
SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 617–650

FULLY DYNAMIC MAXIMAL MATCHING IN O(logN) UPDATE
TIME (CORRECTED VERSION)∗

SURENDER BASWANA† , MANOJ GUPTA‡ , AND SANDEEP SEN§

Abstract. We present an algorithm for maintaining a maximal matching in a graph under
addition and deletion of edges. Our algorithm is randomized and it takes expected amortized O(logn)
time for each edge update, where n is the number of vertices in the graph. Moreover, for any sequence
of t edge updates, the total time taken by the algorithm is O(t logn+n log2 n) with high probability.

Key words. matching, dynamic graph algorithm

AMS subject classifications. 05C70, 05C85, 68W05, 68W20, 68W40

DOI. 10.1137/16M1106158

1. Introduction. Let G = (V,E) be an undirected graph on n = |V | vertices
and m = |E| edges. A matching in G is a set of edges M ⊆ E such that no two
edges in M share any vertex. The study of matchings satisfying various properties
has remained the focus of graph theory for decades [23]. It is due to the elegant
structure of matchings that they also appear in various combinatorial optimization
problems [12, 22]. A few well studied matching problems are maximum cardinality
matching [11, 19, 24, 25], maximum weight matching [14, 20], minimum cost matching
[21, Chapter 7], stable matching [15], popular matching [2]. Among these problems,
the maximum cardinality matching problem has been studied most extensively. A
matching M is of maximum cardinality if the number of edges in M is maximum
among all possible matchings. A maximum cardinality matching is also referred to as
a maximum matching. A matching is said to be a maximal matching if it cannot be
strictly contained in any other matching. It is well known that a maximal matching
guarantees a 2-approximation of the maximum matching. Though it is quite easy to
compute a maximal matching in O(m+ n) time, designing an efficient algorithm for
maximum matching has remained a very challenging problem for researchers [11, 24].
The fastest algorithm, till date, for maximum matching runs in O(m

√
n) time and is

due to Micali and Vazirani [24]. In this article, we address the problem of maintaining
a maximal matching in a dynamic graph.

Most of the graph applications in the real world deal with graphs that are not
static, viz., the graph changes over time. These changes are deletion and insertion
of edges. This has motivated researchers to design efficient algorithms for various
graph problems in a dynamic environment. An algorithmic graph problem is modeled
in a dynamic environment as follows. There is an online sequence of insertion and
deletion of edges, and the goal is to update the solution of the graph problem after
each edge update. A trivial and inefficient approach to achieve this goal is to run the

∗Received by the editors December 1, 2016; accepted for publication (in revised form) Decem-
ber 28, 2017; published electronically May 3, 2018. The previous version of this result appeared in
SIAM J. Comput., 44 (2015), pp. 88–113, where the analysis contained some error. This version rec-
tifies this deficiency without any change in the algorithm while preserving the original performance
bounds. For convenience of the reader, we present the complete version of the result although the
error affects only some parts of the original article.

http://www.siam.org/journals/sicomp/47-3/M110615.html
†Department of CSE, I.I.T. Kanpur, India (sbaswana@cse.iitk.ac.in).
‡Department of CSE, I.I.T. Gandhinagar, India (gmanoj@iitgn.ac.in).
§Department of CSE, I.I.T. Delhi, India (ssen@cse.iitd.ac.in).

617

http://www.siam.org/journals/sicomp/47-3/M110615.html
mailto:sbaswana@cse.iitk.ac.in
mailto:gmanoj@iitgn.ac.in
mailto:ssen@cse.iitd.ac.in

618 S. BASWANA, M. GUPTA, AND S. SEN

best static algorithm for the problem after each edge update; clearly this approach is
quite wasteful. The aim of a dynamic graph algorithm is to maintain some clever data
structure for the underlying problem such that the time taken to update the solution
is much smaller than that of the best static algorithm. There exist many efficient
dynamic algorithms for various fundamental problems in graphs [5, 7, 18, 29, 30, 32].

Baswana, Gupta, and Sen [6] had presented a fully dynamic algorithm for maxi-
mal matching which achieved O(log n) expected amortized time per edge insertion or
deletion. Moreover, for any sequence of t edge updates, the total update time taken by
the algorithm is O(t log n+n log2 n) with high probability. Their algorithm improved
an earlier result of Onak and Rubinfeld [27] who presented a randomized algorithm
for maintaining a c-approximate (for some unspecified large constant c) matching in
a dynamic graph with O(log2 n) expected amortized time for each edge update.

Unfortunately, the analysis given in [6] has a flaw, viz., the statement [6, Lem-
ma 4.10] is not true in general. The readers familiar with [6] may refer to section 7.1
in the appendix to see the flaw in the lemma. The bound on the update time was
critically dependent on this lemma. In this article, we present an alternate proof of
the claimed update time based on an interesting property of the original algorithm
that was not reported earlier. This property, stated in Theorem 4.2, is interesting in
its own right and may lead to other useful applications of the algorithm.

For convenience of the reader, we present the complete result of the original article
[6] with a revised and correct analysis although the error affects only some parts of
it. In other words, this article can be read on its own without any knowledge of the
original article [6].

1.1. Organization of the result. In the following section, we describe nota-
tions and terminologies used in the rest of the article along with a high level overview
of the main idea underlying the algorithm. For a gentle exposition of the ideas and
techniques, we describe a simple but less efficient fully dynamic algorithm for maxi-
mal matching in section 3. We present our fully dynamic algorithm which achieves
expected amortized O(log n) time per update in section 4. In section 5, we illustrate
an example of a dynamic graph that establishes the tightness of the approximation
factor guaranteed by our algorithm. We conclude with recent interesting results on
fully dynamic maximal matching obtained by other researchers and open problems in
section 6.

2. An overview. Let M denote a matching of the given graph at any moment.
Every edge of M is called a matched edge and an edge in E\M is called an unmatched
edge. For an edge (u, v) ∈ M , we define u to be the mate of v and vice versa. For a
vertex x, if there is an edge incident on it in the matching M , then x is a matched
vertex; otherwise it is free or unmatched.

In order to maintain a maximal matching, it suffices to ensure that there is no
edge (u, v) in the graph such that both u and v are free with respect to the matching
M . From this observation, an obvious approach will be to maintain the information
for each vertex whether it is matched or free at any stage. When an edge (u, v) is
inserted, add (u, v) to the matching if u and v are free. When an unmatched edge
(u, v) is deleted, no action is required. Otherwise, for both u and v we search their
neighborhoods for any free vertex and update the matching accordingly. It follows
that each update takes O(1) computation time except when it involves deletion of a
matched edge; in this case the computation time is of the order of the sum of the
degrees of the two vertices. So this trivial algorithm is quite efficient for small degree
vertices, but could be expensive for large degree vertices. An alternative approach to

FULLY DYNAMIC MAXIMAL MATCHING 619

handle the deletion of a matched edge is to use a simple randomized technique—a
vertex u is matched with a randomly chosen neighbor v. Following the standard ad-
versarial model, it can be observed that an expected deg(u)/2 edges incident on u will
be deleted before deleting the matched edge (u, v). So the expected amortized cost per

edge deletion for u is roughly O(deg(u)+deg(v)
deg(u)/2). If deg(v) < deg(u), this cost is O(1);

but if deg(v) � deg(u), then it can be as bad as the trivial algorithm. We combine
the idea of choosing a random mate and the trivial algorithm suitably as follows.

We introduce a notion of ownership of edges in which we assign an edge to that
endpoint which has higher degree. We maintain a partition of the set of vertices
into two levels : 0 and 1. Level 0 consists of vertices which own fewer edges than an
appropriate threshold and we handle the updates at level 0 using the trivial algorithm.
Level 1 consists of vertices (and their mates) which own a larger number of edges and
we use the idea of a random mate to handle their updates. In particular, a vertex
chooses a random mate from its set of owned edges which ensures that it selects a
neighbor having a lower degree. This is an overview of a 2-level algorithm that achieves
expected amortized O(

√
n) time per update for maintaining a maximal matching.

A careful analysis of our 2-level algorithm suggests that a finer partition of vertices
into a greater number of levels may help in achieving a better update time. This leads
to our final algorithm which achieves expected amortized O(log n) time per update.
This algorithm maintains an invariant that can be informally summarized as follows.

