
Algorithmica
https://doi.org/10.1007/s00453-018-0452-3

An Efficient Strongly Connected Components
Algorithm in the Fault Tolerant Model

Surender Baswana1 · Keerti Choudhary1 ·
Liam Roditty2

Received: 11 September 2017 / Accepted: 3 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper we study the problem of maintaining the strongly connected
components of a graph in the presence of failures. In particular, we show that given a
directed graph G = (V, E) with n = |V | and m = |E |, and an integer value k ≥ 1,
there is an algorithm that computes in O(2kn log2 n) time for any set F of size at
most k the strongly connected components of the graph G\F . The running time of our
algorithm is almost optimal since the time for outputting the SCCs of G\F is at least
Ω(n). The algorithm uses a data structure that is computed in a preprocessing phase in
polynomial time and is of size O(2kn2). Our result is obtained using a new observation
on the relation between strongly connected components (SCCs) and reachability.More
specifically, one of the main building blocks in our result is a restricted variant of the
problem in which we only compute strongly connected components that intersect
a certain path. Restricting our attention to a path allows us to implicitly compute
reachability between the path vertices and the rest of the graph in time that depends
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logarithmically rather than linearly in the size of the path. This new observation alone,
however, is not enough, since we need to find an efficient way to represent the strongly
connected components using paths. For this purpose we use a mixture of old and
classical techniques such as the heavy path decomposition of Sleator and Tarjan (J
Comput Syst Sci 26:362–391, 1983) and the classical Depth-First-Search algorithm.
Although, these are by now standard techniques, we are not aware of any usage of
them in the context of dynamic maintenance of SCCs. Therefore, we expect that our
new insights and mixture of new and old techniques will be of independent interest.

Keywords Fault tolerant · Directed graph · Strongly connected components

1 Introduction

Computing the strongly connected components (SCCs) of a directed graph G =
(V, E), where n = |V | and m = |E |, is one of the most fundamental problems
in computer science. There are several classical algorithms for computing the SCCs in
O(m + n) time that are taught in any standard undergraduate algorithms course [14].

In this paper we study the following natural variant of the problem in dynamic
graphs. What is the fastest algorithm to compute the SCCs of G\F , where F is any set
of edges or vertices. The algorithm can use a polynomial size data structure computed
in polynomial time for G during a preprocessing phase.

The main result of this paper is:

Theorem 1 There is an algorithm that computes the SCCs of G\F, for any set F of
k edges or vertices, in O(2kn log2 n) time. The algorithm uses a data structure of size
O(2kn2) computed in O(2kn2m) time for G during a preprocessing phase.1

Since the time for outputting the SCCs of G\F is at least Ω(n), the running time
of our algorithm is optimal (up to a polylogarithmic factor) for any fixed value of k.

This dynamicmodel is usually called the fault tolerant model and its most important
parameter is the time that it takes to compute the output in the presence of faults. It is
an important theoretical model as it can be viewed as a restriction of the deletion only
(decremental) model in which edges (or vertices) are deleted one after another and
queries are answered between deletions. The fault tolerant model is especially useful
in cases where the worst case update time in the more general decremental model is
high.

There is wide literature on the problem of decremental SCCs. Recently, in a
major breakthrough, Henzinger et al. [25] presented a randomized algorithm with
O(mn0.9+o(1)) total update time and broke the barrier of Ω(mn) for the problem.
Even more recently, Chechik et al. [11] obtained an improved total running time of
O(m

√
n log n).

However, these algorithms and in fact all the previous algorithms have an Ω(m)

worst case update time for a single edge deletion. This is not a coincidence. Recent

1 For k > log n, the time taken by our algorithm is ω(n2), compared to which the standard static algorithm
that takes O(m + n) time is better, so we will be only restricting to the case when k ≤ log n.
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developments in conditional lower bounds by Abboud and Williams [1] and by Hen-
zinger et al. [24] showed that unless a major breakthrough happens, the worst case
update time of a single operation in any algorithm for decremental SCCs is Ω(m).
Therefore, in order to obtain further theoretical understanding on the problem of decre-
mental SCCs, and in particular on the worst case update time it is only natural to focus
on the restricted dynamic model of fault tolerant.

In the recent decade several different researchers used the fault tolerant model to
study the worst case update time per operation for dynamic connectivity in undirected
graphs. Pǎtraşcu and Thorup [32] presented connectivity algorithms that support edge
deletions in this model. Their result was improved by the recent polylogarithmic worst
case update time algorithm of Kapron et al. [27]. Duan and Pettie [17,18] used this
model to obtain connectivity algorithms that support vertex deletions.

In directed graphs, very recently, Georgiadis et al. [21] considered the problem
of SCCs but only for a single edge or a single vertex failure, that is |F | = 1. They
showed that it is possible to compute the SCCs of G \ {e} for any e ∈ E (or of G \ {v}
for any v ∈ V ) in O(n) time using a data structure of size O(n) that was computed
for G in a preprocessing phase in O(m + n) time. Our result is the first generalized
result for any constant size F . This comes with the price of an extra O(log2 n) factor
in the running time, a slower preprocessing time and a larger data structure. In [21],
Georgiadis, Italiano and Parotsidis also considered the problem of answering strong
connectivity queries after one failure. They show construction of an O(n) size oracle
that can answer in constant time whether any two given vertices of the graph are
strongly connected after failure of a single edge or a single vertex.

