
SIAM J. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 4, pp. 1335--1363

DYNAMIC DFS IN UNDIRECTED GRAPHS: BREAKING THE
\bfitO (\bfitm) BARRIER\ast

SURENDER BASWANA\dagger , SHREEJIT RAY CHAUDHURY\dagger , KEERTI CHOUDHARY\dagger , AND

SHAHBAZ KHAN\dagger

Abstract. Depth first search (DFS) tree is a fundamental data structure for solving various
problems in graphs. It is well known that it takes O(m+n) time to build a DFS tree for a given undi-
rected graph G = (V,E) on n vertices and m edges. We address the problem of maintaining a DFS
tree when the graph is undergoing updates (insertion and deletion of vertices or edges). We present
the following results for this problem: (1) Fault tolerant DFS tree: There exists a data structure of
size \~O(m) (where \~O() hides the polylogarithmic factors) which can be preprocessed in \~O(m) time
such that given any set \scrF of failed vertices or edges, a DFS tree of the graph G\setminus \scrF can be reported in
\~O(n| \scrF |) time. (2) Fully dynamic DFS tree: There exists a fully dynamic algorithm for maintaining
a DFS tree that takes \~O(m) time for preprocessing and worst case \~O(

\surd
mn) time per update for

any arbitrary online sequence of updates. (3) Incremental DFS tree: There exists an incremental
algorithm for maintaining a DFS tree that takes \~O(m) time for preprocessing and worst case \~O(n)
time per update for any arbitrary online sequence of edge insertion. These are the first o(m) worst
case time results for maintaining a DFS tree of a dense graph in a dynamic environment. Moreover,
our fully dynamic algorithm provides, in a seamless manner, the first deterministic algorithm for
dense graphs with O(1) query time and o(m) worst case update time for connectivity, biconnectivity,
and 2-edge connectivity in the dynamic subgraph model.

Key words. depth first search, DFS, dynamic graph algorithm

AMS subject classifications. 05C85, 68W40, 68Q25

DOI. 10.1137/17M114306X

1. Introduction. Depth first search (DFS) is a well-known graph traversal tech-
nique. Right from the seminal work of Tarjan [57], DFS traversal has played the cen-
tral role in the design of efficient algorithms for many fundamental graph problems,
namely biconnected components [57], strongly connected components [57], topological
sorting, bipartite matching [38], dominators in directed graph [58], and planarity test-
ing [39]. Interestingly, the role of DFS traversal is not confined to merely the design
of efficient algorithms. For example, consider the classical result of Erd\H os and R\'enyi
[25] for the phase transition phenomena in random graphs. There exist many proofs
of this result which are intricate and based on highly sophisticated probability tools.
However, recently, Krivelevich and Sudakov [42] designed a truly simple, short, and
elegant proof for this result based on the insights from a DFS traversal in a graph.

Let G = (V,E) be an undirected connected graph on n vertices and m edges.
A DFS traversal of G starting from any vertex r \in V produces a rooted spanning
tree, called a DFS tree, with r as its root. It takes O(m+ n) time to perform a DFS

\ast Received by the editors August 10, 2017; accepted for publication (in revised form) May 24,
2019; published electronically July 23, 2019. The preliminary version of this paper appeared in
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2016), ACM, New York; SIAM, Philadelphia, 2016, pp. 730--739.

https://doi.org/10.1137/17M114306X
Funding: The first author's research was partially supported by UGC-ISF (the University

Grants Commission of India and the Israel Science Foundation) and IMPECS (the Indo-German
Max Planck Center for Computer Science). The third author's research was partially supported by
Google India under the Google India Ph.D. Fellowship Award.

\dagger Department of Computer Science and Engineering, I.I.T. Kanpur, Kanpur, 208016 Uttar
Pradesh, India (sbaswana@cse.iitk.ac.in, shreejit.1@gmail.com, keerti@cse.iitk.ac.in, shahbazk@
cse.iitk.ac.in).

1335

https://doi.org/10.1137/17M114306X
mailto:sbaswana@cse.iitk.ac.in
mailto:shreejit.1@gmail.com
mailto:keerti@cse.iitk.ac.in
mailto:shahbazk@cse.iitk.ac.in
mailto:shahbazk@cse.iitk.ac.in

1336 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

traversal and generate a DFS tree. Given any rooted spanning tree of graph G, all
nontree edges of the graph can be classified into two categories, namely back edges
and cross edges, as follows. A nontree edge is called a back edge if one of its endpoints
is an ancestor of the other in the tree. Otherwise, it is called a cross edge. A necessary
and sufficient condition for any rooted spanning tree to be a DFS tree is that every
nontree edge is a back edge. Thus, it can be seen that many DFS trees are possible
for any given graph. However, if the traversal of the graph is performed according to
the order specified by the adjacency lists of the graph, the resulting DFS tree will be
unique. The ordered DFS tree problem is to compute the order in which the vertices
get visited when the traversal is performed strictly according to the adjacency lists.

Several graph applications in the real world deal with graphs that keep changing
with time. These changes/updates can be in the form of insertion or deletion of ver-
tices or edges. An algorithmic graph problem is modeled in a dynamic environment
as follows. There is an online sequence of updates on the graph, and the objective
is to update the solution of the problem efficiently after each update. In particular,
the time taken to update the solution has to be much smaller than that of the best
static algorithm for the problem. In the last two decades, many dynamic algorithms
have been designed for various graph problems, such as connectivity [36, 37, 41, 47],
reachability [51, 53, 20], shortest path [19, 59, 52], spanners [9, 30, 50], and match-
ing [32, 6, 56] and min-cut [60]. Another, and more restricted, variant of a dynamic
environment is the fault tolerant environment. Here the aim is to build a compact
data structure for a given problem that is resilient to failure of vertices/edges and can
efficiently report the solution of the problem for any given set of failures. There has
been a lot of work in the last two decades on fault tolerant algorithms for connectivity
[13, 22, 28], shortest paths [8, 16, 21], and spanners [10, 15].

A dynamic graph algorithm is said to be fully dynamic if it handles both insertion
as well as deletion updates. A partially dynamic algorithm is said to be incremental or
decremental if it handles only insertion or only deletion updates, respectively. In this
paper, we address the problem of maintaining a DFS tree efficiently in any dynamic
environment.

1.1. Existing results on dynamic DFS. In spite of the simplicity of a DFS
tree, designing any efficient parallel or dynamic algorithm for a DFS tree has turned
out to be quite challenging. Reif [48] showed that the ordered DFS tree problem is a P -
Complete problem. For many years, this result seemed to imply that the general DFS
tree problem, that is, the computation of any DFS tree, is also inherently sequential.
However, Aggarwal and Anderson [2] proved that the general DFS tree problem is
in RNC by designing a parallel randomized algorithm that takes O(log3 n) expected
time. Further, the fastest parallel deterministic algorithm for the general DFS tree
still takes O(

\surd
n) time [3, 29]. Whether the general DFS tree problem is in NC for

directed (or undirected) graphs is still a longstanding open problem.
Reif [49] and later Miltersen et al. [43] proved that P -Completeness of a problem

also implies hardness of the problem in the dynamic setting. The work of Miltersen et
al. [43] shows that if the ordered DFS tree is updateable in O(t(m,n)) time, then the
solution of every problem in class P is updateable in \~O(t(m,n)) time. In other words,
maintaining the ordered DFS tree is indeed the hardest among all the problems in
class P . In our view, this hardness result, which is actually for only the ordered DFS
tree problem, has proved to be quite discouraging for the researchers working in the
area of dynamic algorithms. This is evident from the fact that for all the static graph
problems that were solved using a DFS traversal in the 1970's, none of their dynamic

DYNAMIC DFS IN UNDIRECTED GRAPHS 1337

counterparts used a dynamic DFS tree [36, 37, 41, 51, 12, 13, 22].
Apart from the hardness of the ordered DFS tree problem in a dynamic environ-

ment, very little progress has been achieved even for the problem of maintaining any
DFS tree. Franciosa, Gambosi, and Nanni [26] designed an incremental algorithm
for a DFS tree in a directed acyclic graph (DAG). For any arbitrary sequence of edge
insertions, this algorithm takes O(mn) total time to maintain a DFS tree from a given
source. Recently, Baswana and Choudhary [5] designed a decremental algorithm for
a DFS tree in a DAG that requires expected O(mn log n) total time. For undirected
graphs, recently, Baswana and Khan [7] designed an incremental algorithm for main-
taining a DFS tree requiring O(n2) total time. These algorithms are the only results
known for the dynamic DFS tree problem. Moreover, none of these existing algo-
rithms, though designed for only a partially dynamic environment, achieves a worst
case bound of o(m) on the update time. Furthermore, none of these results proves
that general DFS is not as hard as ordered DFS in the dynamic environment. This
is because the speculations of having to incur a complete recomputation in the worst
case after an update is not disproved by amortized bounds resulting in the perceived
O(m) barrier for general DFS as well. So the following intriguing questions remain
unanswered to date:

\bullet Does there exist any nontrivial fully dynamic algorithm for maintaining a
DFS tree?

\bullet Is it possible to achieve worst case o(m) update time for maintaining a DFS
tree in a dynamic environment?

Not only do we answer these open questions affirmatively for undirected graphs,
but we also use our dynamic algorithm for a DFS tree to provide efficient solutions for
a couple of well-studied dynamic graph problems. Moreover, our results also handle
vertex updates (insertion and deletion of vertices along with the incident edges),
which are generally considered harder than edge updates. This feature enables us
to use our results for applications in the dynamic subgraph model. Furthermore,
assuming strongly believed conjectures [1], our results finally imply that general DFS
is indeed not as hard as ordered DFS in the dynamic setting, as was the case in the
parallel setting. This is because even an \~O(

\surd
mn) worst case update time dynamic

algorithm for ordered DFS would imply the same bound for every problem in class
P [43], refuting the conditional lower bounds [1].

1.2. Our results. We consider a generalized notion of updates wherein an up-
date could be either insertion/deletion of a vertex (along with incident edges) or
insertion/deletion of an edge. For any set U of such updates, let G + U denote the
graph obtained after performing the updates U on the graph G. Our main result can
be succinctly described in the following theorem.

Theorem 1. An undirected graph can be preprocessed in O(m log n) time to build
a data structure of size O(m log n), such that for any set U of k \leq n updates a DFS
tree of G+ U can be reported in O(nk log4 n) time.

With this result at the core, we easily obtain the following results for a dynamic
DFS tree in an undirected graph:

1. Fault tolerant DFS tree. Given any set of k failed vertices or edges, we can
report a DFS tree for the resulting graph in O(nk log4 n) time.

2. Fully dynamic DFS tree. Given any arbitrary online sequence of vertex or
edge updates, we can maintain a DFS tree in O(

\surd
mn log2.5 n) worst case

time per update.

1338 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

3. Incremental DFS tree. Given any arbitrary online sequence of edge insertions,
we can maintain a DFS tree in O(n log3 n) worst case time per edge insertion.

These are the first o(m) worst case update time algorithms for dense graphs1 for
maintaining a DFS tree in a dynamic environment. Recently, there has been signifi-
cant work [1, 33] on establishing conditional lower bounds on the time complexity of
various dynamic graph problems. A simple reduction from [1], based on the strong
exponential time hypothesis (SETH) [11, 40], implies a conditional lower bound of
\Omega (n) on the update time of any fully/partially dynamic algorithm for a DFS tree
under vertex updates. We also present an unconditional lower bound of \Omega (n) for
maintaining a fully dynamic DFS tree explicitly under edge updates.