Each vertex tries to rise to a level higher than its current level, if, upon reaching
that level, there are sufficiently many edges incident on it from lower levels. Once
a vertex reaches a new level, it selects a random edge from this set and makes it
matched.

Note that we say that “a vertex rises” to indicate that the vertex moves to a
higher level and “a vertex falls” to indicate that the vertex moves to a lower level. A
vertex may also fall to a lower level after deletion of its matched edge if the number of
edges owned by it falls below the threshold for the current level. Overall, the vertices
use just their neighborhood information to reach a global equilibrium state after each
update, where each vertex is at the right level having no incentive to either move
above or below its current level.

We shall useM to denote the matching maintained by our algorithm at any stage.
Our algorithm maintains a partition of the set of vertices among various levels. We
shall use level(u) to denote the level of a vertex u. We define level(u, v) for an edge
(u, v) as max(level(u), level(v)).

3. Fully dynamic algorithm with expected amortized O(
√
n) time per

update. The algorithm maintains a partition of the set of vertices into two levels—0
and 1. We now introduce the concept of ownership of the edges. Each edge present
in the graph will be owned by one or both of its endpoints as follows. If both the
endpoints of an edge are at level 0, then it is owned by both of them. Otherwise
it will be owned by exactly that endpoint which lies at a higher level. If both the
endpoints are at level 1, the tie will be broken suitably by the algorithm. As the
algorithm proceeds, the vertices will make a transition from one level to another and
the ownership of edges will also change accordingly. Let Ou denote the set of edges
owned by u at any moment of time. Each vertex u ∈ V keeps the set Ou in a dynamic
hash table [28] so that each search or deletion operation on Ou can be performed in
worst case O(1) time and each insertion operation can be performed in expected O(1)
time. This hash table is suitably augmented with a linked list storing Ou so that we
can retrieve all edges of set Ou in O(|Ou|) time.

620 S. BASWANA, M. GUPTA, AND S. SEN

The algorithm maintains the following three invariants after each update.
1. Every vertex at level 1 is matched. Every free vertex at level 0 has all its

neighbors matched.
2. Every vertex at level 0 owns less than

√
n edges.

3. Both the endpoints of every matched edge are at the same level.
Invariant 1 implies that the matching M maintained is maximal at each stage.

A vertex u is said to be a dirty vertex at a moment if it violates at least one of the
invariants mentioned above. In order to restore the invariants, each dirty vertex might
make a transition to another level and do some processing. This processing involves
owning or disowning some edges depending upon whether the level of the vertex has
risen or fallen. Thereafter, the vertex will execute random-settle or naive-settle
to settle down at its new level. The pseudocode of our algorithm for handling insertion
and deletion of an edge is given in Figures 1 and 2.

Handling insertion of an edge. Let (u, v) be the edge being inserted. If either
u or v are at level 1, there is no violation of any invariant. So the only processing
that needs to be done is to assign (u, v) to Ou if level(u) = 1, and to Ov otherwise.
This takes O(1) time. However, if both u and v are at level 0, then we execute the
handling-insertion procedure which does the following (see Figure 1).

Both u and v become the owner of the edge (u, v). If u and v are free, then the
insertion of (u, v) has violated invariant 1 for u as well as v. We restore it by adding
(u, v) to M. Note that the insertion of (u, v) also leads to increase of |Ou| and |Ov|
by one. We process that vertex from {u, v} which owns larger number of edges; let
u be that vertex. If |Ou| =

√
n, then invariant 2 has become violated. We execute

random-settle(u); as a result, u moves to level 1 and gets matched to some vertex,
say y, selected randomly uniformly from Ou. Vertex y moves to level 1 to satisfy
invariant 3. If w and x were, respectively, the earlier mates of u and y at level 0,
then the matching of u with y has rendered w and x free. So to restore invariant
1, we execute naive-settle(w) and naive-settle(x). This finishes the processing
of insertion of (u, v). Note that when u rises to level 1, |Ov| remains unchanged.
Since all the invariants for v were valid before the current edge update, it follows that
invariant 2 for v continues to remain valid after the update as well.

Handling deletion of an edge. Let (u, v) be an edge that is deleted. If (u, v) /∈
M, all the invariants are still valid. So let us consider the nontrivial case when
(u, v) ∈ M. In this case, the deletion of (u, v) has made u and v free. Therefore,
potentially, invariant 1 might have become violated for u and v, making them dirty.
We do the following processing in this case.

If edge (u, v) was at level 0, then following the deletion of (u, v), vertex u exe-
cutes naive-settle(u), and then vertex v executes naive-settle(v). This restores
invariant 1 and the vertices u and v are clean again. If edge (u, v) was at level 1, then
u is processed using the procedure shown in Figure 2 which does the following (v is
processed similarly).

First, u disowns all its edges whose other endpoint is at level 1. If |Ou| is still
greater than or equal to

√
n, then u stays at level 1 and executes random-settle(u).

If |Ou| is less than
√
n, u moves to level 0 and executes naive-settle(u). Note that

the transition of u from level 1 to 0 leads to an increase in the number of edges owned
by each of its neighbors at level 0. Invariant 2 for each such neighbor, say w, may get
violated if |Ow| =

√
n, making w dirty. So we scan each neighbor of u sequentially

and for each dirty neighbor w (that is, |Ow| =
√
n), we execute random-settle(w)

to restore invariant 2. This finishes the processing of the deletion of (u, v).

FULLY DYNAMIC MAXIMAL MATCHING 621

Procedure handling-insertion(u, v)

Ou ← Ou ∪ {(u, v)};1

Ov ← Ov ∪ {(u, v)};2

if u and v are free then M←M∪ {(u, v)};3

if |Ov| > |Ou| then swap(u, v);4

if |Ou| =
√
n then5

foreach (u,w) ∈ Ou do6

delete (u,w) from Ow;7

x← random-settle(u);8

if x 6= null then naive-settle(x);9

if w was previous mate of u then naive-settle(w);10

Procedure random-settle(u): Finds a random edge (u, y) from the edges
owned by u and returns the previous mate of y

Let (u, y) be a uniformly randomly selected edge from Ou;1

foreach (y, w) ∈ Oy do2

delete (y, w) from Ow;3

if y is matched then4

x← mate(y);5

M←M\{(x, y)}6

else
x← null;7

M←M∪ {(u, y)};8

level(u)← 1; level(y)← 1;9

return x;10

Procedure naive-settle(u) : Finds a free vertex adjacent to u determinis-
tically

for each (u, x) ∈ Ou do1

if x is free then2

M←M∪ {(u, x)};3

Break;4

Fig. 1. Procedure for handling insertion of an edge (u, v), where level(u) = level(v) = 0.

It can be observed that, unlike insertion of an edge, the deletion of an edge may
lead to creation of a large number of dirty vertices. This may happen if the deleted
edge is a matched edge at level 1 and at least one of its endpoints moves to level 0
increasing the number of owned edges of each of its neighbors by 1.

Remark 3.1. The only criterion for a vertex to move to level 1 from level 0 is
that there should be at least

√
n edges incident on it from the vertices at level 0.

Therefore, it is easy to observe that the updates in matching at level 1 depend only
on the subgraph induced by vertices at level 0 and not on the exact matching present at
level 0. This observation seems obvious and useless in our 2-level algorithm. However,
this observation gets carried over to our main algorithm in the following section, and
will play a crucial role in its time complexity analysis.

622 S. BASWANA, M. GUPTA, AND S. SEN

Procedure handling-deletion(u,v)

foreach (u,w) ∈ Ou and level(w) = 1 do1

move (u,w) from Ou to Ow;2

if |Ou| ≥
√
n then3

x← random-settle(u);4

if x 6= null then naive-settle(x);5

else
level(u)← 0;6

foreach (u,w) ∈ Ou and level(w) = 0 do7

add (u,w) to Ow;8

naive-settle(u);9

foreach (u,w) ∈ Ou do10

if |Ow| =
√
n then11

x← random-settle(w);12

if x 6= null then naive-settle(x);13

Fig. 2. Procedure for processing u when (u, v) ∈M is deleted and level(u) = level(v) = 1.

3.1. Analysis of the algorithm. While processing a sequence of insertion and
deletion of edges, an edge may become matched or unmatched multiple times. We
analyze the algorithm using the concept of epochs, which we explain as follows.

Definition 3.1. At any time t, let (u, v) be any edge in M. Then the epoch
defined by (u, v) at time t is the maximal continuous time period containing t during
which (u, v) remains in M. An epoch is said to belong to level 0 or 1 depending upon
the level of the matched edge that defines the epoch.