In a previous work [2] we considered the problem of finding a sparse subgraph
that preserves single source reachability. More specifically, given a directed graph
G = (V, E) and a vertex s ∈ V , a subgraph H of G is said to be a k-Fault Tolerant
Reachability Subgraph (k-FTRS) forG if for any set F of at most k edges (or vertices),
a vertex v ∈ V is reachable from s in G \ F if and only if v is reachable from s in
H \ F . In [2] we proved that there exists a k-FTRS for s with at most 2kn edges.

Using the k-FTRS structure, it is relatively straightforward to obtain a data structure
that, for any pair of vertices u, v ∈ V and any set F of size k, answers in O(2kn) time
queries of the form:

“Are u and v in the same SCC of G \ F?”

The data structure consists of a k-FTRS for every v ∈ V . It is easy to see that u and
v are in the same SCC of G\F if and only if v is reachable from u in k-FTRS(u)\F
and u is reachable from v in k-FTRS(v)\F . So the query can be answered by checking,
using graph traversals, whether v is reachable from u in k-FTRS(u)\F and whether u
is reachable from v in k-FTRS(v)\F . The cost of these two graph traversals is O(2kn).
The size of the data structure is O(2kn2).

This problem, however, is much easier since the vertices in the query reveal which
two k-FTRS we need to scan. In the challenge that we address in this paper all the
SCCs of G\F , for an arbitrary set F , have to be computed. However, using the same
data structure as before, it is not really clear a-priori which of the k-FTRS we need to
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scan. We note that our algorithm uses the k-FTRS which seems to be an essential tool
but is far from being a sufficient one and more involved ideas are required.

1.1 An Overview of Our Result

We obtain our O(2kn log2 n)-time algorithm using several new ideas. Interestingly,
one of the main building blocks is the following restricted variant of the problem.

Given any set F of k failed edges and any path P which is intact in G\F , output
all the SCCs of G\F that intersect with P (i.e. contain at least one vertex of P).

To solve this restricted version, we implicitly solve the problem of reachability
from x (and to x) in G\F , for each x ∈ P . Though it is trivial to do so in time
O(2kn|P|) using k-FTRS of each vertex on P , our goal is to perform this computation
in O(2kn log n) time, that is, in running time that is independent of the length of P
(up to a logarithmic factor). For this we use a careful insight into the structure of
reachability between P and V . Specifically, if v ∈ V is reachable from x ∈ P , then
v is also reachable from any predecessor of x on P , and if v is not reachable from x ,
then it cannot be reachable from any successor of x as well. Let w be any vertex on
P , and let A be the set of vertices reachable from w in G\F . Then we can split P at
w to obtain two paths: P1 and P2. We already know that all vertices in P1 have a path
to A, so for P1 we only need to focus on set V \A. Also the set of vertices reachable
from any vertex on P2 must be a subset of A, so for P2 we only need to focus on set
A. This suggests a divide-and-conquer approach which along with some more insight
into the structure of k-FTRS helps us to design an efficient algorithm for computing
all the SCCs that intersect P .

In order to use the above result to compute all the SCCs of G\F , we need a clever
partitioning of G into a set of vertex disjoint paths. A Depth-First-Search (DFS) tree
plays a crucial role here as follows. Let P be any path from root to a leaf node in
a DFS tree T . If we compute the SCCs intersecting P and remove them, then the
remaining SCCs must be contained in subtrees hanging from path P . So to compute
the remaining SCCs we do not need to work on the entire graph. Instead, we need to
work on each subtree. In order to pursue this approach efficiently, we need to select
path P in such a manner that the subtrees hanging from P are of small size. The heavy
path decomposition of Sleator and Tarjan [36] helps to achieve this objective.2

Our algorithm and data structure can be extended to support insertions as well.
More specifically, we can report the SCCs of a graph that is updated by insertions and
deletions of k edges in the same running time. The size of our data structure and the
preprocessing time remains the same when modified to support edge insertions.

1.2 Related Work

The problemofmaintaining the SCCs of a graphwas studied in the decrementalmodel.
In this model the goal is tomaintain the SCCs of a graphwhose edges are being deleted

2 We note that the heavy path decomposition was also used in the fault tolerant model in STACS’10 paper
of [28], but in a completely different way and for a different problem.
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by an adversary. The main parameters in this model are the worst case update time per
an edge deletion and the total update from the first edge deletion until the last. Frigioni
et al. [20] presented an algorithm that has an expected total update time of O(mn) if
all the deleted edges are chosen at random. Roditty and Zwick [35] presented a Las-
Vegas algorithmwith an expected total update time of O(mn) and expected worst case
update time for any single edge deletion of O(m). Łacki [29] presented a deterministic
algorithm with a total update time of O(mn), and thus solved the open problem posed
by Roditty and Zwick in [35]. However, the worst case update time per a single edge
deletion of his algorithm is O(mn). Roditty [34] improved the worst case update time
of a single edge deletion to O(m log n). Recently, in a major breakthrough, Henzinger
et al. [25] presented a randomized algorithm with O(mn0.9+o(1)) total update time.
Very recently, Chechik et al. [11] obtained a total update time of O(m

√
n log n). Note

that all the previous works on decremental SCC are with Ω(m) worst case update
time. Whereas, our result directly implies O(n log2 n) worst case update time as long
as the total deletion length is constant.