1.3. Applications of fully dynamic DFS. In the static setting, a DFS tree
can be easily used to answer connectivity, 2-edge connectivity, and biconnectivity
queries. Our fully dynamic algorithm for a DFS tree thus seamlessly solves these
problems for both the vertex and the edge updates. Further, our result gives the
first deterministic algorithm with O(1) query time and o(m) worst case update time
for dense graphs for several well-studied variants of these problems in the dynamic
setting. These problems include dynamic subgraph connectivity [13, 22, 24, 27, 37, 41]
and vertex update versions of dynamic biconnectivity [35, 34, 37] and dynamic 2-
edge connectivity [37, 24, 27]. The existing results offer different trade-offs between
the update time and the query time and differ on the types (amortized or worst
case) of update time and the types (deterministic or randomized) of query time.
Our algorithm, in particular, improves the deterministic worst case bounds for these
problems, thus demonstrating the relevance of DFS trees in solving dynamic graph
problems.

Remark 1.1. After the preliminary version of this article [4] was published, there
were several followup papers that improved the bounds proved in this article by poly-
logarithmic factors. These results essentially improved the data structure used by
our algorithm. Chen et al. [17] reduced our data structure queries to the orthogonal
range search problem. They showed that this data structure along with fractional
cascading [14] reduces the update time of the incremental DFS algorithm to O(n).
Later, Nakamura and Sadakane [45] improved the space required by the data structure
from O(m log n) to O(m) words using wavelet trees [31]. Finally, Nakamura [44] pre-
sented a fully dynamic connectivity structure under vertex updates, which improves
our presented bounds in some cases.

1.4. Main idea. Let T be a DFS tree of G. To compute a DFS tree of G+U for
a given set U of updates, the main idea is to make use of the original tree T itself. We
preprocess the graph G using tree T to build a data structure \scrD . In order to achieve
o(m) update time for dense graphs, our algorithm makes use of \scrD to create a reduced
adjacency list for each vertex such that performing a DFS traversal using these lists
gives a DFS tree for G + U . In fact, these reduced adjacency lists are generated on
the fly and are guaranteed to have only \~O(n| U |) edges.

We now give an outline of the paper. In section 2, we describe various notations
used throughout the paper. Section 3 describes an algorithm to report the DFS tree
after a single update in the graph. The details of the required data structure \scrD are
described in section 4. Then, in section 5, we provide an overview of our algorithm
for handling multiple updates, highlighting the main intuition behind our approach.

1Our bounds are not o(m) when m = \~O(n), where even the trivial algorithm is close to the \Omega (n)
lower bound.

DYNAMIC DFS IN UNDIRECTED GRAPHS 1339

Our main algorithm (Theorem 1), which reports a DFS tree after any set of updates
in the graph, is described in section 7. In section 8, we convert this algorithm to fully
dynamic and incremental algorithms for maintaining a DFS tree using the overlapped
periodic rebuilding technique. Finally, in sections 9 and 10 we describe the applications
and lower bounds of dynamic DFS trees.

2. Preliminaries. Let U be any given set of updates. We add a dummy vertex r
to the given graph in the beginning and connect it to all the vertices. Our algorithm
starts with any arbitrary DFS tree T rooted at r in the augmented graph, and it
maintains a DFS tree rooted at r at each stage. It can be observed easily that each
subtree rooted at any child of r is a DFS tree of a connected component of the graph
G+ U . The following notations will be used throughout the paper:

\bullet T (x): The subtree of T rooted at vertex x.
\bullet path(x, y): The path from the vertex x to the vertex y in T .
\bullet distT (x, y): The number of edges on the path from x to y in T .
\bullet LCA(x, y): The lowest common ancestor of x and y in tree T .
\bullet N(w): The adjacency list of vertex w in the graph G+ U .
\bullet L(w): The reduced adjacency list of vertex w in the graph G+ U .
\bullet T \ast : The DFS tree rooted at r computed by our algorithm for the graph G+U .
\bullet par(w): Parent of w in T \ast .

A subtree T \prime is said to be hanging from a path p if the root r\prime of T \prime is a child
of some vertex on the path p and r\prime does not belong to the path p. Unless stated
otherwise, every reference to a path refers to an ancestor-descendant path defined as
follows.

Definition 2 (ancestor-descendant path). A path p in a DFS tree T is said to be
an ancestor-descendant path if its endpoints have an ancestor-descendant relationship
in T .

We now state the operations supported by the data structure \scrD (complete details
of \scrD are in section 4). Let U below refer to a set of updates that consists of vertex
and edge deletions only. For any three vertices w, x, y \in T , where path(x, y) is an
ancestor-descendant path in T , the following two queries can be answered using \scrD in
O(log3 n) time:

1. Query(w, x, y): among all the edges from w that are incident on path(x, y)
in G+ U , return the edge that is incident nearest to x on path(x, y).

2. Query(T (w), x, y): among all the edges from T (w) that are incident on
path(x, y) in G+U , return an edge that is incident nearest to x on path(x, y).

We now describe an important property of a DFS traversal that will be crucially
used in our algorithm.

2.1. Properties of a DFS tree. A DFS traversal has the following flexibility:
when the traversal reaches a vertex, say v, the next vertex to be traversed can be any
unvisited neighbor of v. In order to compute a DFS tree for G + U efficiently, our
algorithm exploits this flexibility, the original DFS tree T , and the following property
of a DFS traversal.

Lemma 3 (components property). Let T \ast be the partially grown DFS tree and
v be the vertex currently being visited. Let C be any connected component in the
subgraph induced by the unvisited vertices. Suppose two edges e and e\prime from C are
incident, respectively, on v and some ancestor (not necessarily proper) w of v in T \ast .
Then it is sufficient to consider only e during the rest of the DFS traversal; i.e., the
edge e\prime need not be scanned. (Refer to Figure 1.)

1340 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

r

w

v

C1

C2

e1

e′1

e2

e′2

Fig. 1. Edges e\prime 1 as well as e\prime 2 can be ignored during the DFS traversal.

Skipping e\prime during the DFS traversal, as stated in the components property, is
justified because e\prime will appear as a back edge in the resulting DFS tree. A similar
property describing the inessential edges of a DFS trees was used by Smith [55] for
computing a DFS tree of a planar graph in the parallel setting. In order to highlight
the importance of the components property, and to motivate the requirement of data
structure \scrD , we first consider a simpler case which deals with reporting a DFS tree
after a single update in the graph.

3. Handling a single update. Consider the failure of a single edge (b, f) (refer
to Figure 2(i)). Exploiting the flexibility of a DFS traversal, we can assume a stage in
the DFS traversal of G\setminus \{ (b, f)\} where the partial DFS tree T \ast is T\setminus T (f) and vertex b
is currently being visited. Thus, the unvisited graph is a single connected component
containing the vertices of T (f). Now, according to the components property, we
need to process only the lowest edge from T (f) to path(b, r) ((k, b) in Figure 2(ii)).
Hence, the DFS traversal enters this component using the edge (k, b) and performs a
traversal of the subgraph induced by the vertices of T (f). The resulting DFS tree of
this subgraph would now be rooted at k. Rebuilding the DFS tree after the failure of
edge (b, f) thus reduces to finding the lowest edge from T (f) to path(b, r) and then
rerooting a subtree T (f) of T at the new root k. We now describe how this rerooting
can be performed in \~O(n) time in the following section.

r

a

b

c

d

e

m

f

g

k

l

h

i j

(i)

r

a

b

c

d

e

m

f

g

k

l

h

i j

(ii)

r

a

b

c

d

e

m

k

g

f

l

h

i j

(iii)

r

a

b

c

d

e

m

k

g

f

l

h

i j

(iv)

Fig. 2. (i) Failure of edge (b, f). (ii) Partial DFS tree T \ast with unvisited graph T (f); components
property allows us to neglect (a, l). (iii) Augmented path(k, f) to T \ast ; the components property allows
us to neglect (l, k). (iv) Final DFS tree of G\setminus \{ (b, f)\} .

DYNAMIC DFS IN UNDIRECTED GRAPHS 1341

3.1. Rerooting a DFS tree. Given a DFS tree T originally rooted at r0 and
a vertex r\prime , the aim is to compute a DFS tree of the graph that is rooted at r\prime . Note
that any subtree T (x) of the DFS tree T is also a DFS tree of the subgraph induced
by the vertices of T (x). Hence, the same procedure can be applied to reroot a subtree
T (x) of the DFS tree T . Thus, in general our aim is to reroot T (r0) at a new root
r\prime \in T (r0) (see Figure 2(ii), where the subtree T (f) would be rerooted at its new root
k).

Procedure Reroot(T (r0), r
\prime): Reroots the subtree T (r0) of T to be rooted

at the vertex r\prime \in T (r0).

\bfone foreach (a, b) on path(r0, r
\prime) do /* a = par(b) in original tree T (r0).

*/

\bftwo par(a)\leftarrow b;
\bfthree foreach child c of b not on path(r0, r

\prime) do
\bffour (u, v)\leftarrow Query(T (c), r0, b) ; /* where u \in path(r0, r

\prime) and

v \in T (c). */

\bffive if (u, v) is nonnull then
\bfsix Reroot(T (c), v);
\bfseven par(v)\leftarrow u;

\bfeight end

\bfnine end

\bfone \bfzero end

Fig. 3. The recursive algorithm to reroot a DFS tree T (r0) at the new root r\prime .

Our algorithm (refer to Procedure Reroot) essentially performs the DFS traversal
(exploiting the flexibility of DFS) in such a way that components of the unvisited
graph can be easily identified. The components property can then be applied to each
such component, processing only O(n) edges to compute the rerooted DFS tree. The
DFS traversal first visits the path from r\prime to the root of tree T (r0). This reverses
path(r0, r

\prime) in the new DFS tree T \ast , as now r\prime would be an ancestor of r0 (see Figure
2(iii)). Now, each subtree hanging from path(r\prime , r0) in T forms a component of the
unvisited graph. This is because the presence of any edge between these subtrees
would imply a cross edge in the original DFS tree. Using the components property,
we know that for each of these subtrees, say Ti, we only need to process the lowest
edge from Ti on the new path from r\prime to r0 in T \ast . Since path(r\prime , r0) is reversed in
T \ast , it is equivalent to processing the highest edge ei from Ti to the path(r0, r

\prime) in
T . Recall that this query can be answered by our data structure \scrD in O(log3 n) time
(refer to section 2). Now, let vi be the end vertex of ei in Ti. The DFS traversal
will thus visit the component induced by the vertices of Ti through ei and produce
its DFS tree, which is rooted at vi. This rerooting can be performed by invoking the
rerooting procedure recursively on the subtree Ti with the new root vi.

We now analyze the total time required by Procedure Reroot to reroot a subtree
T \prime of the DFS tree T . The total time taken by our algorithm is proportional to the
number of edges processed by the algorithm. These edges include the tree edges that
were a part of the original tree T \prime and the added edges that are returned by the data
structure \scrD . Clearly, the number of tree edges in T \prime are O(| T \prime |). Also, since the
added edges eventually become a part of the new DFS tree T \ast , they too are bounded

1342 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

r

u′

u

v

v′

(i)

r

w

u

v′

v

(ii)

r

u′
1

u′
2

u

v1

v′1

v2

v′2

(iii)

r

v2

v′3

v3

v1

v′4

v4vj

u

(iv)

Fig. 4. Updating the DFS tree after a single update: (i) deletion of an edge, (ii) insertion of
an edge, (iii) deletion of a vertex, and (iv) insertion of a vertex. The reduction algorithm reroots
the marked subtrees (shown in violet) and hangs it from the inserted edge (in case of insertion) or
the lowest edge (in case of deletion) on the marked path (shown in blue) from the marked subtree.
Color is available online only.

by the size of the tree T \prime . Further, the data structure \scrD takes O(log3 n) time to
report each added edge. Hence, the total time taken by our algorithm to rebuild T \prime

is O(| T \prime | log3 n) time. Since \scrD can be built in O(m log n) time (refer to Theorem 6 in
section 4), we have the following theorem.