The entire life span of an edge (u, v) consists of a sequence of epochs of (u, v)
separated by the continuous periods when (u, v) is unmatched. It follows from the
algorithm that any edge update that does not change the matching is processed in
O(1) time. An edge update that changes the matching results in the creation of
one or more fresh epochs or the termination of some existing epoch(s). For the
sake of analysis, we will distribute the computation carried out while processing an
edge update among the corresponding epochs that are created or terminated. More
specifically, suppose epochs of (u1, v1), (u2, v2), . . . , (u`, v`) get created and epochs
of (w1, x1), (w2, x2), . . . , (wk, xk) get terminated during an edge update. Then each
computation performed while processing this update will either be associated with the
start of an epoch (ui, vi) for some 1 ≤ i ≤ ` or to the termination of an epoch (wj , xj)
for some 1 ≤ j ≤ k. A crucial advantage of this distribution will be the following:
For analyzing time complexity of the algorithm, it will suffice to count the number
of epochs created or terminated during a sequence of updates. To show how this
distribution is carried out, let us analyze the computation involved in each procedure
of our algorithm and distribute it suitably among the corresponding epochs.

1. naive-settle(u):
Observe that whenever the procedure naive-settle(u) is carried out, u is
present at level 0 and, hence, |Ou| <

√
n. The procedure naive-settle(u)

searches for a free neighbor of u by scanning Ou. Hence, the time complexity
of naive-settle(u) is O(|Ou|) = O(

√
n). Furthermore, this procedure is

FULLY DYNAMIC MAXIMAL MATCHING 623

called whenever u loses its mate, say v. So we can associate the computation
of naive-settle(u) with the termination of the previous epoch of (u, v).

2. random-settle(u):
Observe that whenever random-settle(u) is invoked, u owns at least

√
n

edges incident from its neighbors at level 0 and, hence, |Ou| ≥
√
n. During

random-settle(u), u finds a random mate from level 0. This is done by
selecting a random number r ∈ [1, |Ou|], and then picking the rth edge, say
(u, y), from the linked list storing Ou. This takes O(|Ou|) time. Vertex u then
pulls y to level 1 to satisfy invariant 3. In this process, y becomes the sole
owner of all those edges whose other endpoint is at level 0 (lines 2,3). Since
y was the owner of at most

√
n edges, the total computation time involved in

performing this step is O(
√
n). Other steps in random-settle can be exe-

cuted in O(1) time. Hence the total computation time of random-settle(u)
is O(|Ou|+

√
n) which is O(|Ou|) since |Ou| ≥

√
n. We associate this compu-

tation time with the start of the epoch of (u, y) that gets created at level 1.
3. handling-insertion(u, v):

This procedure takes O(1) time unless one of the endpoints of (u, v) starts
owning

√
n edges. In that case, the procedure invokes random-settle (line

8) and naive-settle (lines 9,10). We have already distributed the time taken
in these procedures to the respective epochs that get created. Excluding these
tasks, the only computation performed in this procedure is in the for loop
(lines 6,7). The purpose of this loop is to make u the sole owner of all its
edges incident from level 0. Since u owns

√
n edges from level 0, the total

computation time involved in performing this step is O(
√
n). We associate

this computation time with the start of the epoch created by u at level 1.
4. handling-deletion(u, v):

Procedure handling-deletion(u, v) is carried out when the matched edge
(u, v) at level 1 gets deleted. In addition to invoking random-settle and
naive-settle procedures whose computation is already assigned to respec-
tive epochs, this procedure scans the list Ou at most twice. Notice that |Ou|
can be Θ(n). We associate this computation time of O(n) with the termina-
tion of the epoch of (u, v).

Excluding the updates that cause the start and termination of an epoch of (u, v),
every other edge update on u and v during the epoch is handled in just O(1) time.
Therefore, we shall focus only on the amount of computation associated with the start
and termination of an epoch. Let us now analyze the computation time associated
with an epoch at level 0 and an epoch at level 1.

• Epoch at level 0:
As discussed above, it is only the procedure naive-settle whose computa-
tion time is associated with an epoch at level 0. This procedure takes O(

√
n)

time. Hence the computation time associated with an epoch at level 0 is
O(
√
n).

• Epoch at level 1:
Consider an epoch at level 1. There are two ways in which this epoch gets
created at level 1:

– In handling-insertion:
An epoch of (u, v) can be created during the procedure handling-
insertion(u, v). In this case, the computation time associated with
the start of the epoch of (u, v) is the computation time incurred in exe-
cuting the procedure handling-insertion and the procedure random-

624 S. BASWANA, M. GUPTA, AND S. SEN

settle which it invokes. It follows from the above discussion that the
computation time associated with the epoch (u, v) isO(

√
n+|Ou|), which

is O(
√
n) since |Ou| =

√
n when we invoke handling-insertion(u, v).

– In handling-deletion:
Procedure handling-deletion(u, v) invokes random-settle at lines
4 and 12 to create new epochs at level 1. The execution of random-
settle at line 4 creates a new epoch for u and its computation time
O(|Ou|), which can be Θ(n), gets associated with the start of the new
epoch created by u. The execution of random-settle at line 12 creates
a new epoch for some vertex w which is some neighbor of u. Note that
|Ow| =

√
n. Its computation time, which is O(

√
n), is associated with

the start of the epoch at level 1 created by w.
Now let us calculate the computation time associated with an epoch, say of an
edge (u, v), at level 1 when it terminates. It follows from the discussion above
that the only computation time associated with the termination of epoch
(u, v) is the computation time of handling-deletion (excluding the time
spent in procedures random-settle and naive-settle that are already
associated with the start of their respective epochs). This time is at most
O(n).

From our analysis given above, it follows that the amount of computation time
associated with an epoch at level 0 is O(

√
n) and the computation time associated

with an epoch at level 1 is O(n).

An epoch of (u, v), once created, may either terminate during the processing of
some future update or remain alive, i.e., (u, v) remains in the matching even at the
end of all the updates. It can be observed that an epoch of (u, v) may terminate
because of exactly one of the following causes:

(i) (u, v) gets deleted from the graph.
(ii) u (or v) gets matched to some other vertex leaving its current mate free.
An epoch will be called a natural epoch if it terminates due to cause (i); otherwise,

it will be called an induced epoch. An induced epoch terminates prematurely since,
unlike a natural epoch, the matched edge is not actually deleted from the graph when
an induced epoch terminates.

It follows from the algorithm described above that every epoch at level 1 is a
natural epoch whereas an epoch at level 0 can be natural or induced depending on
the cause of its termination. Furthermore, each induced epoch at level 0 can be
associated with a natural epoch at level 1 whose creation led to the termination of
the former. In fact, there can be at most two induced epochs at level 0 which can be
associated with an epoch at level 1. It can be explained as follows (see Figure 3).

Consider an epoch at level 1 associated with an edge, say (u, v). Suppose it was
created by vertex u. If u was already matched at level 0, let w 6= v be its mate.
Similarly, if v was also matched already, let x 6= u be its current mate at level 0. So
matching u to v terminates the epoch of (u,w) as well as the epoch of edge (v, x)
at level 0. We charge the computation time associated with these two epochs to the
epoch of (u, v). We have seen that the computation time associated with an epoch
at level 0 is O(

√
n). So the overall computation time charged to an epoch of (u, v) at

level 1 is O(n+ 2
√
n) which is O(n). Hence we can state the following lemma.

Lemma 3.1. The computation time charged to a natural epoch at level 1 is O(n)
and the computation time charged to a natural epoch at level 0 is O(

√
n).

FULLY DYNAMIC MAXIMAL MATCHING 625

:

:

level 1

level 0

natural epoch

induced epoch

Time
epoch of (u,w)

epoch of (u,w)

epoch of (u, v)

epoch of (u, v)

epoch of (v, x)

epoch of (v, x)

Fig. 3. Epochs at level 0 and 1; the creation of an epoch at level 1 can terminate at most two
epochs at level 0.