Most of the previous work in the fault tolerant model is on variants of the shortest
path problem. Demetrescu et al. [15] designed an O(n2 log n) size data structure
that can report the distance from u to v avoiding x for any u, v, x ∈ V in O(1) time.
Bernstein andKarger [4] improved the preprocessing time of [15] to O(mn polylog n).
Duan and Pettie [19] extended the result of [15] to dual failures by designing a data
structure of O(n2 log3 n) space that can answer any distance query upon two failures
in O(log n) time. Weimann and Yuster [37] considered the question of optimizing the
preprocessing time using Fast Matrix Multiplication (FMM) for graphs with integer
weights from the range [−M, M]. Grandoni et al. [22] improved the result of [37]
based on a novel algorithm for computing all the replacement paths from a given
source vertex in the same running time as solving APSP in directed graphs.

For all-pairs approximate distances, Baswana and Khanna [3] showed that for
any positive integer t , an unweighted undirected graph can be processed to com-
pute an oracle that can report (2t − 1)(1 + ε)-approximate distances between any
two nodes upon failure of a vertex in O(t) time. The size of their data structure is
O

(
t5n1+1/t (1/ε4) log3 n

)
. For multiple edge failures in weighted graphs, Chechik et

al. [13] showed that if W is the ratio of the heaviest and the lightest weight edge in
the graph, then we can compute an oracle of O

(
k · tn1+1/t log(nW )

)
size that after

any k failures can report (8t − 2)(k + 1)-stretched distances in Õ(k log logW ) time.
Later Chechik et al. [10] improved this result to obtain (1 + ε)-approximation at the
expense of bigger data structure, for any arbitrary ε. The size of their data structure
is O

(
kn2 logW (log n/ε)k

)
and the query time is Õ(k5 log logW ). The questions of

finding graph spanners in the fault tolerant model were studied in [5,9,12,13,16].
For the problem of single source shortest paths Parter and Peleg [30] showed that

for unweighted graphs we can compute a subgraph with O(n3/2) edges that preserves
the distances from source after single failure. They also showed a matching lower
bound. For dual failures, Parter [31] and Gupta et al. [23] showed that we can compute
a corresponding subgraph with O(n5/3) edges. It is also known that the bound of
O(n5/3) is tight [31]. Recently, Bodwin et al. [8] extended this result to k faults by
showing graph constructions with Õ(kn2−1/2k ) edges.
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Concerning approximate post-failure distances, Baswana and Khanna [3] showed
that for any unweighted undirected graph we can compute an oracle of O(n log n +
n/ε3) size that after any vertex failure can report (1+ ε)-approximate distances from
source in O(1) time. For any single edge failure in weighted graphs, Bilò et al. [6]
showed that we can construct an oracle of O(n) size which can report 2-approximate
distances from the source in O(1) time. They also showed that we can compute an
oracle ofO

(
(n/ε) log(1/ε)

)
size that can report (1+ε)-stretched distances fromsource

in O
(
(log n/ε) log(1/ε)

)
time. For multiple edge failures, Bilò et al. [7] showed that

that we can compute an oracle of O(kn log2 n) size that after any k edge failures is
able to report the (2k + 1)-stretched distance from source in O(k2 log2 n) time.

1.3 Organization of the Paper

We describe notations, terminologies, some basic properties of DFS, heavy-path
decomposition, and k-FTRS in Sect. 2. In Sect. 3, we describe the fault tolerant algo-
rithm for computing the strongly connected components intersecting any path. We
present our main algorithm for handling k failures in Sect. 4. The details on how to
extend our algorithm and data structure to support insertions as well is provided in
Sect. 5.

2 Preliminaries

Let G = (V, E) denote the input directed graph on n = |V | vertices and m = |E |
edges. We assume that G is strongly connected, since if it is not the case, then we may
apply our result to each strongly connected component of G. We first introduce some
notations that will be used throughout the paper.

– T : A DFS tree of G.
– T (v): The subtree of T rooted at a vertex v.
– Path(a, b): The tree path from a to b in T , assuming a is an ancestor of b.
– depth(Path(a, b)): The depth of vertex a in T .
– In- Edges(v, H): The set of all incoming edges to v in graph H .
– GR : The graph obtained by reversing all the edges in graph G.
– H(A): The subgraph of a graph H induced by the vertices of subset A.
– H \ F : The graph obtained by deleting the edges in set F from graph H .
– SCCH (v): The unique SCC in graph H that contains vertex v.
– P::Q : The path formed by concatenating paths P and Q in G. Here it is assumed
that the last vertex of P is the same as the first vertex of Q.

– P[a, b]: The subpath of path P from vertex a to vertex b, assuming a and b are in
P and a precedes b.

Our algorithm for computing SCCs in a fault tolerant environment crucially uses
the concept of a k-fault tolerant reachability subgraph (k-FTRS) which is a sparse
subgraph that preserves reachability from a given source vertex even after the failure
of at most k edges in G. A k-FTRS is formally defined as follows.
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Definition 1 (k-FTRS) Let s ∈ V be any designated source. A subgraph H of G is
said to be a k-Fault Tolerant Reachability Subgraph (k-FTRS) of G with respect to s
if for any subset F ⊆ E of k edges, a vertex v ∈ V is reachable from s in G\F if and
only if v is reachable from s in H\F .

In [2], we present the following result for the construction of a k-FTRS for any
k ≥ 1.

Theorem 2 ([2]) There exists an O(2kmn) time algorithm that for any given integer
k ≥ 1, and any given directed graph G on n vertices,m edges and a designated source
vertex s, computes a k-FTRS for G with at most 2kn edges. Moreover, the in-degree
of each vertex in this k-FTRS is bounded by 2k .

Our algorithm will require the knowledge of the vertices reachable from a vertex v

as well as the vertices that can reach v. So we define a k-FTRS of both the graphs G
and GR with respect to any source vertex v as follows.