Theorem 4. An undirected graph can be preprocessed to build a data structure
in O(m log n) time, such that any subtree T \prime of the DFS tree can be rerooted at any
vertex in T \prime , in O(| T \prime | log3 n) time.

We now formally describe how rebuilding a DFS tree after an update can be
reduced to this simple rerooting procedure (see Figure 4).

1. Deletion of an edge (\bfitu , \bfitv):
In case (u, v) is a back edge in T , simply delete it from the graph. Otherwise,
let u = par(v) in T . The algorithm finds the lowest edge (u\prime , v\prime) on the
path(u, r) from T (v), where v\prime \in T (v). The subtree T (v) is then rerooted at
its new root v\prime and hanged from u\prime using (u\prime , v\prime) in the final tree T \ast .

2. Insertion of an edge (\bfitu , \bfitv):
In case (u, v) is a back edge, simply insert it in the graph. Otherwise, let w
be the LCA of u and v in T and v\prime be the child of w such that v \in T (v\prime).
The subtree T (v\prime) is then rerooted at its new root v and hanged from u using
(u, v) in the final tree T \ast .

3. Deletion of a vertex \bfitu :
Let v1, . . . , vc be the children of u in T . For each subtree T (vi), the algorithm
finds the lowest edge (u\prime

i, v
\prime
i) on the path(par(u), r) from T (vi), where v\prime i \in

T (vi). Each subtree T (vi) is then rerooted at its new root v\prime i and hanged
from u\prime

i using (u\prime
i, v

\prime
i) in the final tree T \ast .

4. Insertion of a vertex \bfitu :
Let v1, . . . , vc be the neighbors of u in the graph. Make u a child of some vj in
T \ast . For each vi, such that vi /\in path(vj , r), let T (v

\prime
i) be the subtree hanging

from path(vj , r) such that vi \in T (v\prime i). In case T (v\prime i) is same for multiple vi's,
choose any one. Each subtree T (v\prime i) is then rerooted at its new root vi and
hanged from u using (u, vi) in the final tree T \ast .

DYNAMIC DFS IN UNDIRECTED GRAPHS 1343

In case of vertex updates, multiple subtrees may be rerooted by the algorithm.
Let these subtrees be T1, . . . , Tc. Thus, the total time taken by our algorithm is
equal to the time taken to reroot the subtrees T1, . . . , Tc. Using Theorem 4, we
know that a subtree T \prime can be rerooted in \~O(| T \prime |) time. Since these subtrees are
disjoint, the total time taken by our algorithm to build the resulting DFS tree is
\~O(| T1| + \cdot \cdot \cdot + | Tc|) = \~O(n). Thus, we have the following theorem.

Theorem 5. An undirected graph can be preprocessed to build a data structure
in O(m log n) time such that after a single update in the graph, the DFS tree can be
reported in O(n log3 n) time.

4. Data structure. The efficiency of our algorithm heavily relies on the data
structure \scrD . For any three vertices w, x, y \in T , where path(x, y) is an ancestor-
descendant path in T , we need to answer the following two kinds of queries:

1. Query(w, x, y): among all the edges from w that are incident on path(x, y)
in G+ U , return an edge that is incident nearest to x on path(x, y).

2. Query(T (w), x, y): among all the edges from T (w) that are incident on
path(x, y) in G+U , return an edge that is incident nearest to x on path(x, y).

We now describe construction of the data structure \scrD . It employs a combination
of two well-known techniques, namely heavy-light decomposition [54] and suitable
augmentation of a binary tree (segment tree), as follows:

1. Perform a preorder traversal of tree T with the following restriction: Upon
visiting a vertex v \in T , the child of v that is visited first is the one storing
the largest subtree. Let \scrL be the list of vertices ordered by this traversal.

2. Build a segment tree \scrT \scrB whose leaf nodes from left to right represent the
vertices in list \scrL .

3. Augment each node z of \scrT \scrB with a binary search tree \scrE (z), storing all the
edges (u, v) \in E, where u is a leaf node in the subtree rooted at z in \scrT \scrB .
These edges are sorted according to the position of the second endpoint in \scrL .

x

DFS tree T

z

w

s t

y

u

v

(i)

TB
x z w s t y u v

(x,s) (z,w) (w,s) (s,w) (t,w)

(z,t) (w,t)

x z w s t y u v ← List L

(ii)

Fig. 5. (i) The highest edge from subtree T (w) on path(x, y) is edge (x, s), and the lowest edges
are edge (z, w) and (z, t). (ii) The vertices of T (w) are represented as the union of two subtrees in
segment tree \scrT \scrB .

The construction of \scrD described above ensures the following properties, which
are helpful in answering a query Query(T (w), x, y) (see Figure 5).

\bullet T (w) is present as an interval of vertices in \scrL (by step 1). Moreover, this
interval can be expressed as a union of O(log n) disjoint subtrees in \scrT \scrB (by
step 2). Let these subtrees be \scrT \scrB (z1), . . . , \scrT \scrB (zq).

\bullet It follows from the heavy-light decomposition used in step 1 that the path
path(x, y) can be divided into O(log n) subpaths path(x1, y1), . . . , path(x\ell , y\ell)

1344 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

such that each subpath path(xi, yi) is an interval in \scrL .
\bullet Let query Q(z, x, y) return the edge on path(x, y) from the vertices in the

subtree \scrT \scrB (z) that is closest to vertex x. Then it follows from step 3 that
any query Q(zj , xi, yi) can be answered by a single predecessor or successor
query on binary search tree \scrE (zj) in O(log n) time.

To answer Query(T (w), x, y), we thus find the edge closest to x among all the
edges reported by the queries \{ Q(zj , xi, yi)| 1 \leq j \leq q and 1 \leq i \leq \ell \} . Thus,
Query(T (w), x, y) can be answered in O(log3 n) time. Notice that Query(w, x, y)
can be considered as a special case where q = 1 and \scrT \scrB (z1) is the leaf node of \scrT \scrB
representing w, i.e., z1 = w. The space required by \scrD is O(m log n), as each edge is
stored at O(log n) levels in \scrT \scrB . Now, the segment tree \scrT \scrB can be built in linear time.
Further, for every node u \in \scrT \scrB , the sorted list of edges in \scrE (u) can be computed in
linear time by merging the sorted lists of its children. Thus, the binary search tree
\scrE (u) for each node u \in \scrT \scrB can be built in time linear in the number of edges in \scrE (u).
Hence, the total time required to build this data structure is O(m log n). Thus, we
have the following theorem.

Theorem 6. The queries Query(T (w), x, y), Query(w, x, y) on T can be an-
swered in O(log3 n) worst case time using a data structure \scrD of size O(m log n),
which can be built in O(m log n) time.

Note. Procedure Reroot can also use a simpler version of \scrD which requires a
smaller query time. However, our generic algorithm (described in section 7) would
require these additional features of \scrD as follows:

1. For Procedure Reroot, the binary search tree \scrE (u) stored at each node u of \scrT \scrB
can be replaced by an array storing the sorted list of edges, making it simpler
to implement. However, our generic algorithm also requires deletion of edges
from \scrD . An edge can be deleted from \scrD by deleting the edge from the binary
search trees stored at its endpoints and their ancestors in \scrT \scrB . Since a deletion
in a binary search tree takes O(log n) time, an edge can be deleted from \scrD in
O(log2 n) time.

2. Procedure Reroot only performs the second type of query on the data struc-
ture \scrD , i.e., Query(T (w), x, y). Thus, it would essentially be querying only
the part of path(x, y) comprising of the ancestors of w in path(x, y). This is
thus equivalent to Query(T (w), LCA(x,w), LCA(y, w)) (see Figure 5), which
will answer the required query, as the only edges from T (w) in this interval are
incident on path(x, y). In such a case, heavy-light decomposition and hence
division of path(x, y) to O(log n) subpaths would not be required. Hence, on
each node in u \in \scrT \scrB , the query is performed for a single path, requiring total
O(log2 n) time. However, our generic algorithm also uses the first type of
query, i.e., Query(w, x, y), where w can be an ancestor of x and y. In such
a case, we need to perform the query only on contiguous intervals of \scrL , as
the interval between x and y in \scrL would have several other edges from w
that are not incident on path(x, y). This necessitates the use of heavy-light
decomposition, and hence each query requires O(log3 n) time.

Remark 4.1. Recently, Nakamura and Sadakane [45] reduced the space required
by our data structure to O(m). Some of their observations can also be used to address
the above concerns as follows:

1. The requirement of binary search trees stated above can be relaxed if we
implement an edge deletion using a vertex deletion and a vertex insertion
as follows. We delete one of its endpoints and reinsert it without the corre-

DYNAMIC DFS IN UNDIRECTED GRAPHS 1345

sponding deleted edge.
2. The heavy-light decomposition is required only by queryQuery(w, x, y). Thus,

if we use different data structures for Query(w, x, y) and Query(T (w), x, y)
requiring O(log3 n) and O(log2 n) time, respectively, the running time of the
fault tolerant algorithm reduces by a log n factor. This is because the algo-
rithm uses O(log n) times fewer queries of type Query(w, x, y) as compared to
Query(T (w), x, y) (see section 7.3). Hence, the algorithms for fully dynamic
DFS and the incremental DFS can be improved by O(

\surd
log n) factors.

5. Handling multiple updates: Overview. A DFS tree can be computed in
\~O(n) time after a single update in the graph, by reducing it to Procedure Reroot.
However, the same procedure cannot be directly applied to handle a sequence of
updates for the following reason. The efficiency of Procedure Reroot crucially depends
on the data structure \scrD which is built using the DFS tree T of the original graph.
Thus, when the DFS tree is updated, we are required to rebuild \scrD for the updated
tree. Now, rebuilding \scrD is highly inefficient because it requires O(m log n) time. Thus,
in order to handle a sequence of updates, our aim is to use the same \scrD for handling
multiple updates, without having to rebuild it after every update. We now give an
overview of the algorithm that reports the DFS tree after a set U of updates.

In case of a single update, all the edges reported by \scrD are added to the final
DFS tree T \ast . However, while handling multiple updates, we use \scrD to build reduced
adjacency lists for vertices of the graph, such that the DFS traversal of the graph using
these sparser lists gives the DFS tree of the updated graph. Now, the data structure \scrD
finds the lowest/highest edge from a subtree of T to an ancestor-descendant path of T .
Thus, in order to employ \scrD to report a DFS tree of G+U , we need to ensure that the
queried subtrees and paths do not contain any failed edges or vertices from U . Hence,
for any set U of updates, we compute a partitioning of T into a disjoint collection of
ancestor-descendant paths and subtrees such that none of these subtrees and paths
contains any failed edge or vertex. An important property of this partitioning is that
there are no edges from G lying between any two subtrees in this partitioning. We
refer to this partitioning as a disjoint tree partitioning. Note that this partitioning
depends only upon the vertex and edge failures present in the set U .

Recall that during the DFS traversal we need to find the lowest edge from each
component C of the unvisited graph. It turns out that any component C can be
represented as a union of subtrees and ancestor-descendant paths of the original DFS
tree T . The components property can now be employed to compute the reduced
adjacency lists of the vertices of the graph as follows. We just find the lowest edge
from each of the subtrees and the ancestor-descendant paths to T \ast by querying the
data structure \scrD . Let this edge be (x, y), where x \in T \ast and y \in C. We can just add
y to the reduced adjacency list L(x) of x. Since the components property ensures
the remaining edges adjacent to T \ast can be ignored, the DFS traversal would thus
consider all possible candidates for the lowest edge from every component C to T \ast .
Let the initial disjoint tree partitioning consist of a set of ancestor-descendant paths
\scrP and a set of subtrees \scrT . The algorithm for computing a DFS tree of G+U can be
summarized as follows.