In order to analyze time complexity of our algorithm, we shall now get a bound
on the computation time charged to all natural epochs that get terminated during
a sequence of updates or are alive at the end of all the updates. Let t be the total
number of updates. Let us first analyze the computation time charged to all those
epochs which are alive at the end of t updates. Consider an epoch of edge (u, v) that
is alive at the end of t updates. If this epoch is at level 0, the computation time
associated with the start of this epoch is O(1). If this epoch is at level 1, then the
computation time associated with the start of this epoch is O(|Ou|) and notice that
|Ou| ≥

√
n. Note that there can be at most two induced epochs at level 0 whose

computation time, which is O(
√
n), is also charged to the epoch of (u, v). Hence the

computation charged to the live epoch of (u, v) is O(|Ou|). Observe that, at any given
moment of time, Ou ∩Ow = ∅ for any two vertices u,w present at level 1. Hence the
computation time charged to all live epochs at the end of t updates is of the order
of
∑

u |Ou| ≤ 2t = O(t). So all we need to do is to analyze the computation time
charged to all natural epochs that get terminated during the sequence of updates.

Each natural epoch at level 0 which gets terminated can be assigned uniquely
to the deletion of its matched edge. Hence it follows from Lemma 3.1 that the com-
putation time charged to all natural epochs terminated at level 0 during t updates
is O(t

√
n). We shall now analyze the number of epochs terminated at level 1. Our

analysis will crucially exploit the following lemma. The lemma holds since a vertex
picks its matched edge uniformly from its owned edges while creating an epoch at
level 1.

Lemma 3.2. Suppose vertex v creates an epoch at level 1 when the algorithm pro-
cesses an update in the graph. Let Oinit

v be the set of edges that v owned at the time
of the creation of this epoch. Then, for any arbitrary sequence D of edge deletions of
Oinit

v and for any (v, w) ∈ Oinit
v ,

Pr[mate(v) = w | D] =
1

|Oinit
v |

.

We first carry out the analysis for the high probability bound on the total update
time taken by our algorithm. Thereafter we carry out the analysis for the expected
value of the total update time.

Note that an edge e may be deleted and inserted multiple times during the al-
gorithm. However, each of them is considered distinct from the perspective of the
algorithm as well as its analysis.

3.2. High probability bound on the total update time. The key idea of
randomization underlying our algorithm is the following: Once a vertex v creates an

626 S. BASWANA, M. GUPTA, AND S. SEN

epoch at level 1, probabilistically we would expect deletion of many edges of set Oinit
v

from the graph before the matched edge of v is deleted. In order to quantify this key
idea, we introduce the following definition that categorizes an epoch as good or bad.

Definition 3.2. An epoch created by a vertex v is said to be bad if it gets termi-
nated naturally before the deletion of 1/3 edges of set Oinit

v from the graph. An epoch
is said to be good if it is not bad.

It follows from Definition 3.2 that a good epoch undergoes many edge deletions
before getting terminated. So only the bad epochs are problematic for the efficiency of
our algorithm. Now using Lemma 3.2, we establish an upper bound on the probability
of an epoch to be bad.

Lemma 3.3. Suppose vertex v creates an epoch at level 1 when the algorithm pro-
cesses an update in the graph. Then this epoch is going to be bad with probability 1/3
for any sequence of future updates in the graph and the random bits picked during
their processing.

Proof. Let Oinit
v be the set of edges owned by v at the time of the creation of

the epoch. Recall that the mate picked by v, say w, is brought to level 1 by v when
the epoch is created. As a result, none of the neighbors of w can pick it as a mate
to terminate the epoch. Hence, the epoch will terminate only when the matched
edge (v, w) is deleted. Consider any sequence of updates in the graph following the
creation of this epoch. This sequence uniquely defines the sequence D of edge deletions
of Oinit

v . It can be observed that the time when the epoch will be terminated is fully
determined by this sequence D and the mate that v picks. Obviously the random
bits picked during the processing of future updates has no influence on the duration
of this epoch. The epoch will be bad if the mate of v is among the endpoints of the
first 1/3 edges in the sequence D. Now it follows from Lemma 3.2 that the mate of v
is distributed uniformly among the endpoints of D. So the probability of the epoch
to be bad is 1/3.1

For the time complexity analysis at level 1, we will now show that the number
of bad epochs may exceed the number of good epochs by at most O(log n) with very
high probability. For this we shall use the analogy of asymmetric random walk on a
line.

Consider a particle performing a discrete random walk on a line. In each unit of
time, it takes a unit step to the right with probability p or a unit step to the left with
probability q = 1 − p. Each step is independent of the steps taken in the past. The
following lemma states a well known result about such a random walk.

Lemma 3.4 (see [13]). Suppose the random walk starts at a location z > 0. If
p > q, the probability of it ever reaching the origin equals (q/p)z.

Consider the sequence of updates in the graph in the chronological order. Each
update may create zero or more epochs at level 1. Thus the number of epochs created
at level 1 is a random variable. However, as shown by Lemma 3.3, each newly created
epoch at level 1 will be bad with probability 1/3 irrespective of the future sequence
of updates in the graph and the random bits picked during their processing. The

1The analysis assumes that each edge from Oinit
v is going to be deleted sometime in the future.

If not, place all such edges of Oinit
v , that are not deleted, arbitrarily at the end of the sequence D.

In this case, as the reader may also see, there are chances for the epoch to remain alive instead of
getting terminated at the end of the algorithm. So the probability of the epoch to be bad in this
case will be even less than 1/3.

FULLY DYNAMIC MAXIMAL MATCHING 627

sequence of epochs terminated at level 1 can thus be seen as an instance of the asym-
metric random walk as follows. A good epoch corresponds to a rightward step and
a bad epoch corresponds to a leftward step. Each step is rightward with probability
2/3 or leftward with probability 1/3 independent of other steps. Therefore, the event
that the number of bad epochs ever exceeds the number of good epochs by at least
2 log2 n during the algorithm is stochastically identical to the event that the random
walk starting from location 2 log2 n ever reaches the origin within any finite number
of steps. It follows from Lemma 3.4 that the probability of the latter event is less
than 1/n2. So the following lemma holds.

Lemma 3.5. During any sequence of t updates, the number of bad epochs at level
1 can exceed the number of good epochs by at least 2 log2 n with probability < 1/n2.

As stated in Lemma 3.1, each epoch at level 1 has an O(n) computation time
charged to it. Let t be the total number of updates in the graph. For each epoch
at level 1, the number of owned edges at the time of its creation is at least

√
n. As

a result the number of good epochs during t updates is bounded by 3t/
√
n deter-

ministically. So the computation time of all good epochs at level 1 is bounded by
O(t
√
n). Lemma 3.5 implies that the computation time of all bad epochs at level 1

can exceed the computation time of all good epochs by at most a cn log n amount for
some constant c with probability ≥ 1− 1/n2. So overall the computation time of all
epochs at level 1 is bounded by O((t

√
n + n log n) with high probability. The com-

putation time of all epochs at level 0 is bounded deterministically by O(t
√
n). Hence

the total computation time taken by our algorithm for any sequence of t updates is
O(t
√
n+ n log n) with high probability.

3.3. Expected value of the total update time. Let Xv,i,k be a random
variable which is 1 if v creates an epoch at level i during the processing of the kth
update, otherwise it is 0. We denote the corresponding epoch by epoch(v, i, k). Let
Zv,i,k denote the number of edges from Oinit

v that are deleted during the epoch. (If
epoch(v, i, k) is not created, Zv,i,k is defined as 0.) Since each edge deletion at level
1 is uniquely associated with the epoch that owned it, therefore,

∑
v,k Zv,1,k ≤ t.

Hence,

(1)
∑
v,k

E[Zv,1,k] ≤ t.

We shall now derive a bound on the expected value of Zv,1,k in an alternate way.

Lemma 3.6. E[Zv,1,k] ≥
√
n/2 ·Pr[Xv,1,k = 1].

Proof. We shall first find the expectation of Zv,1,k conditioned on the event
that v creates an epoch at level 1 during the kth update. That is, we shall find
E[Zv,1,k|Xv,1,k = 1]. Let Oinit

v be the set of edges owned by v at the moment of
creation of epoch(v, 1, k), and let D be the deletion sequence associated with Oinit

v .
It follows from Lemma 3.2 that the matched edge of v is distributed uniformly over
D. So E[Zv,1,k|Xv,1,k = 1] = |Oinit

v |/2 ≥
√
n/2 since |Oinit

v | for an epoch at level 1 is
at least

√
n. Using conditional expectation, we get

E[Zv,1,k] = E[Zv,1,k|Xv,1,k = 1] ·Pr[Xv,1,k = 1] ≥
√
n/2 ·Pr[Xv,1,k = 1].