– G(v): The k-FTRS of graph G with v as source obtained by Theorem 2.
– GR(v): The k-FTRS of graph GR with v as source obtained by Theorem 2.

The following lemma states that the subgraph of a k-FTRS induced by A ⊂ V can
serve as a k-FTRS for the subgraph G(A) given that A satisfies certain properties.

Lemma 1 Let s be any designated source and H be a k-FTRS of G with respect to s.
Let A be a subset of V containing s such that every path from s to any vertex in A is
contained in G(A). Then H(A) is a k-FTRS of G(A) with respect to s.

Proof Let F be any set of at most k failing edges, and v be any vertex reachable from
s in G(A)\F . Since v is reachable from s in G\F and H is a k-FTRS of G, v must be
reachable from s in H\F as well. Let P be any path from s to v in H\F . Then (i) all
edges of P are present in H and (ii) none of the edges of F appear on P . Since every
path from s to any vertex in A is contained in G(A), P must be present in G(A). So
every vertex of P belongs to A. This fact combined with the inferences (i) and (ii)
implies that P must be present in H(A)\F . Hence H(A) is k-FTRS of G(A) with
respect to s. �	

The next lemma is an adaptation of Lemma 10 from Tarjan’s classical paper on
Depth First Search [33] to our needs.

Lemma 2 Let T be a DFS tree of G. Let a, b ∈ V be two vertices without any
ancestor-descendant relationship in T , and assume that a is visited before b in the
DFS traversal of G corresponding to tree T . Every path from a to b in G must pass
through a common ancestor of a and b in T .

Proof Let us assume on the contrary that there exists a path P from a to b in G that
does not pass through any common ancestor of a, b in T . Let z be the LCA of a, b in
T , and w be the child of z lying on Path(z, a) in T . See Fig. 1. Let A be the set of
vertices which are either visited before w in T or lie in the subtree T (w), and B be
the set of remaining vertices. Thus a belongs to set A, and b belongs to set B. Let x
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Fig. 1 Depiction of vertices a, b, z, w and sets A (shown in orange) and B (shown in purple) (Color figure
online)

be the last vertex in P that lies in set A, and y be the successor of x on path P . Thus
the edge (x, y) must belong to set A × B. Now all the out-neighbors of x including
y must be visited before the DFS traversal finishes for vertex x . This along with the
fact that x cannot be an ancestor of w implies that vertex y must be visited before the
DFS traversal finishes for vertex w. This is a contradiction since y lies in B, the DFS
traversal for vertices in B starts after the DFS traversal finishes for vertex w.

2.1 A Heavy Path Decomposition

The heavy path decomposition of a tree was designed by Sleator and Tarjan [36]
in the context of dynamic trees. This decomposition has been used in a variety of
applications since then. Given any rooted tree T , this decomposition splits T into a set
P of vertex disjoint paths with the property that any path from the root to a leaf node
in T can be expressed as a concatenation of at most 1+ log n subpaths of paths in P ,
joined together with at most log n edges. This decomposition is carried out as follows.
Starting from the root, we follow the path downward such that once we are at a node,
say v, the next node traversed is the child of v in T whose subtree is of maximum
size, where the size of a subtree is the number of nodes it contains. We terminate upon
reaching a leaf node. Let P be the path obtained in this manner. If we remove P from
T , we are left with a collection of subtrees each of size at most n/2. Each of these
trees hangs from P through an edge in T . We carry out the decomposition of these
trees recursively. The following lemma is immediate from the construction of a heavy
path decomposition.

Lemma 3 For any vertex v ∈ V , the number of paths in P which start from either v

or an ancestor of v in T is at most 1 + log n.

We now introduce the notion of ancestor path.
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Fig. 2 Depiction of X in(v) and Xout(v) for a vertex v whose SCC intersects X

Definition 2 Apath Path(a1, b1) ∈ P is said to be an ancestor path of Path(a2, b2) ∈
P , if a1 is an ancestor of a2 in T .

In this paper, we describe the algorithm for computing SCCs of graph G after any
k edge failures. Vertex failures can be handled by simply splitting each vertex v into
edge (vin, vout ), where the incoming and outgoing edges of v are directed to vin and
from vout , respectively.

3 Computation of SCCs Intersecting a Given Path

Let F be a set of at most k failing edges, and X = (x1, x2, . . . , xt ) be any path in
G from x1 to xt which is intact in G\F . In this section, we present an algorithm that
outputs in O(2kn log n) time the SCCs of G\F that intersect X .

For each v ∈ V , let X in(v) be the vertex of X of minimum index (if exists) that
is reachable from v in G\F . Similarly, let Xout(v) be the vertex of X of maximum
index (if exists) that has a path to v in G\F . (See Fig. 2).

We start by proving certain conditions that must hold for a vertex if its SCC inG\F
intersects X .

Lemma 4 For any vertex w ∈ V , the SCC that contains w in G\F intersects X if
and only if the following two conditions are satisfied.

(i) Both X in(w) and Xout(w) are defined, and
(ii) Either X in(w) = Xout(w), or X in(w) appears before Xout(w) on X.

Proof Consider any vertex w ∈ V . Let S be the SCC in G\F that contains w and
assume S intersects X . Let w1 and w2 be the first and last vertices of X , respectively,
that are in S. Since w and w1 are in S there is a path from w to w1 in G\F . Moreover,
w cannot reach a vertex that precedes w1 in X since such a vertex will be in S as well
and it will contradict the definition of w1. Therefore, w1 = X in(w). Similarly we can
prove that w2 = Xout(w). Since w1 and w2 are defined to be the first and last vertices
from S on X , respectively, it follows that either w1 = w2, or w1 precedes w2 on X .
Hence conditions (i) and (ii) are satisfied.
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Now assume that conditions (i) and (ii) are true. The definition of X in(·) and Xout(·)
implies that there is a path from Xout(w) to w, and a path from w to X in(w). Also,
condition (ii) implies that there is a path from X in(w) to Xout(w). Thus w, X in(w),
and Xout(w) are in the same SCC and such SCC intersects X .

