm is O(n2).

Consider any rerooting event initiated by cross edge (x, y) (refer to Fig. 4). Since
there is no edge in E which is at a higher level than level(y), so it follows from
Lemma 5 that the cross edges getting converted to back edges during the rerooting
event will be of one of the following types only.

– The cross edges with one endpoint in T (v) and another endpoint x or any of Δ

ancestors of x .
– The cross edges with y as one endpoint and another endpoint anywhere in

T (v)\T (y).

Hence the following lemma holds for our final algorithm.

Lemma 6 During the rerooting event the number of cross edges converted to back
edges are at most |T (v)| · (Δ + 1) + |T (v)\T (y)|.

According to Lemma 2, level of each vertex of T (v) falls by at least Δ + 1. So the
first term in Lemma 6 can be clearly associated with the fall of each vertex of T (v).
Note that each vertex in T (v)\T (y) becomes a descendant of y and hence falls by at
least one extra level (in addition to Δ + 1). This fall by extra one or more levels for
vertices of T (v)\T (y) can be associated with the second term mentioned in Lemma
6. Hence the total number of cross edges getting transformed to back edges during the
algorithm is of the order of O(n2). We can thus state the following theorem.

Theorem 5 For an undirected graph G on n vertices, a DFS Tree can be maintained
under insertion of any arbitrary sequence of edges with total update time of O(n2).

The O(n2) bound of our algorithm is quite tight even for sparse graphs. In fact,
in the next section we show the following: There exists a sequence of Θ(n) edge
insertions such that every incremental algorithm for maintaining DFS tree explicitly
(using parent or child pointers) that follows the principle ofmonotonic fallwill require
Ω(n2) time.

6.4 Tightness of Analysis Even for Sparse Graphs

Consider a graph on n vertices with n/2 − 3 isolated vertices in the beginning, and
a set P of n/2 vertices hanging from a vertex x . Let par(x) = y and par(y) = z,
and each vertex in P has a back edge to y (see Fig. 5a). Now use 4 isolated vertices
t, u, v, w, and connect them using the edges (z, t), (t, u), (u, v), (v,w) followed by
insertion of edge (w, x) (see Fig. 5b). If the algorithm follows monotonic fall, it must
hang y from x (see Fig. 5c) and then eventually hang P from y (see Fig. 5d). This
creates a structure similar to the original tree shown in Fig. 5a. This process changes
n/2 tree edges and hence requires at least Ω(n) time. This step can be repeated n/8
times. Hence, overall inserting Θ(n) edges will take Ω(n2) time. Thus, we have the
following theorem.
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Fig. 5 Example to show tightness of analysis

Theorem 6 Any incremental algorithm that follows the principle of monotonic fall,
will require a total update time of Ω(n2) for maintaining a DFS Tree explicitly even
for sparse graphs.

7 Conclusion

We presented a simple and efficient algorithm for maintaining a DFS tree for an
undirected graph under insertion of edges. It will be interesting to see its counterpart
for directed graphs in the future.
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