Notice that the computation time of an epoch at level 1 is at most cn for some
constant c. So the expected value of the computation time associated with all natural

628 S. BASWANA, M. GUPTA, AND S. SEN

epochs that get terminated at level 1 during t updates is∑
v,k

cn ·Pr[Xv,1,k = 1] = 2c
√
n
∑
v,k

√
n/2 ·Pr[Xv,1,k = 1]

≤ 2c
√
n
∑
v,k

E[Zv,1,k] using Lemma 3.6

≤ 2c
√
nt using (1).

We can thus conclude with the following theorem.

Theorem 3.1. Starting with a graph on n vertices and no edges, we can maintain
maximal matching for any sequence of t updates in O(t

√
n) time in expectation and

O(t
√
n+ n log n) with high probability.

3.4. On improving the update time beyond O(
√
n). In order to extend our

2-level algorithm for getting a better update time, it is worth exploring the reason
underlying O(

√
n) update time guaranteed by our 2-level algorithm. For this purpose,

let us examine invariant 2 more carefully. Let α(n) be the threshold for the maximum
number of edges that a vertex at level 0 can own. Consider an epoch at level 1
associated with some edge, say (u, v). The computation associated with this epoch is
of the order of the number of edges u and v own which can be Θ(n) in the worst case.
However, the expected duration of the epoch is of the order of the minimum number
of edges u can own at the time of its creation, i.e., Θ(α(n)). Therefore, the expected
amortized computation time per edge deletion for an epoch at level 1 is O(n/α(n)).
Balancing this with the α(n) computation time to handle an edge deletion at level 0
yields α(n) =

√
n.

In order to improve the running time of our algorithm, we need to decrease the
ratio between the maximum and the minimum number of edges a vertex can own
during an epoch at any level. This insight motivates us to have a finer partition of
vertices—the number of levels should be increased to O(log n) instead of just 2. When
a vertex creates an epoch at level i, it will own at least 4i edges, and during the epoch
it will be allowed to own at most 4i+1 − 1 edges. As soon as it owns 4i+1 edges, it
should migrate to the level i+1. Notice that the ratio of maximum to minimum edges
owned by a vertex during an epoch gets reduced from

√
n to a constant.

We pursue the approach sketched above combined with some additional tech-
niques in the following section. This leads to a fully dynamic algorithm for maximal
matching which achieves expected amortized O(log n) update time per edge insertion
or deletion.

4. Fully dynamic algorithm with expected amortized O(logn) time per
update. This algorithm maintains a partition of vertices among various levels. First
we describe the difference in this partition vis-à-vis the 2-level algorithm.

1. The fully dynamic algorithm maintains a partition of vertices among blog4 nc+
2 levels. The levels are numbered from −1 to l0 = blog4 nc. During the algo-
rithm, when a vertex moves to level i, it owns at least 4i edges. So a vantage
point is needed for a vertex that does not own any edges. As a result, we
introduce a level −1 that contains all the vertices that do not own any edge.

2. We use the notion of ownership of edges which is slightly different from the
one used in the 2-level algorithm. In the 2-level algorithm, at level 0, both
the endpoints of the edge are the owner of the edge. Here, at every level,
each edge is owned by exactly one of its endpoints. If the endpoints of the

FULLY DYNAMIC MAXIMAL MATCHING 629

edge are at different levels, the edge is owned by the endpoint that lies at the
higher level. If the two endpoints are at the same level, then the tie is broken
appropriately by the algorithm.

Like the 2-level algorithm, each vertex u maintains a dynamic hash table storing
the edges Ou owned by it. In addition, the generalized fully dynamic algorithm will
maintain the following data structure for each vertex u. For each i ≥ level(u), let E iu
be the set of all those edges incident on u from vertices at level i that are not owned
by u. The set E iu will be maintained in a dynamic hash table. However, the onus
of maintaining E iu will not be on u. For any edge (u, v) ∈ E iu, v will be responsible
for the maintenance of (u, v) in E iu since (u, v) ∈ Ov. For example, suppose vertex v
moves from level i to level j. If j > level(u), then v will remove (u, v) from E iu and
insert it into Eju. Otherwise ((j ≤ level(u)), v will remove (u, v) from E iu and insert it
into Ou.

4.1. Invariants and a basic subroutine used by the algorithm. As can
be seen from the 2-level algorithm, it is advantageous for a vertex to get settled at a
higher level once it owns a large number of edges. Pushing this idea still further, our
fully dynamic algorithm will allow a vertex to rise to a higher level if it can own a
sufficiently large number of edges after moving there. In order to formally define this
approach, we introduce an important notation here.

For a vertex v with level(v) = i,

φv(j) =

{
|Ov|+

∑
i≤k<j |Ekv | if j > i,

0 otherwise.

In other words, for any vertex v at level i and any j > i, φv(j) denotes the number
of edges which v can own if v rises to level j. Our algorithm will be based on the
following key idea. If a vertex v has φv(j) ≥ 4j , then v would rise to the level j. In
the case there are multiple levels to which v can rise, v will rise to the highest such
level. With this key idea, we now describe the three invariants which our algorithm
will maintain.

1. Every vertex at level ≥ 0 is matched and every vertex at level −1 is free.
2. For each vertex v and for all j > level(v), φv(j) < 4j holds true.
3. Both the endpoints of a matched edge are at the same level.

It follows that the free vertices, if any, will be present at level −1 only. Any vertex
v present at level −1 cannot have any neighbor at level −1. Otherwise, it would
imply that φv(0) ≥ 1 = 40, violating the second invariant. Hence, every neighbor of
a free vertex must be matched. This implies that the algorithm will always maintain
a maximal matching. Furthermore, the key idea of our algorithm is captured by the
second invariant—after processing every update there is no vertex which fulfils the
criterion of rising. Figure 4 depicts a snapshot of the algorithm.

An edge update may lead to the violation of the invariants mentioned above
and the algorithm basically restores these invariants. This may involve the rise or
fall of vertices to appropriate levels. Notice that the second invariant of a vertex is
influenced by the rise and fall of its neighbors. We now state and prove two lemmas
which quantify this influence more precisely.

Lemma 4.1. The rise of a vertex v does not violate the second invariant for any
of its neighbors.

Proof. Consider any neighbor u of v. Let level(u) = k. Since the second invariant
holds true for u before the rise of v, so φu(i) < 4i for all i > k. It suffices if we can

630 S. BASWANA, M. GUPTA, AND S. SEN

0

1

−1

2

3

v

x

Fig. 4. A snapshot of the algorithm from perspective of a vertex v. For the sake of brevity,
only the subgraph induced by the neighbors of v is shown. All neighbors of v are matched (thick
edges) except vertex x at level −1. Vertex v is the owner of just the edge (v, x). φv(2) = 2 < 42 and
φv(3) = 4 < 43, so v cannot rise to a higher level.

show that φu(i) does not increase for any i due to the rise of v. We show this as
follows.

Let vertex v rise from level j to `. If ` ≤ k, the edge (u, v) continues to be an
element of Ou, and so there is no change in φu(i) for any i. Let us consider the case
when ` > k. The rise of v from j to ` causes removal of (u, v) from Ou (or Eju if j ≥ k)
and insertion to E`u. As a result φu(i) decreases by one for each i in [max(j, k) + 1, `],
and remains unchanged for all other values of i.

Lemma 4.2. Suppose a vertex v falls from level j to j − 1. As a result, for any
neighbor u of v, φu(i) increases by at most 1 for i = j and remains unchanged for all
other values of i.

Proof. Let level(u) = k. In the case k ≥ j, there is no change in φu(i) for any
i due to the fall of v. So let us consider the case j > k. In this case, the fall of v
from level j to j − 1 leads to the insertion of (u, v) in Ej−1u and deletion from Eju.
Consequently, φu(i) increases by one only for i = j and remains unchanged for all
other values of i.

In order to detect any violation of the second invariant for a vertex v due to the
rise or fall of its neighbors, we shall maintain {φv(i)|i ≤ l0} in an array φv[] of size
l0 + 2. The updates on this data structure during the algorithm will involve the
following two types of operations.

• decrement-φ(v, I): This operation decrements φv(i) by one for all i in
interval I. This operation will be executed when some neighbor of v rises.
For example, suppose some neighbor of v rises from level j to `, then φv(i)
decreases by one for all i in interval I = [max(j, level(v)) + 1, `].