The following lemma states the condition under which any two vertices lie in the
same SCC, given that their SCCs intersect X .

Lemma 5 Let a, b be any two vertices in V whose SCCs intersect X. Then a and b
lie in the same SCC if and only if X in(a) = X in(b) and Xout(a) = Xout(b).

Proof In the proof of Lemma 4, we show that if SCC of w intersects X , then X in(w)

and Xout(w) are precisely the first and last vertices on X that lie in the SCC of w.
Since SCCs forms a partition of V , vertices a and b will lie in the same SCC if and
only if X in(a) = X in(b) and Xout(a) = Xout(b).

It follows from the above two lemmas that in order to compute the SCCs in G\F
that intersect with X , it suffices to compute X in(·) and Xout(·) for all vertices in V . It
suffices to focus on computation of Xout(·) for all the vertices of V , since X in(·) can be
computed in an analogous manner by just looking at graph GR . One trivial approach
to achieve this goal is to compute the set Vi consisting of all vertices reachable from
each xi by performing a BFS or DFS traversal of graph G(xi )\F , for 1 ≤ i ≤ t = |X |.
Using this straightforward approach it takes O(2knt) time to complete the task of
computing Xout(v) for every v ∈ V , while our target is to do so in O(2kn log n) time.

Observe the nested structure underlying Vi ’s, that is, V1 ⊇ V2 ⊇ · · · ⊇ Vt . Consider
any vertex x�, 1 < � < t . The nested structure implies that for every v ∈ V�, Xout(v)

must be on the portion (x�, . . . , xt ) of X . Similarly, it implies that for every v ∈ V1\V�,
Xout(v)must be on the portion (x1, . . . , x�−1) of X . This suggests a divide and conquer
approach to efficiently compute Xout(·).We first compute the sets V1 and Vt in O(2kn)

time each. For each v ∈ V \V1, we assign NULL to Xout(v) as it is not reachable
from any vertex on X ; and for each v ∈ Vt we set Xout(v) to xt . For vertices in set
V1 \ Vt , Xout(·) is computed by calling the function Binary-Search(1, t − 1, V1\Vt ).
See Algorithm 1.

Algorithm 1: Binary-Search(i, j, A)
1 if (i = j) then
2 foreach v ∈ A do Xout(v) = xi
3 else
4 mid ← �(i + j)/2
;
5 B ← Reach(xmid , A); /* vertices in A reachable from xmid */
6 Binary-Search(i,mid-1, A\B);
7 Binary-Search(mid, j, B);
8 end

In order to explain the function Binary-Search, we first state an assertion that holds
true for each recursive call of the function Binary-Search. We prove this assertion in
the next subsection.
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Assertion 1: If Binary-Search(i, j, A) is called, then A is precisely the set of those
vertices v ∈ V whose Xout(v) lies on the path (xi , xi+1, . . . , x j ).

We now explain the execution of function Binary-Search(i, j, A). If i = j , then we
assign xi to Xout(v) for each v ∈ A as justified by Assertion 1. Let us consider the
case when i �= j . In this case we first compute the index mid = �(i + j)/2
. Next
we compute the set B consisting of all the vertices in A that are reachable from xmid .
This set is computed using the function Reach(xmid , A) which is explained later in
Sect. 3.2. As follows from Assertion 1, Xout(v) for each vertex v ∈ A must belong
to path (xi , . . . , x j ). Thus, Xout(v) for all v ∈ B must lie on path (xmid , . . . , x j ), and
Xout(v) for all v ∈ A\B must lie on path (xi , . . . , xmid-1). So for computing Xout(·)
for vertices in A \ B and B, we invoke the functions Binary-Search(i,mid-1, A\B)
and Binary-Search(mid, j, B), respectively.

3.1 Proof of Correctness of Algorithm

In this section we prove that Assertion 1 holds for each call of the Binary-Search
function. We also show how this assertion implies that Xout(v) is correctly computed
for every v ∈ V .

Let us first see how Assertion 1 implies the correctness of our algorithm. It follows
from the description of the algorithm that for each i, (1 ≤ i ≤ t − 1), the function
Binary-Search(i, i, A) is invoked for some A ⊆ V . Assertion 1 implies that A must
be the set of all those vertices v ∈ V such that Xout(v) = xi . As can be seen, the
algorithm in this case correctly sets Xout(v) to xi for each v ∈ A.

We now show that Assertion 1 holds true in each call of the function Binary-Search.
It is easy to see that Assertion 1 holds true for the first call Binary-Search(1, t −
1, V1\Vt ). Consider any intermediate recursive call Binary-Search(i, j, A), where i �=
j . It suffices to show that if Assertion 1 holds true for this call, then it also holds
true for the two recursive calls that it invokes. Thus let us assume A is the set of
those vertices v ∈ V whose Xout(v) lies on the path (xi , xi+1, . . . , x j ). Recall that
we compute index mid lying between i and j , and find the set B consisting of all
those vertices in A that are reachable from xmid . From the nested structure of the sets
Vi , Vi+1, . . . , Vj , it follows that Xout(v) for all v ∈ B must lie on path (xmid , . . . , x j ),
and Xout(v) for all v ∈ A\B must lie on path (xi , . . . , xmid-1). That is, B is precisely
the set of those vertices whose Xout(v) lies on the path (xmid , . . . , x j ), and A\B is
precisely the set of those vertices whose Xout(v) lies on the path (xi , . . . , xmid-1).
Thus Assertion 1 holds true for the recursive calls Binary-Search(i,mid-1, A\B) and
Binary-Search(mid, j, B) as well.