Perform the static DFS traversal on the graph with the elements of \scrP \cup \scrT as
the super vertices. Visiting a super vertex v\ast by the algorithm involves extracting
an ancestor-descendant path p0 from v\ast and attaching it to the partially grown DFS
tree T \ast . The remaining part of v\ast is added back to \scrP \cup \scrT as new super vertices.
Thereafter, the reduced adjacency lists of the vertices on path p0 are computed using

1346 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

the data structure \scrD . The algorithm then continues to find the next super vertex using
the reduced adjacency lists, and so on.

6. Disjoint tree partitioning. We formally define disjoint tree partitioning as
follows.

Definition 7. Given a DFS tree T of an undirected graph G and a set U of
failed vertices and edges, let A be a vertex set in G+U . The disjoint tree partitioning
defined by A is a partition of the subgraph of T induced by A into

1. a set of paths \scrP such that (i) each path in \scrP is an ancestor-descendant path
in T and does not contain any deleted edge or vertex, and (ii) | \scrP | \leq | U | ; and

2. a set of trees \scrT such that each tree \tau \in \scrT is a subtree of T which does not
contain any deleted edge or vertex.

Note that for any distinct \tau 1, \tau 2 \in \scrT , there is no edge between \tau 1 and \tau 2, as T is a
DFS tree.

Let VU be the vertex set of the updated graphG+U . The disjoint tree partitioning
for set A = VU \setminus \{ r\} can be computed as follows. Let Vf and Ef denote, respectively,
the set of failed vertices and edges associated with the updates U . We initialize \scrP = \emptyset
and \scrT = \{ T (w) | w is a child of r\} . We refine the partitioning by processing each
vertex v \in Vf as follows (see Figure 6(i)):

\bullet If v is present in some T \prime \in \scrT , we add the path from par(v) to the root of T \prime

to \scrP . We remove T \prime from \scrT and add all the subtrees hanging from this path
and v to \scrT .

\bullet If v is present in some path p \in \scrP , we split p at v into two paths. We remove
p from \scrP and add these two paths to \scrP .

Edge deletions are handled as follows. We first remove edges from Ef that do not
appear in T . Processing of the remaining edges from Ef is quite similar to the
processing of Vf as described above. For each edge e \in Ef , just visualize deleting an
imaginary vertex lying at the midpoint of the edge e (see Figure 6(ii)). It takes O(n)
time to process any v \in Vf and any e \in Ef .

r

a

b

c

d

e

f

g

h

i j

x

y z

u

v w

k

l

m

n

s t

o

p q

(i)

r

a

b

c

d

e

f

g

h

i j

x

y z

u

v w

k

l

m

n

s t

o

p q

(ii)

r

a

b

c

d

e

f

g

h

i j

x

y z

u

v w

k

l

m

n

s t

o

p q

(iii)

Fig. 6. Disjoint tree partitioning for VU \setminus \{ r\} : (i) Initializing \scrT = \{ T (a), T (h)\} and \scrP = \emptyset . (ii)
Disjoint tree partition obtained after deleting the vertex g. (iii) Final disjoint tree partition obtained
after deleting the edges (c, d) and (m,n).

Note that each update can add at most one path to \scrP . So the size of \scrP is bounded
by | U | . The fact that T is a DFS tree of G ensures that no two subtrees in \scrT will have

DYNAMIC DFS IN UNDIRECTED GRAPHS 1347

Procedure Static-DFS(G, r): Static algo-
rithm to compute a DFS tree of G rooted at
r.

1 Stack S ← ∅;
2 Push(r);
3 status(r)← visited;
4 while S 6= empty do
5 w ← Top(S);
6 if N(w) = ∅ then Pop(w);
7 else
8 u← First vertex in N(w);
9 Remove u from N(w);

10 if status(u) = unvisited then

11 par(u)← w;
12 status(u)← visited;
13 Push(u);

14 end

15 end

16 end

(i)

Procedure Dynamic-DFS(G,U, r): Algorithm
for updating the DFS tree T rooted at r for the
graph G+ U .

1 Stack S ← ∅; (T ,P)← Partition(T,U);
2 Push(r);
3 status(r)← visited; L(r)← N(r);
4 while S 6= empty do
5 w ← Top(S); u0 ← w;
6 if L(w) = ∅ then Pop(w);
7 else
8 u← First vertex in L(w);
9 Remove u from L(w);

10 if status(u) = unvisited then
11 if info(u) = tree then
12 {u1, ..., ut} ← DFS-in-Tree(u);
13 else if info(u) = path then
14 {u1, ..., ut} ←DFS-in-Path(u);
15 end
16 for i = 1 to t do
17 par(ui)← ui−1;
18 status(ui)← visited;
19 Push(ui);

20 end

21 end

22 end

23 end

(ii)
1

Fig. 7. The static (and dynamic) algorithm for computing (updating) a DFS tree. The key
differences are shown in blue. Color is available online only.

an edge between them. So \scrP \cup \scrT satisfies all the conditions stated in Definition 7.

Lemma 8. Given an undirected graph G with a DFS tree T and a set U of failing
vertices and edges, we can find a disjoint tree partition of set VU \setminus \{ r\} in O(n| U |)
time.

7. Fault tolerant DFS tree. We first present a fault tolerant algorithm for
a DFS tree. Let U be any given set of failed vertices or edges in G. In order to
compute the DFS tree T \ast for G + U , our algorithm first constructs a disjoint tree
partition (\scrT ,\scrP) for VU\setminus \{ r\} defined by the updates U (see Lemma 8). Thereafter,
it can be visualized as the static DFS traversal on the graph whose (super) vertices
are the elements of \scrP \cup \scrT . Note that our notion of super vertices is for the sake of
understanding only.

Consider the stack-based implementation of the static algorithm for computing a
DFS tree rooted at a vertex r in graph G (refer to Figure 7(i)). Our algorithm for
computing a DFS tree for G + U (refer to Figure 7(ii)) is quite similar to the static
algorithm. The only points of difference are the following:

\bullet In the static DFS algorithm whenever a vertex is visited, it is attached to the
DFS tree and pushed into the stack S. In our algorithm when a vertex u in
some super vertex vs \in \scrP \cup \scrT is visited, a path starting from u is extracted
from vs and attached to the DFS tree, and this entire path is pushed into the
stack S.

1348 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

\bullet Instead of scanning the entire adjacency list N(w) of a vertex w, the reduced
adjacency list L(w) is scanned.

When a path is extracted from a super vertex vs, the remaining unvisited part
of vs is added back to \scrT \cup \scrP . However, we need to ensure that the properties of the
disjoint tree partitioning are satisfied in the updated \scrT \cup \scrP . This is achieved using
Procedure DFS-in-Path and Procedure DFS-in-Tree, which also build the reduced
adjacency list for the vertices on the path. The construction of a sparse reduced
adjacency list is inspired by the components property, which can be easily adapted in
the context of our algorithm as follows.

Lemma 9 (adapted components property). When a path p is attached to the par-
tially constructed DFS tree T \ast during the algorithm, for every edge (x, y), where x \in p
and y belongs to the unvisited graph, the following condition holds. Either y is added
to L(x) or y\prime is added to L(x\prime) for some edge (x\prime , y\prime), where x\prime is a descendant (not
necessarily proper) of x in p and y\prime is connected to y in the unvisited graph.

We now describe how the properties of disjoint tree partitioning (and hence the
adapted components property) are maintained by our algorithm when a vertex v \in vs
is visited by the traversal:

1. Let vs = path(x, y) \in \scrP . Exploiting the flexibility of DFS, we traverse from
v to the farther end of path(x, y). Now, path(x, y) is removed from \scrP and
the untraversed part of path(x, y) (with length at most half of | path(x, y)|) is
added back to \scrP . We refer to this as path halving. This technique was also
used by Aggarwal and Anderson [2] in their parallel algorithm for computing
a DFS tree in undirected graphs. Notice that | \scrP | remains unchanged or
decreases by 1 after this step.

2. Let vs = \tau \in \scrT . Exploiting the flexibility of a DFS traversal, we traverse
the path from v to the root of \tau , say x, and add it to T \ast . Thereafter, \tau is
removed from \scrT and all the subtrees hanging from this path are added to \scrT .
Observe that every newly added subtree is also a subtree of the original DFS
tree T . So the properties of disjoint tree partitioning are satisfied after this
step as well.

Remark 7.1. In both cases, where vs \in \scrT or vs \in \scrP , the algorithm crucially
exploits the fact that the underlying graph is an undirected graph.

Let path(v, x) be the path extracted from vs. For each vertex w in this newly
added path, we compute L(w), ensuring the adapted components property as follows:

(i) For each path p \in \scrP , among potentially many edges incident on w from p,
we just add any one edge.

(ii) For each tree \tau \prime \in \scrT , we add at most one edge to L as follows. Among all
edges incident on \tau \prime from path(v, x), if (w, z) is the edge such that w is nearest
to x on path(v, x), then we add z to L(w). However, for the case vs \in \scrT ,
we have to consider only the newly added subtrees in \scrT for this step. This
is because the disjoint tree partitioning ensures the absence of edges between
vs and any other tree in \scrT .

Figure 8 provides an illustration of how \scrT \cup \scrP is updated when a super vertex in
\scrT \cup \scrP is visited.

7.1. Implementation of our algorithm. We now describe our algorithm in
full detail. First, we delete all the failed edges in U from the data structure \scrD .
Now, the algorithm begins with a disjoint tree partition (\scrT ,\scrP) which evolves as the
algorithm proceeds. The state of any unvisited vertex in this partition is captured by

DYNAMIC DFS IN UNDIRECTED GRAPHS 1349

r

a

b

c

d

e
i

j
k

l

m
f

g h

n

o

p

q

s

t

(i)

r

e

d

c

b

a

f

gh

i

j

k
l

m

q

p

o

n

s

t

(ii)

Fig. 8. Visiting a super vertex from \scrT \cup \scrP . (i) The algorithm visits T (a) \in \scrT using the edge
(r, e) and the path(n, t) \in \scrP using the edge (r, q). (ii) The traversal extracts path(e, a) and path(q, n)
and augments them to T \ast . The unvisited segments are added back to \scrT and \scrP .

the following three variables:
info(u): this variable is set to tree if u belongs to a tree in \scrT and set to path

otherwise.
IsRoot(v): this variable is set to True if v is the root of a tree in \scrT and False

otherwise.
PathParam(v): if v belongs to some path, say path(x, y), in \scrP , then this variable

stores the pair (x, y) and is null otherwise.

Remark 7.2. The initialization and maintenance of variables info(u), IsRoot(v),
and PathParam(v) are not explicitly described (except in pseudocodes) for better
readability.

Procedure Dynamic-DFS: For each vertex v, status(v) is initially set as
unvisited, and L(v) is initialized to \emptyset . First, a disjoint tree partition is computed
for the DFS tree T based on the updates U . Procedure Dynamic-DFS then inserts
the root vertex r into the stack S. While the stack is nonempty, the procedure repeats
the following steps. It reads the top vertex from the stack. Let this vertex be w. If
L(w) is empty, then w is popped out from the stack; otherwise, let u be the first
vertex in L(w). If vertex u is unvisited until now, then depending upon whether u
belongs to some tree in \scrT or some path in \scrP , Procedure DFS-in-Tree or DFS-in-Path
is executed. A path p0 is then returned to Procedure Dynamic-DFS, where for each
vertex of p0 a parent is assigned and the status is marked visited. The whole of this
path is then pushed into the stack. The procedure proceeds to the next iteration of
the while loop with the updated stack.

Procedure DFS-in-Tree: Let vertex u be present in some tree, say T (v), in
\scrT (the vertex v can be found easily by scanning the ancestors of u and checking their
value of IsRoot). The DFS traversal enters the tree from u and leaves from the
vertex v. Let path(u, v) = \langle w1 = u,w2, . . . , wt = v\rangle . The path(u, v) is pushed into
the stack and attached to the partially constructed DFS tree T \ast . We now update the
partition (\scrP , \scrT) and also update the reduced adjacency list for each wi present on
path(u, v) as follows:

1. For each vertex wi and every path path(x, y) \in \scrP , we perform Query(wi, x, y)
on the data structure \scrD that returns an edge (wi, z) such that z \in path(x, y).