• increment-φ(v, i): this operation increases φv(i) by one. This operation
will be executed when some neighbor of v falls from i to i− 1.

It can be seen that a single decrement-φ(v, I) operation takes O(|I|) time which is
O(log n) in the worst case. On the other hand any single increment-φ(v, i) operation
takes O(1) time. However, since φv(i) is 0 initially and is nonnegative always, we can
conclude the following.

Lemma 4.3. The computation cost of all decrement-φ() operations over all ver-
tices is upper bounded by the computation cost of all increment-φ() operations over
all vertices during the algorithm.

FULLY DYNAMIC MAXIMAL MATCHING 631

Procedure generic-random-settle(u, i)

if level(u) < i then // u rises to level i1

for each (u,w) ∈ Ou do // u informs w about its rise2

transfer (u,w) from E level(u)w to E iw;3

decrement-φ(w, [level(u) + 1, i]);4

for each j = level(u) to i− 1 do // u gains ownership of some more edges5

for each (u,w) ∈ Eju do6

transfer (u,w) from Eju to E iw;7

transfer (u,w) from Ow to Ou;8

decrement-φ(w, [j + 1, i]);9

foreach j = level(u) + 1 to i do φu(j)← 0;10

level(u)← i;11

Let (u, v) be a uniformly randomly selected edge from Ou;12

if v is matched then13

x← mate(v);14

M←M\{(v, x)};15

else
x← null;16

for each (v, w) ∈ Ov do // v informs w about its rise17

transfer (v, w) from E level(v)w to E iw;18

decrement-φ(w, [level(v) + 1, i]);19

for each j = level(v) to i− 1 do // v gains ownership of some more edges20

for each (v, w) ∈ Ejv do21

transfer (v, w) from Ejv to E iw;22

transfer (v, w) from Ow to Ov;23

decrement-φ(w, [j + 1, i]);24

M←M∪ {(u, v)};25

foreach j = level(v) + 1 to i do φv(j)← 0;26

level(v)← i ; /* v rises to level i */27

return x;28

Fig. 5. Procedure used by a free vertex u to settle at level i.

Observation 4.1. It follows from Lemma 4.3 that we just need to analyze the
computation involving all increment-φ() operations since the computation involved
in decrement-φ() operations is subsumed by the former.

If any invariant of a vertex, say u, gets violated, it might rise or fall, though
in some cases, it may still remain at the same level. However, in all these cases,
eventually the vertex u will execute the procedure, generic-random-settle, shown
in Figure 5. This procedure is essentially a generalized version of random-settle(u)
which we used in the 2-level algorithm. generic-random-settle(u, i) starts with
moving u from its current level (level(u)) to level i. If level i is higher than the
previous level of u, then u performs the following tasks. For each edge (u,w) already
owned by it, u informs w about its rise to level i by updating E iw. In addition
u acquires the ownership of all the edges whose other endpoint lies at a level ∈
[level(u), i − 1]. For each such edge (u,w) that is now owned by u, we perform

632 S. BASWANA, M. GUPTA, AND S. SEN

decrement-φ(w, [level(w) + 1, i]) to reflect that the edge is now owned by vertex u
which has moved to level i. Henceforth, the procedure resembles random-settle.
It finds a random edge (u, v) from Ou and moves v to level i. The procedure returns
the previous mate of v, if v was matched. We can thus state the following lemma.

Lemma 4.4. Consider a vertex u that executes generic-random-settle(u, i)
and selects a mate v. Excluding the time spent in decrement-φ operations, the
computation time of this procedure is of the order of |Ou| + |Ov|, where Ou and Ov

are the sets of edges owned by u and v just at the end of the procedure.

4.2. Handling edge updates by the fully dynamic algorithm. Our fully
dynamic algorithm will employ a generic procedure called process-free-vertices().
The input to this procedure is a sequence S consisting of ordered pairs of the form
(x, k), where x is a free vertex at level k ≥ 0. Observe that the presence of free
vertices at a level ≥ 0 implies that matching M is not necessarily maximal. In order
to preserve maximality of matching, the procedure process-free-vertices restores
the invariants of each such free vertex till S becomes empty. We now describe our
fully dynamic algorithm.

Handling deletion of an edge. Consider deletion of an edge, say (u, v). For
each j > max(level(u), level(v)), we decrement φu(j) and φv(j) by one. If (u, v) is an
unmatched edge, no invariant gets violated. So we only delete the edge (u, v) from
the data structures of u and v. Otherwise, let k = level(u) = level(v). We execute
the Procedure process-free-vertices(〈(u, k), (v, k)〉).

Handling insertion of an edge. Consider insertion of an edge, say (u, v).
Without loss of generality, assume that initially u was at the same level as v or a

higher level than v. So we add (u, v) to Ou and E level(u)v . We increment φu(j) and
φv(j) by one for each j > max(level(u), level(v)). We check if the second invariant
has become violated for either u or v. This invariant may get violated for u (likewise
for v) if there is any integer i > max(level(u), level(v)), such that φu(i) has become
4i just after the insertion of edge (u, v). In the case there are multiple such integers,
let imax be the largest such integer. To restore the invariant, u leaves its current
mate, say w, and rises to level imax. We execute generic-random-settle(u, imax),
and let x be the vertex returned by this procedure. Let j and k be, respectively,
the levels of w and x. Note that x and w are two free vertices now. We execute
process-free-vertices(〈(x, k), (w, j)〉).

If the insertion of edge (u, v) violates the second invariant for both u and v, we
proceed as follows. Let j be the highest level to which u can rise after the insertion
of (u, v), that is, φu(j) = 4j . Similarly, let ` be the highest level to which v may rise,
that is, φv(`) = 4`. If j ≥ `, we allow only u to rise to level j; otherwise we allow only
v to rise to `. Note that after u moves to level j, edge (u, v) becomes an element of
Ejv . So

∑
level(v)≤k<` |Ekv | decreases by 1. As a result, φv(`) = |Ov|+

∑
level(v)≤k<` |Ekv |

also decreases by 1 and is now strictly less than 4`; thus the second invariant for v is
also restored.

4.2.1. Description of procedure process-free-vertices. The procedure re-
ceives a sequence S of ordered pairs (x, i) such that x is a free vertex at level i. It
processes the free vertices in decreasing order of their levels starting from l0. We
give an overview of this processing at level i. For a free vertex at level i, if it owns
a sufficiently large number of edges, then it settles at level i and gets matched by
selecting a random edge from the edges owned by it. Otherwise the vertex falls down

FULLY DYNAMIC MAXIMAL MATCHING 633

Procedure process-free-vertices(S)

for each (x, i) ∈ S do enqueue(Q[i], x);1

for i = l0 to 0 do2

while (Q[i] is not empty) do3

v ← dequeue(Q[i]);4

if falling(v) then // v falls to level i− 15

level(v)← i− 1;6

enqueue(Q[i− 1], v);7

for each (u, v) ∈ Ov do89

transfer (u, v) from E iu to E i−1u ;10

increment-φ(u, i);11

increment-φ(v, i);12

if φu(i) ≥ 4i then // u rises to level i13

x← generic-random-settle(u, i);14

if x 6= null then15

j ← level(x);16

enqueue(Q[j], x);17

18

else // v settles at level i

x← generic-random-settle(v, i);19

if x 6= null then20

j ← level(x);21

enqueue(Q[j], x);22

Function falling(v)

i← level(v);1

for each (u, v) ∈ Ov with level(u) = i do // v disowns all edges from level i2

transfer (u, v) from Ov to Ou;3

transfer (u, v) from E iu to E iv;4

if |Ov| < 4i then return true else return false;5

Fig. 6. Procedure for processing free vertices given as a sequence S of ordered pairs (x, i) where
x is a free vertex at level i.

by one level. Notice that the fall of a vertex, say v, from level i to i− 1 may lead to
the rise of some of its neighbors lying at level < i. However, as follows from Lemma
4.2, for each such neighbor, say u, only φu(i) increases by one and the φu() value for
all other levels remains unchanged. So the second invariant may get violated only for
level i. This implies that u will rise only to level i. After these rising vertices move
to level i (by executing generic-random-settle), we move onto level i − 1 and
proceed similarly. Overall, the entire process can be seen as a wave of free vertices
falling level by level. Eventually this wave of free vertices reaches level −1 and fades
away ensuring maximal matching. With this overview, we now describe the procedure
in more details and its complete pseudocode is given in Figure 6.