3.2 Implementation of Function Reach

The main challenge left now is to find an efficient implementation of the function
Reach which has to compute the vertices of its input set A that are reachable from
a given vertex x ∈ X in G\F . The function Reach can be easily implemented by a
standard graph traversal initiated from x in the graph G(x)\F (recall that G(x) is a
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k-FTRS of x in G). This, however, will take O(2kn) time which is not good enough
for our purpose, as the total running time of Binary-Search in this case will become
O(|X |2kn). Our aim is to implement the function Reach in O(2k |A|) time. In general,
for an arbitrary set A this might not be possible. This is because A might contain a
vertex that is reachable from x via a single path whose vertices are not in A, therefore,
the algorithmmust explore edges incident to vertices that are not in A aswell. However,
the following lemma, that exploits Assertion 1, suggests that in our case as the call to
Reach is done while running the function Binary-Search we can restrict ourselves to
the set A only.

Lemma 6 IfBinary-Search(i, j, A) is called and � ∈ [i, j], then for each path P from
x� to a vertex z ∈ A in graph in G\F , all the vertices of P must be in the set A.

Proof Assertion 1 implies that A is precisely the set of those vertices in V which are
reachable from xi but not reachable from x j+1 in G\F . Consider any vertex y ∈ P .
Observe that y is reachable from xi by the path X [xi , x�]::P[x�, y]. Moreover, y is not
reachable from x j+1, because otherwise z will also be reachable from x j+1, which is
not possible since z ∈ A. Thus vertex y is in the set A.

Lemma 6 andLemma1 imply that in order to find the vertices in A that are reachable
from xmid , it suffices to do a traversal from xmid in the graphGA, the induced subgraph
of A in G(x)\F , that has O(2k |A|) edges. Therefore, based on the above discussion,
Algorithm 2 given below, is an implementation of function Reach that takes O(2k |A|)
time.

Algorithm 2: Reach(xmid , A)

1 H ← G(xmid )\F ;
2 GA ← (A, ∅); /* an empty graph */
3 foreach v ∈ A do
4 foreach (y, v) ∈ In- Edges(v, H) do
5 if y ∈ A then E(GA) = E(GA) ∪ (y, v)

6 end
7 end
8 B ← Vertices reachable from xmid obtained by a BFS or DFS traversal of graph GA;
9 Return B;

The following lemma gives the analysis of running time of Binary-Search(1, t −
1, V1\Vt ).
Lemma 7 The total running time of Binary-Search(1, t − 1, V1\Vt ) is O(2kn log n).

Proof The time complexity of Binary-Search(1, t − 1, V1\Vt ) is dominated by the
total time taken by all invocations of function Reach. Let us consider the recursion
tree associated with Binary-Search(1, t − 1, V1\Vt ). It can be seen that this tree will
be of height O(log n). In each call of the Binary-Search, the input set A is partitioned
into two disjoint sets. As a result, the input sets associated with all recursive calls at
any level j in the recursion tree form a disjoint partition of V1\Vt . Since the time taken
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by Reach is O(2k |A|), the total time taken by all invocations of Reach at any level j
is O(2k |V1\Vt |). As there are at most O(log n) levels in the recursion tree, the total
time taken by Binary-Search(1, t − 1, V1\Vt ) is O(2kn log n).

We conclude with the following theorem.

Theorem 3 Let F be any set of at most k failed edges, and X = {x1, . . . , xt } be any
path in G\F. If we have prestored the graphs G(x) and GR(x) for each x ∈ X, then
we can compute all the SCCs of G\F which intersect with X in O(2kn log n) time.

4 Main Algorithm

In the previous section we showed that given any path P , we can compute all the SCCs
intersecting P efficiently, if P is intact in G\F . In the case that P contains � failed
edges from F then P is decomposed into � + 1 paths, and we can apply Theorem 3 to
each of these paths separately to get the following theorem:

Theorem 4 Let P be any path in G such that for each x ∈ P we have prestored
the graphs G(x) and GR(x). Then for any arbitrary set F of at most k edges we can
compute the SCCs of G\F that intersect the path P in O((�+1)2kn log n) time, where
� (� ≤ k) is the number of edges in F that lie on P.

Now in order to use Theorem 4 to design a fault tolerant algorithm for SCCs, we
need to find a family of paths, sayP , such that for any F , each SCC of G\F intersects
at least one path in P . As described in the Sect. 1.1, a heavy path decomposition of
DFS tree T serves as a good choice for P . Choosing T as a DFS tree helps us because
of the following reason: let P be any root-to-leaf path, and suppose we have already
computed the SCCs in G\F intersecting P . Then each of the remaining SCCs must
be contained in some subtree hanging from path P . The following lemma formally
states this fact.

Lemma 8 Let F be any set of failed edges, and Path(a, b) be any path in the heavy
path decomposition P of the DFS tree T . Let S be any SCC in G\F that intersects
Path(a, b) but does not intersect any ancestor path of Path(a, b) in P . Then all the
vertices of S must lie in the subtree T (a).