1350 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

Procedure DFS-in-Tree(u): DFS traversal
enters from node u and exits from v, the root
of the tree containing node u in set T .

1 v ← u;
2 while IsRoot(v) 6= True do
3 v ← par(v)
4 end

5 IsRoot(v)← False;
6 T ← T \T (v);
7 (w1, . . . , wt)← path(u, v);
8 for i = 1 to t do
9 foreach path(x, y) ∈ P do

10 if Query(wi, x, y) 6= ∅ then
11 (wi, z)← Query(wi, x, y);
12 L(wi)← L(wi) ∪ {z};
13 end

14 end

15 foreach child w of wi except wi−1 do
16 (y, z)← Query(T (w), v, u);

/* where y ∈ path(u, v) */

17 L(y)← L(y) ∪ {z};
18 T ← T ∪ T (w);
19 IsRoot(w)← True;

20 end

21 end
22 Return path(u, v);

Procedure DFS-in-Path(u): DFS traversal enters
from node u and exits from v, the farther end of
path containing node u in set P.
1 (v, d)← PathParam(u);
2 if distT (u, d) > distT (u, v) then Swap(v, d);
3 c← Neighbor of u on path(v, d) nearer to d;
4 P ← (P\path(v, d)) ∪ path(c, d);
5 for c′ ∈ path(c, d) do
6 PathParam(c′)← (c, d);
7 end

8 (w1, . . . , wt)← path(u, v);
9 for i = 1 to t do

10 foreach path(x, y) ∈ P do
11 if Query(wi, x, y) 6= ∅ then
12 (wi, z)← Query(wi, x, y);
13 L(wi)← L(wi) ∪ {z};
14 end

15 end

16 end

17 foreach T (w) ∈ T do
18 if Query(T (w), v, u) 6= ∅ then
19 (y, z)← Query(T (w), v, u);

/* where y ∈ path(u, v) */

20 L(y)← L(y) ∪ {z};
21 end

22 end
23 Return path(u, v);

1

Fig. 9. The pseudocode of Procedures DFS-in-Tree and Procedures DFS-in-Path.

We add z to L(wi).
2. Recall that since subtrees in T do not have any cross edge between them,

therefore there cannot be any edge incident on path(u, v) from trees which are
already present in \scrT . An edge can be incident only from the subtrees which
were hanging from path(u, v). T (v) is removed from \scrT , and all the subtrees
of T (v) hanging from path(u, v) are inserted into \scrT . For each such subtree,
say \tau , inserted into \scrT , we perform Query(\tau , v, u) on the data structure \scrD
that returns an edge, say (y, z), such that z \in \tau and y is nearest to v on
path(u, v). We insert z into L(y).

Procedure DFS-in-Path: Let vertex u visited by the DFS traversal lie on a
path(v, y) \in \scrP . Assume distT (u, v) > distT (u, y). The DFS traversal travels from
u to v (the farther end of the path). The path path(v, y) in set \scrP is replaced by its
subpath, which remains unvisited. The reduced adjacency list of each w \in path(u, v)
is updated in a way similar to that in Procedure DFS-in-Tree, except that in step 2,
we perform Query(\tau , v, u) for each \tau \in \scrT . Note that while performing step 1, the
vertex wi can be an ancestor of the vertices of path(x, y). This is because the vertices
of a path in \scrP can be ancestors of the vertices of another path in \scrP . This was not true
for Procedure DFS-in-Tree because vertices of a subtree in \scrT cannot be ancestors of
vertices of any path in \scrP . Thus, our data structure \scrD needs to support queries where
wi is an ancestor of the queried path (refer to the note at the end of section 4).

The reader may refer to Figure 9 for pseudocode of Procedures DFS-in-Tree and
DFS-in-Path. This completes the description of the fault tolerant algorithm for a
DFS tree. This algorithm maintains the adapted components property at each stage

DYNAMIC DFS IN UNDIRECTED GRAPHS 1351

by construction, given that the properties of disjoint tree partitioning are satisfied.

7.2. Correctness. It can be seen that the following two invariants hold for the
while loop in the Procedure Static-DFS described in Figure 7(i). It is easy to see that
these invariants imply the correctness of the algorithm, i.e., the generated tree is a
rooted spanning tree where every nontree edge is a back edge:

I1: The sequence of vertices in the stack from bottom to top constitutes an
ancestor-descendant path from r in the DFS tree computed.

I2: For each vertex v that is popped out, all vertices in the set N(v) have already
been visited.

Invariant I1 also holds for Procedure Dynamic-DFS by construction. The follow-
ing lemma proves that invariant I2 is also maintained by the procedure. This proof
uses the fact that our algorithm maintains the adapted components property, which
holds by construction.

Lemma 10. The invariant I2 holds true at each stage of Procedure Dynamic-DFS.

Proof. We give a proof by contradiction as follows. Assume that x is the first
vertex that is popped out of the stack before some vertex y \in N(x) is visited. Consider
the time when a path p containing x was pushed in the stack. Clearly, y /\in L(x),
and hence using the adapted components property we know that some y\prime \in L(x\prime)
is connected to y in the unvisited graph, where x\prime is a descendant (not necessarily
proper) of x in p. Let p\ast be a path between y\prime and y in the unvisited graph.

Now, consider the time when x is popped out of the stack. Clearly, all its de-
scendants including x\prime have been popped out, and so using invariant I2 for x\prime , y\prime has
been visited by the traversal. Thus, p\ast can be divided into two nonempty sets A
and B, denoting visited and unvisited vertices of p\ast , respectively. Here y\prime \in A and
y \in B, and thus clearly for the last vertex of p\ast that is present in A, the invariant
I2 is not satisfied. This contradicts our assumption that x is the first vertex that
is popped out of the stack for which I2 is not satisfied. Thus, maintenance of the
adapted components property ensures the invariant I2 in our algorithm.

Hence, our algorithm indeed computes a valid DFS tree for G+ U .

7.3. Time complexity analysis. As described earlier, the disjoint tree parti-
tioning and the components property play a key role in the efficiency of our algorithm.
They allow us to limit the size of the reduced adjacency lists L, which are built dur-
ing the algorithm. Our algorithm computes T \ast by performing a DFS traversal on the
reduced adjacency list L. Thus, the time complexity of our algorithm is O(n + | L|),
excluding the time required to compute L.

We first establish a bound on the size of L. In each step, our algorithm extracts
a path from vs \in \scrP \cup \scrT and attaches it to T \ast . Let Pt and Pp denote the set of such
paths that originally belonged to some tree in \scrT and some path in \scrP , respectively.
For every path p0 \in Pt \cup Pp, our algorithm performs the following queries on \scrD :

(i) For each vertex w in p0, we query each path in \scrP for an edge incident on
the vertex w. Thus, the total number of edges added to L by these queries is
O(n| \scrP |).

(ii) If p0 belongs to Pp, then we query for an edge from each \tau \in \scrT to p0. It
follows from the path halving technique that each path in \scrP reduces to at
most half of its length whenever some path is extracted from it and attached
to T \ast . Hence, the size of Pp is bounded by | \scrP | log n.

(iii) If p0 belongs to Pt, then we query for an edge from only those subtrees which
were hanging from p0. Note that these subtrees will now be added to set \scrT .

1352 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

Hence, the total number of trees queried for this case will be bounded by the
number of trees inserted to \scrT . Since each subtree can be added to \scrT only
once, these edges are bounded by O(n) throughout the algorithm.

Thus, the size of L is bounded by O
\bigl(
n(1 + | \scrP |) log n

\bigr)
. Since each edge added to

L requires querying the data structure \scrD which takes O(log3 n) time, the total time
taken to compute L is O

\bigl(
n(1+ | \scrP | log n) log3 n

\bigr)
. Thus, we have the following lemma.

Lemma 11. An undirected graph can be preprocessed in O(m log n) time to build
a data structure of O(m log n) size such that for any set U of k failed vertices or edges
(where k \leq n), the DFS tree of G + U can be reported in O(n(1 + | \scrP | log n) log3 n)
time.

From Definition 7 we have that | \scrP | is bounded by | U | . Thus, we have the following
theorem.

Theorem 12. An undirected graph can be preprocessed in O(m log n) time to
build a data structure of O(m log n) size such that for any set U of k failed vertices
or edges (where k \leq n), the DFS tree of G+U can be reported in O(nk log4 n) time.

It can be observed that Theorem 12 directly implies a data structure for a fault
tolerant DFS tree.

7.4. Extending the algorithm to handle insertions. In order to update
the DFS tree, our focus has been to restrict the number of edges that are processed.
For the case when the updates are deletions only, we have been able to restrict this
number to O(nk log n) for a given set of k updates (failure of vertices or edges). We
now describe the procedure to handle vertex and edge insertions. Let VI be the set of
vertices inserted, and let EI be the set of edges inserted (including the edges incident
to the vertices in VI). If there are k vertex insertions, the size of EI is bounded by
nk. So even if we add all the edges in EI to the reduced adjacency lists, the size
of L would still be bounded by O(nk log n). Hence, we perform the following two
additional steps before starting the DFS traversal:

\bullet Initialize L(v) to store the edges in EI instead of \emptyset . That is, L(v) \leftarrow
\{ y | (y, v) \in EI\} .

\bullet Each newly inserted vertex is treated as a singleton tree and added to \scrT .
That is, \scrT \leftarrow \scrT \cup \{ x| x \in VI\} .

In order to establish that our algorithm, after incorporating the insertions, cor-
rectly computes a DFS tree of G + U , we need to ensure that all the edges essential
for the DFS traversal as described in the adapted components property are added
to L. All the essential edges from G are added to L during the algorithm itself. In
case an essential edge belongs to EI , the edge has already been added to L during
its initialization. Note that the time taken by our algorithm remains unchanged since
the size of L remains bounded by O(nk log n). This completes the proof of our main
result, stated in Theorem 1.

Let us consider the case when U consists of insertions only. In this case, \scrP will be
an empty set. As discussed above, we initialize the reduced adjacency lists using EI ,
whose size is equal to | U | . Additionally, since the vertices in VI would be added to the
set of trees, | VI | would be added to n. Hence, Lemma 11 implies the following theorem.

Theorem 13. An undirected graph can be preprocessed in O(m log n) time to
build a data structure of O(m log n) size such that for any set U of k vertex insertions
and m\prime edge insertions, a DFS tree of G+U can be reported in O(m\prime +(n+k) log3 n)
time.

DYNAMIC DFS IN UNDIRECTED GRAPHS 1353

Note. In Theorem 13, the size of the input is k+m\prime . Also, even a single insertion
may change \Omega (n) edges of the DFS tree. Hence, our algorithm is optimal up to \~O(1)
factors for processing edge or vertex insertions if the DFS tree has to be maintained
explicitly.

8. Fully dynamic DFS. We now describe the overlapped periodic rebuilding
technique to convert our algorithm for computing a DFS tree after k updates to fully
dynamic and incremental algorithms for maintaining a DFS tree. A similar technique
was previously used by Thorup [59] for maintaining fully dynamic all pairs shortest
paths.

In the fully dynamic model, we need to report the DFS tree after every update
in the graph. Given the data structure \scrD built using the DFS tree of the graph G,
we are able to report the DFS tree of G + U after | U | = k updates in \~O(nk) time.
This becomes inefficient if k becomes large. Rebuilding \scrD after every update is also
inefficient, as it takes \~O(m) time to build \scrD . Thus, it is better to rebuild \scrD after
every | U \prime | = c updates for a carefully chosen c. Let \scrD \prime be the data structure built
using the DFS tree of the updated graph G+ U \prime , with | U \prime | = c. \scrD \prime can thus be used
to process the next c updates efficiently (see Figure 10(a)). The cost of building \scrD \prime

can thus be amortized over these c updates.
To achieve an efficient worst case update time, we divide the building of \scrD \prime over

the first c updates. This \scrD \prime is then used by our algorithm in the next c updates,
during which a new \scrD \prime \prime is built in a similar manner, and so on (see Figure 10(b)).
The following lemma describes how this technique can be used in general for any
dynamic graph problem. For notational convenience, we denote any function f(m,n)
as f .