The procedure uses an array Q of size l0 + 2, where Q[i] is a pointer to a queue
(initially empty) storing free vertices at level i. For each ordered pair (x, k) ∈ S, the

634 S. BASWANA, M. GUPTA, AND S. SEN

procedure inserts x into queue Q[k]. The procedure executes a for loop from l0 down
to 0 where the ith iteration extracts and processes the vertices of queue Q[i] one by
one as follows. Let v be a vertex extracted from Q[i]. First we execute the function
falling(v) which does the following. v disowns all its edges whose other endpoint
lies at level i. If v owns less than 4i edges then v falls to level i− 1, otherwise v will
continue to stay at level i. The processing of the free vertex v for each of these two
cases is done as follows.

1. v has to stay at level i:
v executes generic-random-settle and selects a random mate, say w, from
level j < i (if w is present in Q[j], then it is removed from it and is raised
to level i). If x was the previous mate of w, then x has become a free vertex
now. So x gets added to Q[j]. This finishes the processing of v.

2. v has to fall:
In this case, v falls to level i− 1 and is inserted to Q[i− 1]. At this stage, Ov

consists of neighbors of v from level i−1 or below. It follows from Lemma 4.2
that the fall of v from i to i− 1 leads to an increase in φu(i) by one for each
neighbor u of v which is present at a level lower than i. Moreover, φv(i), that
was 0 initially, has to be set to |Ov|. So all the vertices of Ov are scanned,
and for each (u, v) ∈ Ov, we increment φu(i) and φv(i) by 1. In case φu(i)
has become 4i, u has to rise to level i and is processed as follows. u executes
generic-random-settle(u, i) to select a random mate, say w, from level
j < i. If w was in Q[j], then it is removed from it. Otherwise, if x was the
previous mate of w, then x has become a free vertex now, and so it gets added
to queue Q[j].

Remark 4.1. Notice a stark similarity between the above procedure for handling
a free vertex and the procedure for handling a free vertex at level 1 in the 2-level
algorithm.

In case 1, v remains at level i and w moves to the level i from some level j < i.
This renders vertex x (earlier mate of w) free and the first invariant of x is violated.
So x is added to the queue at level j. The processing of v does not change φu() for
any neighbor u of v. Furthermore, the rise of w to level i does not lead to violation
of any invariant due to Lemma 4.1. In case 2, v falls to level i − 1 and as a result
some vertices may rise to level i. Each such rising vertex executes generic-random-
settle. As in case 1, the processing of these rising vertices may create some free
vertices only at level < i. We can thus state the following lemma.

Lemma 4.5. After the ith iteration of the for loop of process-free-vertices,
the free vertices are present only in the queues at level < i, and for all vertices not
belonging to these queues the three invariants holds.

Lemma 4.5 establishes that after the termination of procedure process-free-
vertices, there are no free vertices at level ≥ 0 and all the invariants get restored
globally.

4.3. Analysis of the algorithm. Processing the deletion or insertion of an edge
(u, v) begins with decrementing or incrementing φu(i) and φv(i) for each level j >
max(level(u), level(v)). Since there are O(log n) levels, the computation associated
with this task over any sequence of t updates will be O(t log n). This task may
be followed by executing the procedure process-free-vertices that restores the
invariants and updates the matching accordingly. The updates in the matching can
be seen as creation of new epochs and termination of some of the existing epochs. Like

FULLY DYNAMIC MAXIMAL MATCHING 635

the 2-level algorithm, for the purpose of our analysis, we visualize the entire algorithm
as a sequence of creation and termination of various epochs. Excluding the O(t log n)
time for maintaining φ, the total computation performed by the algorithm can be
associated with all the epochs that get terminated and those that remain alive at the
end of the sequence of updates. Along exactly similar lines as in 2-level algorithm,
the computation associated with all the epochs that are alive at the end of t updates
is O(t) only. So we just need to focus on the epochs that get terminated and the
computation associated with each of them.

Let us first analyze the computation associated with an epoch of a matched edge
(u, v). Suppose this epoch got created by vertex v at level j. So v would have executed
generic-random-settle and selected u as a random mate from level < j. Note that
v would be owning less than 4j+1 edges and u would be owning at most 4j edges at
that moment. This observation and Lemma 4.4 imply that the computation involved
in the creation of the epoch is O(4j). Once the epoch is created, any update pertaining
to u or v will be performed in just O(1) time until the epoch gets terminated. Let us
analyze the computation performed when the epoch gets terminated. At this moment
either one or both of u and v become free vertices. If v becomes free, v executes
the following task (see procedure process-free-vertices in Figure 6): v scans all
edges owned by it, which is less than 4j+1, and disowns those edges incident from
vertices of level j. Thereafter, if v still owns at least 4j edges, it settles at level j
and creates a new epoch at level j. Otherwise, v keeps falling one level at a time.
For a single fall of v from level i to i − 1, the computation performed involves the
following tasks: scanning the edges owned by v, disowning those incident from vertices
at level i, incrementing φw values for each neighbor w of v lying at level less than i,
and updating φv(i) to |Ov|. All this computation is of the order of the number of
edges v owns at level i which is less than 4i+1. Eventually either v settles at some
level k ≥ 0 and becomes part of a new epoch or it reaches level −1. Therefore, the
total computation performed by v is of the order of

∑j
i=k 4i+1 = O(4j). This entire

computation involving v (and u) in this process is associated with the the epoch of
(u, v). Hence we can state the following lemma.

Lemma 4.6. For any i ≥ 0, the computation time associated with an epoch at
level i is O(4i).

An epoch corresponding to edge (u, v) at level i could be terminated if the matched
edge (u, v) gets deleted. Such an epoch is called a natural epoch. However, this epoch
could also be terminated due to one of the following reasons.

• u (or v) gets selected as a random mate by one of their neighbors present at
level > i.

• u (or v) becomes eligible to rise to some level j > i because of an increase in
φu(j) to 4j or more.

Each of the above factors renders the epoch to be an induced epoch. For any level
i > 0, the creation of an epoch causes termination of at most two epochs at levels < i.
It can be explained as follows: Consider an epoch at level i associated with an edge,
say (u, v). Suppose it was created by vertex u. If u was already matched at some
level j < i, let w 6= v be its mate. Similarly, if v was also matched already at some
level k < i, let x 6= u be its mate. So matching u to v terminates the epoch of (u,w)
and the epoch of (v, x) at level j and k, respectively. We can thus state the following
lemma.

Lemma 4.7. Creation of an epoch at a level i may cause termination of at most
2 epochs at level < i.

636 S. BASWANA, M. GUPTA, AND S. SEN

4.3.1. Analyzing an epoch. Consider an epoch created by a vertex v at level
i when our algorithm processes the kth update in the graph for some k ≥ 1. At the
time of the creation of the epoch, let Oinit

v be the set of edges owned by v, and let
w = mate(v). The mate w is brought to level i by v. Therefore, none of the neighbors
of w from level ≤ i can pick w as a mate so long as the neighbor stays at level ≤ i. The
epoch may terminate when the matched edge (v, w) is deleted. However, as discussed
above, it may terminate even before as well if v or w moves to some level > i before
the deletion of (v, w). Therefore, in order to analyze the termination of an epoch,
we associate an update sequence with it as follows. For each edge (v, x) ∈ Oinit

v , we
consider the first time in the future that x moves to some higher level.2 The update
label associated with edge (v, x) is defined as follows: If x moves to a level > i before
the deletion of (v, x) then it is classified as upward else it is classified as deletion.

Likewise, we also consider the first time in the future that v moves to a level
> i. If v never moves to any level > i in the future, we just append v at the end
of all the updates associated with Oinit

v . The update sequence U for the epoch is
the sequence of these updates on the edges of Oinit

v along with vertex v arranged
in chronological order. Consider the following example. Suppose Oinit

v has 10 edges
and let the corresponding neighbors of v be {w1, . . . , w10}. Let the updates in the
chronological order be the following: the deletion of (v, w4), upward movement of w1,
upward movement of w9, the deletion of (v, w5), and so on. The corresponding update
sequence will be

U :

〈
•
w4,

↑
w1,

↑
w9,

•
w5,

•
w8,

•
w3,

↑
w2,

↑
v,

•
w7,

↑
w10,

•
w8

〉
.