Proof Consider a vertex u on Path(a, b) whose SCC Su in G\F is not completely
contained in the subtree T (a). We show that Su must contain an ancestor of a in T ,
thereby proving that it intersects an ancestor-path of Path(a, b) in P . Let v be any
vertex in Su that is not in the subtree T (a). Let Pu,v and Pv,u be paths from u to v and
from v to u, respectively, in G\F . From Lemma 2 it follows that either Pu,v or Pv,u

must pass through a common ancestor of u and v in T . Let this ancestor be z. Notice
that all the vertices of Pu,v and Pv,u must lie in Su . In particular, z must also lie in Su .
Moreover, since v /∈ T (a) and u ∈ T (a), their common ancestor z in T is an ancestor
of a. Since z ∈ Su and it is an ancestor of a in T , the lemma follows.

Lemma8 suggests that if we process the paths fromP in the non-decreasing order of
their depths, then in order to compute the SCCs intersecting a path Path(a, b) ∈ P , it
suffices to focus on the subgraph induced by the vertices in T (a) only. This is because
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the SCCs intersecting Path(a, b) that do not completely lie in T (a) would have
already been computed during the processing of some ancestor path of Path(a, b).

We preprocess the graphG as follows.Wefirst compute a heavy path decomposition
P of DFS tree T . Next for each path Path(a, b) ∈ P , we use Theorem 4 to construct
the data structure for path Path(a, b) and the subgraph of G induced by vertices
in T (a). We use the notation Da,b to denote this data structure. Our algorithm for
reporting SCCs in G\F will use the collection of these data structures associated with
the paths in P as follows.

Let C denote the collection of SCCs in G\F initialized to ∅. We process the paths
from P in non-decreasing order of their depths. Let Path(a, b) be any path in P
and let A be the set of vertices belonging to T (a). We use the data structure Da,b to
compute SCCs ofG(A)\F intersecting Path(a, b). Let these be S1, . . . , St . Note that
some of these SCCs might be a part of some bigger SCC computed earlier. We can
detect it by keeping a set W of all vertices for which we have computed their SCCs.
So if Si ⊆ W , then we can discard Si , else we add Si to collection C. Algorithm 3
gives the complete pseudocode of this algorithm.

Algorithm 3: Compute SCC(G, F)

1 C ← ∅; /* Collection of SCCs */
2 W ← ∅; /* A subset of V whose SCC have been computed */
3 P ← A heavy-path decomposition of T , where paths are sorted in the non-decreasing order of
their depths;

4 foreach Path(a, b) ∈ P do /* visited in non-decreasing order of depth */
5 A ← Vertices lying in the subtree T (a);
6 (S1, . . . , St ) ← SCCs intersecting Path(a, b) in G(A) \ F computed using Da,b;
7 foreach i ∈ [1, t] do
8 if (Si � W ) then Add Si to collection C and set W = W ∪ Si
9 end

10 end
11 Return C;

Note that, in the above explanation, we only used the fact that T is a DFS tree,
and P could have been any path decomposition of T . We now show how the fact
that P is a heavy-path decomposition is crucial for the efficiency of our algorithm.
Consider any vertex v ∈ T . The number of times v is processed in Algorithm 3 is
equal to the number of paths in P that start from either v or an ancestor of v. For this
number to be small for each v, we choose P to be a heavy path decomposition of T .
On applying Theorem 4, this immediately gives that the total time taken by Algorithm
3 is O(k2kn log2 n). In the next subsection, we do a more careful analysis to give a
bound of O(2kn log2 n).

4.1 Analysis of Time Complexity of Algorithm 3

For any path Path(a, b) ∈ P and any set F of failing edges, let �(a, b) denote the
number of edges of F that lie on Path(a, b). It follows from Theorem 4 that the time
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spent in processing Path(a, b) by Algorithm 3 is O
(
(�(a, b)+1)×2k |T (a)|× log n

)
.

Hence the time complexity of Algorithm 3 is of the order of

∑

Path(a,b)∈P
(�(a, b) + 1) × 2k |T (a)| × log n

In order to calculate this we define a notation α(v, Path(a, b)) as �(a, b) + 1
if v ∈ T (a), and 0 otherwise, for each v ∈ V and Path(a, b) ∈ P . So the time
complexity of Algorithm 3 becomes

2k log n ×
⎛

⎝
∑

Path(a,b)∈P
(�(a, b) + 1) × |T (a)|

⎞

⎠

= 2k log n ×
⎛

⎝
∑

Path(a,b)∈P

∑

v∈V
α(v, Path(a, b))

⎞

⎠

= 2k log n ×
⎛

⎝
∑

v∈V

∑

Path(a,b)∈P
α(v, Path(a, b))

⎞

⎠

Observe that for any vertex v and Path(a, b) ∈ P , α(v, Path(a, b)) is equal to
�(a, b)+1 if a is either v or an ancestor of v, otherwise it is zero. Consider any vertex
v ∈ V . We now show that

∑
Path(a,b)∈P α(v, Path(a, b)) is at most k+ log n. Let Pv

denote the set of those paths in P which starts from either v or an ancestor of v. Then∑
Path(a,b)∈P α(v, Path(a, b)) = ∑

Path(a,b)∈Pv
�(a, b) + 1. Since the paths in Pv

are disjoint,
∑

Path(a,b)∈Pv
�(a, b) is at most k, and Lemma 3 implies that the number

of paths in Pv is at most O(log n). This shows that
∑

Path(a,b)∈P α(v, Path(a, b)) =
O(k + log n) = O(log n), since k ≤ log n.