Lemma 14. Let D be a data structure that can be used to report the solution of
a graph problem after a set of U updates on an input graph G. If D can be built in
O(f) time and the solution for graph G+ U can be reported in O(h+ | U | \times g) time,
then D can be used to report the solution after every update in worst case O(

\surd
fg+h)

update time, given that
\sqrt{}
f/g \leq n.

(a) (b)

u1 u1uc ucu2c u2cu3c u3c

BuildBuildBuildBuild Build

BuildBuildBuild

UseUseUseUse Use UseUse
D0

D0 D0

D0D1

D1

D1

D1

D2

D2

D2

D2

D3

D3

D3

Fig. 10. (a) Fully dynamic algorithm with amortized update time. (b) De-amortization of the
algorithm.

Proof. We first present an algorithm that achieves amortized O(
\surd
fg+h) update

time. It is based on the simple idea of periodic rebuilding. Given the input graph
G0, we preprocess it to compute the data structure D0 over it. Now, let u1, . . . , uc

(c \leq n) be the sequence of first c updates on G0. To report the solution after the
ith update, we use D0 to compute the solution for G0 + \{ u1, . . . , ui\} . This takes

1354 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

O(h + (i \times g)) time. So the total time for preprocessing and handling the first c
updates is O(f+

\sum c
i=1 h+(i\times g)). Therefore, the average time for the first c updates is

O(f/c+c\times g+h). Minimizing this quantity over c gives the optimal value c0 =
\sqrt{}
f/g,

which is bounded by n. So after every c0 updates we rebuild our data structure and
use it for the next c0 updates (see Figure 10(a)). Substituting the value of c0 gives
the amortized time complexity as O(

\surd
fg + h).

The above algorithm can be de-amortized as follows. Let G1, G2, G3, . . . be the
sequence of graphs obtained after c0, 2c0, 3c0, . . . updates. We use the data structure
D0 built during preprocessing to handle the first 2c0 updates. Also, after the first
c0 updates we start building the data structure D1 over G1. This D1 is built in c0
steps, and thus the extra time spent per update is f/c0 = O(

\surd
fg) only. We use D1

to handle the next c0 updates on graph G2 and also in parallel to compute the data
structure D2 over the graph G2. (See Figure 10(b).) Since the time for building each
data structure is now divided in c0 steps, we have that the worst case update time is
O(
\surd
fg + h).

The above lemma combined with Theorems 1 and 13 directly implies the following
results for the fully dynamic DFS tree problem and the incremental DFS tree problem,
respectively.

(For the following theorem, we use Theorem 1, implying f = m log n, g = n log4 n
and h = 0.)

Theorem 15. There exists a fully dynamic algorithm for maintaining a DFS tree
in an undirected graph that uses O(m log n) preprocessing time and can report a DFS
tree after each update in worst case O(

\surd
mn log2.5 n) time. An update in the graph

can be insertion/deletion of an edge as well as a vertex.

(For the following theorem, we use Theorem 13, implying f = m log n, g = log3 n
and h = n log3 n.)

Theorem 16. There exists an incremental algorithm for maintaining a DFS tree
in an undirected graph that uses O(m log n) preprocessing time and can report a DFS
tree after each edge insertion in worst case O(n log3 n) time.

9. Applications. Our fully dynamic algorithm for maintaining a DFS tree can
be used to solve various dynamic graph problems, such as dynamic subgraph connec-
tivity, biconnectivity, and 2-edge connectivity. Note that these problems are solved
trivially using a DFS tree in the static setting. Let us now describe the importance
of our result in light of the existing results for these problems.

9.1. Existing results. The dynamic subgraph connectivity problem is defined
as follows. Given an undirected graph, the status of any vertex can be switched
between active and inactive in an update. For any online sequence of updates in-
terspersed with queries, the goal is to efficiently answer each connectivity query on
the subgraph induced by the active vertices. This problem can be solved by using
dynamic connectivity data structures [24, 27, 37, 41] that answer connectivity queries
under an online sequence of edge updates. This is because switching the state of a
vertex is equivalent to O(n) edge updates. Chan [12] introduced this problem and
showed that it can be solved more efficiently. He gave an algorithm using fast matrix
multiplication (FMM) that achieves O(m0.94) amortized update time and \~O(m1/3)
query time. Later, Chan, Patrascu, and Roditty [13] presented a new algorithm that
improves the amortized update time to \~O(m2/3). They also mentioned the following
among the open problems:

DYNAMIC DFS IN UNDIRECTED GRAPHS 1355

1. Is it possible to achieve constant query time with worst case sublinear (o(m))
update time?

2. Can nontrivial updates be obtained for richer queries such as counting the
number of connected components?

Duan [22] partially answered the first question affirmatively but at the expense of
a much higher update time and nonconstant query time. He presented an algorithm
with O(m4/5) worst case update time and O(m1/5) query time, improving the worst
case bounds for the problem. Kapron, King, and Mountjoy [41] presented a random-
ized algorithm for fully dynamic connectivity which takes \~O(1) time per update and
answers the query correctly with high probability in \~O(1) time, giving a Monte Carlo
algorithm for subgraph connectivity with worst case \~O(n) update time. Thus, their
result answered the first question in a randomized setting. However, in the determin-
istic setting both of these questions were still open. Our result answers both of these
questions affirmatively for the deterministic setting as well. Our fully dynamic algo-
rithm directly provides an \~O(

\surd
mn) update time and O(1) query time algorithm for

the dynamic subgraph connectivity problem. Our algorithm maintains the number of
connected components simply as a by-product. In fact, our fully dynamic algorithm
for a DFS tree solves a generalization of dynamic subgraph connectivity---in addition
to just switching the status of vertices, it allows insertion of new vertices as well.
Hence, the existing results offer different trade-offs between the update time and the
query time, and differ on the types (amortized or worst case) of update time and
the types (deterministic or randomized) of query time. Our algorithm, in particular,
improves the deterministic worst case bounds for the problem (see Figure 11). Fur-
ther, unlike all the previous algorithms for dynamic subgraph connectivity, which use
the heavy machinery of existing dynamic algorithms, our algorithm is arguably much
simpler and self contained.

References
Update
time

Query time

Frederickson [27] (1985), Eppstein et al. [24]
(1997)

O(n
\surd
n) O(1)

Holm, de Lichtenberg, and Thorup [37] (2001)
\~O(n)
amortized

\~O(1)

Chan [12] (2006)
\~O(m0.94)
amortized

\~O(m1/3)

Chan, Patrascu, and Roditty [13] (2008)
\~O(m2/3)
amortized

\~O(m1/3)

Duan [22] (2010) \~O(m4/5) \~O(m1/5)

Kapron, King, and Mountjoy [41] (2013) \~O(n)

\~O(1)
(Monte
Carlo)

New \~O(
\surd
mn) O(1)

Fig. 11. Current state-of-the-art of the algorithms for the dynamic subgraph connectivity.

Remark 9.1. After the preliminary version of this article [4] was published, there
were several results that improved the bounds for dynamic subgraph connectivity un-
der various settings. Duan and Zhang [23] improved the worst case update time using

1356 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

a randomized algorithm (Monte Carlo) requiring \~O(m3/4) update time answering each
query correctly with high probability in \~O(m1/4) time. Further, a series of new re-
sults [61, 46, 47] presented randomized (Las Vegas) worst case bounds for dynamic
connectivity [47], eventually implying O(n1+o(1)) update time with high probability
for dynamic subgraph connectivity.

Exploiting the rich structure of DFS trees, we also obtain \~O(
\surd
mn) update time

algorithms for dynamic biconnectivity and dynamic 2-edge connectivity under vertex
updates in a seamless manner. These problems have mainly been studied in the
dynamic setting under edge updates. Some of these results also allow insertion and
deletion of isolated vertices. Our result, on the other hand, does not impose any such
restriction on insertion or deletion of vertices. Figure 12 illustrates our results and
the existing results in the right perspective. We now describe how our algorithm can
be used to solve these problems.

References Update time Query time

Frederickson [27] (1985),
Eppstein et al. [24] (1997)\dagger O(n

\surd
n) O(1)

Henzinger [35] (2000) \ast \~O(n
\surd
n) O(1)

Holm, de Lichtenberg, and
Thorup [37] (2001) \ast \dagger

\~O(n) amortized \~O(1)

New \ast \dagger \~O(
\surd
mn) O(1)

Fig. 12. Current state-of-the-art of the algorithms for the dynamic biconnectivity (\ast) and
dynamic 2-edge connectivity (\dagger) under vertex updates.

9.2. Algorithm. The solution of dynamic subgraph connectivity follows seam-
lessly from our fully dynamic algorithm as follows. As mentioned in section 2, we
maintain a DFS tree rooted at a dummy vertex r, such that the subtrees hanging
from its children correspond to the connected components of the graph. Hence, the
connectivity query for any two vertices can be answered by comparing their ancestors
at depth two (i.e., children of r). This information can be stored for each vertex and
updated whenever the DFS tree is updated. Thus, we have a data structure for sub-
graph connectivity with worst case \~O(

\surd
mn) update time and O(1) query time. Our

fully dynamic DFS algorithm can be extended to solve fully dynamic biconnectivity
and 2-edge connectivity under vertex updates as follows.

A set S of vertices in a graph is called a biconnected component if it is a maximal
set of vertices such that on failure of any vertex w in S, the vertices of S \setminus \{ w\}
remain connected. Similarly, a set S is said to be 2-edge connected component if it is a
maximal set of vertices such that on failure of any edge with both endpoints in S, the
vertices of S remain connected. The biconnectivity and 2-edge connectivity queries
can be answered easily by finding articulation points and bridges of the graph. It
can be shown [18] that two vertices belong to the same biconnected component if and
only if the path connecting them in a DFS tree of the graph does not pass through
any articulation point. Similarly, two vertices belong to the same 2-edge connected
component if and only if the path connecting them in a DFS tree of the graph does
not have a bridge. An articulation point and a bridge of a graph can be defined as
follows.

Definition 17. Given a graph G = (V,E), a vertex v \in V is called an articula-

DYNAMIC DFS IN UNDIRECTED GRAPHS 1357

tion point of G if there exist a pair of vertices x, y \in V such that every path between
x and y in G passes through v.

Definition 18. Given a graph G = (V,E), an edge e \in E is called a bridge of
G if there exist a pair of vertices x, y \in V such that every path between x and y in G
passes through e.

The articulation points and bridges of a graph can be easily computed by using
a DFS traversal of the graph. Given a DFS tree T of an undirected graph G, we can
index the vertices in the order they are visited by the DFS traversal. This index is
called the DFN number of the vertex. The high number of a vertex v is defined as
the lowest DFN number among the vertices from which there is an edge incident to
T (v). Now, any nonroot vertex v will be an articulation point of the graph if the high
number of at least one of its children is equal to DFN(v). The root of the DFS tree
T will be an articulation point if it has more than one child. An edge (x, y) of the
DFS tree, where x = par(y), will be a bridge if the high number of y is DFN(x) and
the high number of each child of y (if any) is equal to DFN(y). Thus, given the high
number of each vertex in the DFS tree, the articulation points and bridges can be
determined in O(n) time.

Remark 9.2. Adding the dummy vertex r with edges incident to all vertices affects
articulation points and bridges (and hence biconnectivity and 2-edge connectivity) of
the graph. Hence, the dummy vertex r and the edges incident on it have to be ignored
for the computation of the high number of a vertex. To address this issue, the subtrees
hanging from r are treated as individual DFS trees with the children of r being the
corresponding roots during the computation of high numbers.

We can augment our fully dynamic DFS algorithm with an additional procedure
to compute the high number of each vertex using the same time bounds. For this, we
show that given any set of k updates to graph G, while computing the new tree T \ast we
also compute the high number of each vertex in O(nk log4 n) time. For each vertex
x, let a(x) denote the highest ancestor of x in T \ast such that (x, a(x)) is an edge in
G+U . Note that if (x, a(x)) is a newly added edge, then it can be easily computed by
scanning all the new edges added to the graph. This is due to the fact that the total
number of new edges added to G is bounded by nk. So we restrict ourselves to the
case when (x, a(x)) was originally present in the graph G. Recall that our algorithm
computes T \ast by attaching paths to the partially grown tree. Let Pt and Pp be the
set of paths attached to T \ast (during its construction) that originally belonged to \scrT
and \scrP , respectively. Further, path halving ensures that the size of Pp is bounded by
k log n. For each path p0 \in Pt \cup Pp, let H(p0) denote the vertex in p0 that is closest
to r in T \ast .

We now present the procedure for constructing a subset A(x) of neighbors of x
while computing T \ast in O(nk log4 n) time, such that the following condition holds:

\bullet For a vertex x, if a(x) /\in A(x), then there is some descendant y of x in T \ast

such that a(x) \in A(y).
It is easy to see that if we get such an A(x) for each x, then the high number

of each vertex can be computed easily by processing the vertices of T \ast in bottom-up
manner. Now, depending upon whether paths containing x and a(x) belong to set Pp

or Pt, we can have different cases described as follows:
1. Vertex a(x) lies on a path in Pp.

For every vertex v \in V and each path p0 \in Pp, we query \scrD to compute the
edge (u, v), where u is closest to H(p0) on path p0, and add u to A(v). Note

1358 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

a

b

c

y

z

w

v

u
g

h

xT0 T1

(i)

y

z

w

v

u
g

h

xT1
T2

(ii)

u

v

w

z

y

pz

g

h

x

T2

(iii)

Fig. 13. (i) Before the beginning of the algorithm vertex x belongs to tree T0 \in \scrT , z is the
highest ancestor of x in T0 such that (x, z) is an edge. (ii) The partitioning changes as the algorithm
proceeds, and T1(\in \scrT) is the tree containing vertex z just before it is attached to T \ast . (iii) A path
containing vertex z (i.e., pz) is extracted from T1 and attached to T \ast . If a(x) belongs to T0, then it
is the highest neighbor of x in pz.

that if a(x) lies on p0, for v = x the computed vertex u will be the same as
a(x).

2. Vertex x lies on a path in Pp.
For each u \in T \ast and p0 \in Pp, we query \scrD for an edge (u, y) such that the
endpoint y is farthest from H(p0) on path p0. We add u to A(y). Now,
consider a vertex x on p0 such that a(x) = u. If x is equal to y, then we have
added a(x) (i.e., u) to A(x). If x is not equal to y, then we have added a(x)
(i.e., u) to A(y), where y is a descendant of x in T \ast .

3. Vertices x and a(x) lie on the same path in Pt.
For every vertex v \in p0 for a path p0 \in Pt, we query \scrD to compute the edge
(u, v), where u is closest to H(p0) on path p0, and add u to A(v). Note that
for x = v, if a(x) also lies on p0, then u will be the same as a(x).

4. Vertices x and a(x) lie on different paths in Pt.
Let x belong to T0 in the initial disjoint tree partitioning \scrT \cup \scrP . We claim
that a(x) would also belong to the same tree T0. This is because disjoint tree
partitioning ensures the absence of edges between two subtrees in \scrT . Let z
be the highest ancestor of x in T0 such that (x, z) is an edge in G + U . Let
pz be the path in Pt containing vertex z.
We now prove that a(x) belongs to pz. Recall that as the algorithm proceeds,
our partitioning \scrP \cup \scrT evolves with time. Let T1 be the tree in \scrT containing
vertex z just before pz is attached to T \ast . Then T1 is either the same as T0

or a subtree of T0 (see Figure 13(i)). Also, a(x) must lie in tree T1 since it
cannot be an ancestor of z in T0. Now, let T2 be the tree containing x which
is obtained on removal of pz from T1. Since z is an ancestor of x in T0, the
vertices in T2 will eventually hang from some descendant of z (not necessarily
proper) in T \ast . For a(x) to be the highest neighbor of x in T \ast , it should be
an ancestor of z in T \ast , which is only possible if a(x) \in pz.
Therefore, for each vertex x belonging to a tree T0 in \scrT , we calculate the
highest ancestor z of x in T0 such that (x, z) is an edge in G + U . We
compute a list l(z) that consist of all the vertices x whose highest ancestor
in T0 to which x has an edge is z. Now, when pz is added to T \ast , we process

DYNAMIC DFS IN UNDIRECTED GRAPHS 1359

l(z) as follows. For every v \in l(z), we query \scrD for an edge (u, v), where u is
closest to H(pz) on path pz, and add u to A(v). Note that if a(x) also lies in
T0, then u must be the same as a(x) (see Figure 13(iii)).

Now, in the first two steps the total time taken is dominated by the number
of queries between each path in Pp and the vertices in T , i.e., | Pp| \times n \times log3 n =
O(nk log4 n). In the last two steps, the total time taken is dominated by a single
query for each vertex in T , i.e., n\times log3 n = O(n log3 n). Thus, we have the following
theorem.

Theorem 19. Given an undirected graph G(V,E), with | V | = n and | E| = m,
we can maintain a data structure for answering queries of biconnected components
and 2-edge connectivity in a dynamic graph which takes O(

\surd
mn log2.5 n) update time,

O(1) query time, and O(m log n) time for preprocessing.

10. Lower bounds. We now prove two conditional lower bounds for maintain-
ing a DFS tree under fully/partially dynamic vertex or fully dynamic edge updates.

10.1. Vertex updates. The lower bound for maintaining a DFS tree under
vertex updates is based on the strong exponential time hypothesis (SETH) as defined
below.

Definition 20 (SETH [11, 40]). For every \epsilon > 0, there exists a positive integer
k, such that SAT on k-CNF formulas on n variables cannot be solved in \~O(2(1 - \epsilon)n)
time.

Given an undirected graph G on n vertices and m edges in a dynamic envi-
ronment (fully dynamic or partially dynamic, i.e., incremental/decremental) under
vertex updates, the status of any vertex can be switched between active and inactive
in an update. The goal of subgraph connectedness is to efficiently answer whether
the subgraph induced by the active vertices is connected. Abboud and Vassilevska
Williams [1] proved a conditional lower bound of \Omega (n) per update based on SETH for
answering dynamic subgraph connectedness queries. They proved that any algorithm
for answering dynamic subgraph connectedness queries using arbitrary polynomial
preprocessing time and O(n1 - \epsilon) amortized update and query time would essentially
refute SETH. They also proved that any algorithm for maintaining partially dynamic
(incremental/decremental) subgraph connectedness using arbitrary polynomial pre-
processing time and O(n1 - \epsilon) worst case update and query time would essentially
refute SETH.

We present a simple reduction from subgraph connectedness to maintaining a
DFS tree under vertex updates requiring the algorithm to report whether the number
of children of the root in any DFS tree of the subgraph is greater than 1. Thus, we
establish the following.

Theorem 21. Given an undirected graph G with n vertices and m edges under-
going vertex updates, an algorithm for maintaining a DFS tree that can report the
number of children of the root in the DFS tree with preprocessing time p(m,n), update
time u(m,n), and query time q(m,n) would imply an algorithm for subgraph connect-
edness with preprocessing time p(m+ n, n), update time u(m+ n, n), and query time
q(m+ n, n).

Proof. Given the graphG, for which we need to query for subgraph connectedness,
we make a graph G\prime as follows. We add all vertices and edges of G to G\prime . Further,
add another vertex r called as pseudoroot and connect it to all other vertices of G\prime .
Thus, G\prime has n+1 vertices and m+n edges. Now, in any DFS tree T of G\prime rooted at

1360 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

r, the number of children of r will be equal to the number of components in G. Here,
the subtree rooted at each child of r represents a component of G. Any change on G
can be performed on G\prime , and querying for subgraph connectedness in G is equivalent
to querying whether r has more than one child in T .

Thus, any algorithm for maintaining fully dynamic DFS under vertex updates
with arbitrary preprocessing time and O(n1 - \epsilon) amortized update time would imply
the same bound for dynamic subgraph connectedness, refuting SETH [1]. Similarly,
any algorithm for maintaining partially dynamic DFS under vertex updates with ar-
bitrary preprocessing time and O(n1 - \epsilon) worst case update time would imply the same
bound for dynamic subgraph connectedness, refuting SETH [1].

10.2. Edge updates. We now present a lower bound for maintaining a DFS
tree under fully dynamic edge updates that holds for any algorithm which maintains
tree edges of the DFS tree explicitly. In the following example, we prove that there
exist a graph G and a sequence of edge updates U , such that any DFS tree of the
graph would require a conversion of \Omega (n) edges from tree edges to back edges and
vice versa after every pair of updates in U .

r

v1

v2

vk

y

x

u1 u2 ul

(i)

r

v1

v2

vk

x

y

u1 u2 ul

(ii)

r

v1

v2

vk

x

ui

y

u1 u2 ul

(iii)

Fig. 14. Worst case example for a lower bound on maintaining a DFS tree under fully dynamic
edge updates.

Consider the following graph for which a DFS tree rooted at r is to be maintained
under fully dynamic edge updates. There are n/2 vertices u1,. . . ,ul that have edges
to vertices x and y. The remaining n/2 - 3 vertices v1,. . . , vk are connected in the
form of a line as shown in Figure 14. At any point of time, one of v1, . . . , vk (say
v1) is connected to either x or y. The DFS tree for the graph is shown in Figure
14(i). Now, upon insertion of edge (vi, x) (say i = 2) and deletion of edge (v1, y), the
DFS tree will transform to either Figure 14(ii) or Figure 14(iii). Clearly, \Omega (n) edges
are converted from tree edges to back edges and vice versa. This can be repeated
alternating between x and y, ensuring that the new DFS tree requires \Omega (n) after
every two edge updates. Further, we repeat this for different vi's, ensuring that the
new DFS tree is not exactly the same as some previous DFS tree. Note that the
same procedure can be applied to both of the possible trees shown in Figure 14(ii)
and Figure 14(iii). Hence, any algorithm maintaining tree edges explicitly takes \Omega (n)
time to handle such a pair of edge updates.

Note. Choosing different vi's is not required to prove the bound when tree edges
are maintained explicitly. However, in case we always use the same vi, one can pos-
sibly relax explicit maintenance slightly to achieve significantly better bounds using
memorization (i.e., store the complete DFS tree for the different cases). This par-

DYNAMIC DFS IN UNDIRECTED GRAPHS 1361

ticular example shows that the lower bound holds even when explicit maintenance is
slightly relaxed as described above.

11. Conclusion. We have presented a fully dynamic algorithm for maintaining a
DFS tree that takes worst case \~O(

\surd
mn) update time. This is the first fully dynamic

algorithm that achieves o(m) update time for dense graphs. In the fault tolerant
setting, our algorithm takes \~O(nk) time to report a DFS tree, where k is the number
of vertex or edge failures in the graph. We show the immediate applications of fully
dynamic DFS for solving various problems, such as dynamic subgraph connectivity,
biconnectivity, and 2-edge connectivity. We also prove a conditional lower bound of
\Omega (n) for maintaining DFS trees under fully/partially dynamic vertex updates or fully
dynamic edge updates.