Hence the time complexity of Algorithm 3 becomes O(2kn log2 n). Finally note
that for each vertex v, if v belongs to Path(a, b) in the heavy path decomposition,
then corresponding to v we store the two k-FTRS, defined with respect to v as source
and sink, on the subgraph of G induced by vertices in T (a). Thus from Theorem 2,
the size of our data structure is at most O(n × 2kn) time, and the preprocessing time
is O(n × 2kmn). We thus conclude with the following theorem.

Theorem 5 There is an algorithm that computes the SCCs of G\F, for any set F of
k edges or vertices, in O(2kn log2 n) time. The algorithm uses a data structure of size
O(2kn2) computed in O(2kn2m) time for G during a preprocessing phase.

5 Extension to Handle Insertion as Well as Deletion of Edges

In this section we extend our algorithm to incorporate insertion as well as deletion of
edges. That is, we describe an algorithm for reporting SCCs of a directed graph G
when there are at most k edge insertions and at most k edge deletions.
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Let D denote the O(2kn2) size data structure, described in Sect. 4, for handling k
failures. In addition to D, we store the two k-FTRS: G(v) and GR(v) for each vertex
v in G. Thus the space used remains the same, i.e. O(2kn2). Now let U = (X,Y ) be
the ordered pair of k updates, with X being the set of failing edges and Y being the
set of newly inserted edges. We assume X ∩ Y = ∅ and |X |, |Y | ≤ k. X ∩ Y = ∅ and
|X |, |Y | ≤ k.

Algorithm 4: Find-SCCs(U = (X,Y ))

1 C ← SCCs of graph G \ X computed using data structure D;
2 S ← Subset of V consisting of endpoints of edges in Y ;

3 H ← ⋃
v∈S

(G (v) + GR(v) + Y
)
;

4 Compute SCCs of graph H \ X using any standard static algorithm;
5 foreach v ∈ S do
6 Merge all the smaller SCCs of C which are contained in SCCH\X (v) into a single SCC;
7 end

Let G + U denote the graph obtained on removing the edges lying in set X from
G, and inserting the edges lying in set Y . In order to compute SCCs of G + U , our
first step is to compute the collection C, consisting of SCCs of graph G \ X . This can
be easily done in O(2kn log2 n) time using the data structure D. Now on addition of
set Y , some of the SCCs in C may get merged into bigger SCCs. Let S be the subset of
V consisting of endpoints of edges in Y . Note that if the SCC of a vertex gets altered
on addition of Y , then its new SCC must contain at least one edge from Y , and thus
also a vertex from set S. Therefore, in order to compute SCCs of G +U , it suffices to
recompute only the SCCs of vertices lying in the set S.

Lemma 9 Let H be a graph consisting of edge set Y , and the k-FTRS G(v) and
GR(v), for each v ∈ S. Then SCCH\X (v) = SCCG+U (v), for each v ∈ S.

Proof Consider a vertex v ∈ S. Since H\X ⊆ G +U , SCCH\X (v) ⊆ SCCG+U (v).
We show that SCCH\X (v) is indeed equal to SCCG+U (v).

Let w be any vertex reachable from v in G + U , by a path, say P . Our aim is
to show that w is reachable from v in H\X as well. Notice that we can write P as
(P1::e1::P2::e2 · · · e�−1::P�), where P1, . . . , P� are segments of P obtained after the
removal of edges of set Y , and e1, . . . , e�−1 are edges in Y appearing on path P . Thus
P1, . . . , P� lie in G \ X . For i = 1 to �, let ai and bi be respectively the first and last
vertices of path Pi . Since a1 = v and a2, . . . , a� ∈ S, the k-FTRS of all the vertices
a1 to a� is contained in H . Thus for i = 1 to �, vertex bi must be reachable from ai by
some path, say Qi , in graph H \ X . Hence Q = (Q1::e1::Q2 · · · e�−1::Q�) is a path
from a1 = v to b� = w in graph H \ X .

In a similar manner we can show that if a vertex w′ has a path to v in graph G +U ,
then w′ will also have path to v in graph H \ X . Thus SCCH\X (v) must be equal to
SCCG+U (v).

So we compute the auxiliary graph H as described in Lemma 9. Note that H
contains only O(k2kn) edges. Next we compute the SCCs of graph H \ X using any
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standard algorithm [14] that runs in time which is linear in terms of the number of
edges and vertices. This algorithmwill take O(2kn log n) time, since k is at most log n.
Finally, for each v ∈ S, we check if the SCCH\X (v) has broken into smaller SCCs in
C, if so, then we merge all of them into a single SCC. We can accomplish this entire
task in a total O(nk) time only. This completes the description of our algorithm. For
the pseudocode see Algorithm 4.

We conclude with the following theorem.

Theorem 6 For any n-vertex directed graph G, there exists an O(2kn2) size data
structure computable in O(2kn2m) time during a preprocessing phase that, given any
set U of at most k edge insertions and at most k edge deletions, can report the SCCs
of graph G +U in O(2kn log2 n) time.

6 Future Work

In this paper, we give construction of a data structure of O(2kn2) size that after any k
edge additions and/or deletions can report the SCCs of the new graph in O(2kn log2 n)

time. There are two natural extensions of this problem. The first is to extend the result
to answer pair-wise queries: Given a set U of k > 1 updates, and a pair of vertices
x, y, report if the vertices x and y are strongly connected in the graph G + U . The
second extension is to compute a sparse subgraph that preserves strong-connectivity
relation among the vertices of a given graph upon failure of any k edges or vertices. It
is also interesting to see if one can improve either the preprocessing time or the size
of the data-structure presented in this paper for reporting SCCs after k failures.
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