DFS trees have been extensively used for solving various graph problems in the
static setting. Most of these problems are also solved efficiently in the dynamic envi-
ronment. However, their solutions have not used dynamic DFS trees. Furthermore,
solutions to most dynamic graph problems under edge updates require o(n) update
time. However, this is not true for the vertex update variants of these problems.
In light of the \Omega (n) lower bound for updating DFS under both fully dynamic edge
and fully/partially dynamic vertex updates, it becomes clear that dynamic DFS trees
would be more applicable in dynamic graph problems under vertex updates. The ap-
plications of our fully dynamic algorithm follow from the fact that it handles vertex
updates, which was not the case with the existing algorithms for maintaining a DFS
tree in any dynamic setting. This paper is thus an attempt to restore the glory of
DFS trees for solving graph problems in the dynamic setting, as was the case in the
static setting. We believe that our dynamic algorithm for DFS, on its own or after
further improvements/modifications, would encourage other researchers to use it in
solving various other dynamic graph problems.

REFERENCES

[1] A. Abboud and V. Vassilevska Williams, Popular conjectures imply strong lower bounds for
dynamic problems, in Proceedings of the 55th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2014), 2014, pp. 434--443.

[2] A. Aggarwal and R. J. Anderson, A random NC algorithm for depth first search, Combi-
natorica, 8 (1988), pp. 1--12.

[3] A. Aggarwal, R. J. Anderson, and M.-Y. Kao, Parallel depth-first search in general directed
graphs, SIAM J. Comput., 19 (1990), pp. 397--409, https://doi.org/10.1137/0219025.

[4] S. Baswana, S. R. Chaudhury, K. Choudhary, and S. Khan, Dynamic DFS in undirected
graphs: breaking the O(m) barrier, in Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2016), SIAM, Philadelphia; ACM, New
York, 2016, pp. 730--739.

[5] S. Baswana and K. Choudhary, On dynamic DFS tree in directed graphs, in Mathematical
Foundations of Computer Science, Part II, Springer, Heidelberg, 2015, pp. 102--114.

[6] S. Baswana, M. Gupta, and S. Sen, Fully dynamic maximal matching in O(logn) update
time (corrected version), SIAM J. Comput., 47 (2018), pp. 617--650, https://doi.org/10.
1137/16M1106158.

[7] S. Baswana and S. Khan, Incremental algorithm for maintaining DFS tree for undirected
graphs, in International Colloquium on Automata, Languages and Programming, Part I,
Springer, Heidelberg, 2014, pp. 138--149.

[8] S. Baswana and N. Khanna, Approximate shortest paths avoiding a failed vertex: Near opti-
mal data structures for undirected unweighted graphs, Algorithmica, 66 (2013), pp. 18--50.

[9] S. Baswana, S. Khurana, and S. Sarkar, Fully dynamic randomized algorithms for graph
spanners, ACM Trans. Algorithms, 8 (2012), 35.

[10] G. Braunschvig, S. Chechik, D. Peleg, and A. Sealfon, Fault tolerant additive and ((\mu),
(\alpha))-spanners, Theoret. Comput. Sci., 580 (2015), pp. 94--100.

https://doi.org/10.1137/0219025
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/16M1106158

1362 BASWANA, CHAUDHURY, CHOUDHARY, AND KHAN

[11] C. Calabro, R. Impagliazzo, and R. Paturi, The complexity of satisfiability of small depth
circuits, in Parameterized and Exact Computation, Springer, Berlin, 2009, pp. 75--85.

[12] T. M. Chan, Dynamic subgraph connectivity with geometric applications, SIAM J. Comput.,
36 (2006), pp. 681--694, https://doi.org/10.1137/S009753970343912X.

[13] T. M. Chan, M. Patrascu, and L. Roditty, Dynamic connectivity: Connecting to networks
and geometry, in Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), 2008, pp. 95--104.

[14] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algo-
rithmica, 1 (1986), pp. 133--162.

[15] S. Chechik, M. Langberg, D. Peleg, and L. Roditty, Fault tolerant spanners for general
graphs, SIAM J. Comput., 39 (2010), pp. 3403--3423, https://doi.org/10.1137/090758039.

[16] S. Chechik, M. Langberg, D. Peleg, and L. Roditty, f-sensitivity distance oracles and
routing schemes, Algorithmica, 63 (2012), pp. 861--882.

[17] L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang, An improved algorithm for incre-
mental DFS tree in undirected graphs, in Proceedings of the 16th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2018), Malm\"o, Sweden, 2018, 16.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed., MIT Press, Cambridge, MA, 2009.

[19] C. Demetrescu and G. F. Italiano, A new approach to dynamic all pairs shortest paths, J.
ACM, 51 (2004), pp. 968--992.

[20] C. Demetrescu and G. F. Italiano, Maintaining dynamic matrices for fully dynamic tran-
sitive closure, Algorithmica, 51 (2008), pp. 387--427.

[21] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran, Oracles for
distances avoiding a failed node or link, SIAM J. Comput., 37 (2008), pp. 1299--1318,
https://doi.org/10.1137/S0097539705429847.

[22] R. Duan, New data structures for subgraph connectivity, in International Colloquium on Au-
tomata, Languages and Programming, Part I, Springer, Berlin, 2010, pp. 201--212.

[23] R. Duan and L. Zhang, Faster randomized worst-case update time for dynamic subgraph
connectivity, in Algorithms and Data Structures, Springer, Cham, 2017, pp. 337--348.

[24] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification---a technique for
speeding up dynamic graph algorithms, J. ACM, 44 (1997), pp. 669--696.

[25] P. Erd\H os and A. R\'enyi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutat\'o
Int. K\"ozl, 5 (1960), pp. 17--61.

[26] P. G. Franciosa, G. Gambosi, and U. Nanni, The incremental maintenance of a depth-first-
search tree in directed acyclic graphs, Inform. Process. Lett., 61 (1997), pp. 113--120.

[27] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with
applications, SIAM J. Comput., 14 (1985), pp. 781--798, https://doi.org/10.1137/0214055.

[28] D. Frigioni and G. F. Italiano, Dynamically switching vertices in planar graphs, Algorith-
mica, 28 (2000), pp. 76--103.

[29] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya, Sublinear-time parallel algorithms for
matching and related problems, in Proceedings of the 29th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 1988), 1988, pp. 174--185.

[30] L. Gottlieb and L. Roditty, Improved algorithms for fully dynamic geometric spanners and
geometric routing, in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2008), SIAM, Philadelphia; ACM, New York, 2008, pp. 591--
600.

[31] R. Grossi, A. Gupta, and J. S. Vitter, High-order entropy-compressed text indexes, in
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003), SIAM, Philadelphia; ACM, New York, 2003, pp. 841--850.

[32] M. Gupta and R. Peng, Fully dynamic (1 + e)-approximate matchings, in Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013),
Berkeley, CA, 2013, pp. 548--557.

[33] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak, Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjec-
ture, in Proceedings of the 47th Annual ACM Symposium on Theory of Computing, 2015,
pp. 21--30.

[34] M. R. Henzinger, Fully dynamic biconnectivity in graphs, Algorithmica, 13 (1995), pp. 503--
538.

[35] M. R. Henzinger, Improved data structures for fully dynamic biconnectivity, SIAM J. Com-
put., 29 (2000), pp. 1761--1815, https://doi.org/10.1137/S0097539794263907.

[36] M. R. Henzinger and V. King, Randomized fully dynamic graph algorithms with polyloga-
rithmic time per operation, J. ACM, 46 (1999), pp. 502--516.

https://doi.org/10.1137/S009753970343912X
https://doi.org/10.1137/090758039
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/0214055
https://doi.org/10.1137/S0097539794263907

DYNAMIC DFS IN UNDIRECTED GRAPHS 1363

[37] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM,
48 (2001), pp. 723--760.

[38] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225--231, https://doi.org/10.1137/0202019.

[39] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach., 21
(1974), pp. 549--568.

[40] R. Impagliazzo and R. Paturi, On the complexity of k-sat, J. Comput. System Sci., 62 (2001),
pp. 367--375.

[41] B. M. Kapron, V. King, and B. Mountjoy, Dynamic graph connectivity in polylogarithmic
worst case time, in Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2013), SIAM, Philadelphia; ACM, New York, 2013, pp. 1131--
1142, https://doi.org/10.1137/1.9781611973105.81.

[42] M. Krivelevich and B. Sudakov, The phase transition in random graphs: A simple proof,
Random Structures Algorithms, 43 (2013), pp. 131--138.

[43] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, Complexity models for
incremental computation, Theoret. Comput. Sci., 130 (1994), pp. 203--236.

[44] K. Nakamura, Fully dynamic connectivity oracles under general vertex updates, in Proceedings
of the 28th International Symposium on Algorithms and Computation (ISAAC 2017),
Phuket, Thailand, 2017, 59.

[45] K. Nakamura and K. Sadakane, A space-efficient algorithm for the dynamic DFS problem
in undirected graphs, in WALCOM: Algorithms and Computation, Springer, Cham, 2017,
pp. 295--307.

[46] D. Nanongkai and T. Saranurak, Dynamic spanning forest with worst-case update time:
Adaptive, Las Vegas, and O(n1/2 - \epsilon)-time, in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2017), Montreal, QC, Canada,
2017, pp. 1122--1129.

[47] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, Dynamic minimum spanning forest
with subpolynomial worst-case update time, in Proceedings of the 58th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2017), Berkeley, CA, 2017, pp. 950--
961.

[48] J. H. Reif, Depth-first search is inherently sequential, Inform. Process. Lett., 20 (1985),
pp. 229--234.

[49] J. H. Reif, A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25
(1987), pp. 65--70.

[50] L. Roditty, Fully dynamic geometric spanners, Algorithmica, 62 (2012), pp. 1073--1087.
[51] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs,

SIAM J. Comput., 37 (2008), pp. 1455--1471, https://doi.org/10.1137/060650271.
[52] L. Roditty and U. Zwick, On dynamic shortest paths problems, Algorithmica, 61 (2011),

pp. 389--401.
[53] P. Sankowski, Dynamic transitive closure via dynamic matrix inverse (extended abstract), in

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2004), 2004, pp. 509--517.

[54] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System
Sci., 26 (1983), pp. 362--391.

[55] J. R. Smith, Parallel algorithms for depth-first searches I. Planar graphs, SIAM J. Comput.,
15 (1986), pp. 814--830, https://doi.org/10.1137/0215058.

[56] S. Solomon, Fully dynamic maximal matching in constant update time, in Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), New
Brunswick, NJ, 2016, pp. 325--334.

[57] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146--160, https://doi.org/10.1137/0201010.

[58] R. Tarjan, Finding dominators in directed graphs, SIAM J. Comput., 3 (1974), pp. 62--89,
https://doi.org/10.1137/0203006.

[59] M. Thorup, Worst-case update times for fully-dynamic all-pairs shortest paths, in Proceedings
of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), 2005, pp. 112--
119.

[60] M. Thorup, Fully-dynamic min-cut, Combinatorica, 27 (2007), pp. 91--127.
[61] C. Wulff-Nilsen, Fully-dynamic minimum spanning forest with improved worst-case update

time, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC 2017), Montreal, QC, Canada, 2017, pp. 1130--1143.

https://doi.org/10.1137/0202019
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/060650271
https://doi.org/10.1137/0215058
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0203006

	Introduction
	Existing results on dynamic DFS
	Our results
	Applications of fully dynamic DFS
	Main idea

	Preliminaries
	Properties of a DFS tree

	Handling a single update
	Rerooting a DFS tree

	Data structure
	Handling multiple updates: Overview
	Disjoint tree partitioning
	Fault tolerant DFS tree
	Implementation of our algorithm
	Correctness
	Time complexity analysis
	Extending the algorithm to handle insertions

	Fully dynamic DFS
	Applications
	Existing results
	Algorithm

	Lower bounds
	Vertex updates
	Edge updates

	Conclusion
	References