Observation 4.2. If the update associated with (the owner) v appears at the `th
location in U , then the epoch will terminate on or before the `th update in U . There-
fore, the updates at location > ` in U will have no influence on the termination of the
epoch.

Unlike the 2-level algorithm, the update sequence associated with an epoch is not
uniquely defined by the sequence of updates in the graph after the creation of the
epoch. Rather, it also depends on the current matching as well as the random bits
chosen by the algorithm while processing the future updates. So there is a probability
distribution defined over all possible update sequences that depends on these two
factors. Consequently, the analysis of an epoch in our final algorithm is more complex
compared to the 2-level algorithm. In particular, it is not obvious whether there is
any dependence between the random mate picked by a vertex while creating an epoch
and the update sequence associated with the epoch. However, using an interesting
and nontrivial property of our algorithm stated in Theorem 4.2, we will establish that
there is no dependence between the two.

Lemma 4.8. Suppose vertex v creates an epoch at some level i when our algorithm
processes the kth update in the graph. Let Oinit

v be the set of its owned edges at the
time of the creation of this epoch. Then, for any update sequence U and for each
(v, w) ∈ Oinit

v ,

Pr[mate(v) = w | U] = Pr[mate(v) = w] =
1

|Oinit
v |

.

2Vertex x may move to a level > i and down multiple times while the algorithm processes a
sequence of updates. However, it is only the first time (after the creation of the epoch) when x
moves to a level > i that is relevant as far as the possibility of the termination of the epoch by the
upward movement of x is concerned.

FULLY DYNAMIC MAXIMAL MATCHING 637

Remark 4.2. The sample space considered in Lemma 4.8 is defined by the random
bits picked for choosing the mate of v and all the random bits picked thereafter by
the algorithm for processing the current as well as all the future updates.

Lemma 4.8 can be seen as a generalization of Lemma 3.2 that we stated for our
2-level algorithm. Its proof is given in section 4.4 where we actually establish that
the probability distribution of all matchings at levels > i during the future updates is
the same, irrespective of which mate v picks while creating an epoch at level i. This
observation has the following implication. Let U be any possible update sequence for
an epoch of v. After picking a mate, say w, if U occurs with probability p, then after
picking any other mate, say w′, the update sequence U is going to occur with the
same probability p. In other words, the update sequence associated with an epoch of
v is independent of the mate picked by v while creating the epoch. It is easy to notice
that Lemma 4.8 is a reformulation of this fact.

The analysis of our algorithm will be critically dependent on Lemma 4.8. Using
this lemma, we shall first establish a high probability bound on the total update time
of the algorithm to process a sequence of updates in the graph.

4.3.2. High probability bound on the total update time. For getting a
high probability bound on the total update time, we shall again use the concept of
bad epoch (Definition 3.2). For the convenience of readers, we reproduce it here: An
epoch created by a vertex v is said to be bad if it gets terminated naturally before the
deletion of 1/3 edges of set Oinit

v from the graph. An epoch is said to be good if it is
not bad.

It can be observed from this definition that an induced epoch is always a good
epoch. Using Lemma 4.8, the lemma for the probability of a bad epoch extends
seamlessly from the 2-level algorithm to our final algorithm as follows.

Lemma 4.9. Suppose vertex v creates an epoch at level i when the algorithm pro-
cesses the kth update in the graph. This epoch will be bad with probability at most
1/3 for any sequence of future updates in the graph and the random bits picked during
their processing.

Proof. Let Oinit
v be the set of edges owned by v at the time of the creation of

the epoch during the kth update. Let (U , P) be the probability space of all update
sequences associated with the epoch for any sequence of future updates in the graph.
It can be observed that the time when the epoch will be terminated is completely
determined by the mate that v picks and the update sequence associated with the
epoch. This update sequence, in turn, is determined by the random bits picked
subsequent to the creation of the epoch and the future updates in the graph. However,
as stated in Lemma 4.8, conditioned on each update sequence U ∈ U , the mate of v
will be uniformly distributed among the endpoints of Oinit

v . We shall use this fact to
bound the probability of the epoch to be bad. Recall from Observation 4.2 that for
the epoch to be terminated naturally, the mate of v must be among the endpoints of
the deleted edges that precede v in U . So we distinguish between the following two
cases.
Case 1. There are less than |Oinit

v |/3 edge deletions preceding v in U .
The epoch will be bad only if the matched edge of v is one of these edge
deletions preceding v in U . Since the number of these edge deletions is less
than |Oinit

v |/3, so using Lemma 4.8 the probability of the epoch to be bad in
this case is less than 1/3.

Case 2. There are at least |Oinit
v |/3 edge deletions preceding v in U .

638 S. BASWANA, M. GUPTA, AND S. SEN

.

.

a

a

b

b

c

c

d

d

g

g

Unpaired

bad epochs

A natural good epoch

A bad epoch

An induced epoch

(i)

(ii)

i

i+ 1

Fig. 7. (i) Pairing bad and good epochs at level i; at most 2 logn bad epochs remain unpaired
with high probability. (ii) A tree of epochs: assigning at most 4 epochs from lower levels to an epoch.

The epoch will be bad only if the matched edge of v is one of the first |Oinit
v |/3

edge deletions in U . So it follows from Lemma 4.8 that the probability of the
epoch to be bad in this case is exactly 1/3.

It follows that in both cases, the epoch is going to be bad with probability ≤ 1/3.
Hence the epoch is going to be bad with probability ≤ 1/3 for any update sequence
U associated with the epoch, that is, for any sequence of future updates in the graph
and the random bits picked during their processing.

We will now show that the number of bad epochs at a level i could exceed the
number of good epochs at level i by at most O(log n) with very high probability.

Consider the sequence of updates in the graph in the chronological order. Each
update may create zero or more epochs at level i. Thus the number of epochs created
is a random variable. However, as shown by Lemma 4.9, each epoch created at
level i will be bad with probability ≤ 1/3 irrespective of the future updates and the
random bits picked by the algorithm to process them. Hence, the sequence of good
and bad epochs at level i can be seen as a sequence of right and left moves during
the asymmetric random walk as established in the analysis of the 2-level algorithm.
So at level i, the number of bad epochs may exceed the number of good epochs by
more than 2 log2 n with probability less than 1/n2. There are O(log n) levels in the
hierarchy. Hence we get the following lemma using the union bound.

Lemma 4.10. For every level i ≤ l0, the number of bad epochs will not exceed the
number of good epochs by more than 2 log2 n with probability at least 1− (log n)/n2 >
1− 1/n.

We do the pairing of epochs at each level as follows—we try to pair each bad
epoch at level i with a good epoch at level i in any arbitrary but unique manner. It
follows from Lemma 4.10 that with high probability only O(log n) bad epochs will
remain unpaired at level i. See Figure 7(i). Also the creation of each epoch at a
level i + 1 can terminate at most two (induced) epochs at lower levels as stated in
Lemma 4.7. Using this fact and the pairing between the good and bad epochs at a

FULLY DYNAMIC MAXIMAL MATCHING 639

level, we can construct a forest whose nodes will be the epochs terminated across all
levels during the algorithm. The intuition for defining this forest is that eventually
the computation cost of a bad epoch or an induced epoch can be charged to a good
natural epoch at some higher level. Since a good natural epoch has a sufficiently large
number of edge deletions associated with it, these edge deletions can be charged to
pay for all the computation carried out by our algorithm.

With this intuition, we now provide the details of the construction by defining
the parent of each epoch using the following rules.

1. The parent of each induced epoch is the epoch at the higher level whose
creation led to its termination.

2. The parent of a good natural epoch is itself (hence it is the root of its tree).
3. If a bad epoch is paired with an induced epoch, then its parent is the same as

the parent of the induced epoch. Otherwise, it is the parent of itself (hence
it is the root of its tree).

It follows from Lemma 4.7, rule 1, and rule 3 (the if part) that at most 4 epochs
from lower levels can be associated with an epoch at a level. Hence each node in the
forest of epochs will have at most four children. See Figure 7(ii). Moreover, the root
of each tree in the forest of epochs is either a bad epoch or a good natural epoch.
We analyze the total update time of the algorithm by analyzing the computation
cost associated with each such tree. Using Lemma 4.6, the computation cost C(i)
associated with a tree of epochs whose root is at level i satisfies the following recurrence
for some constant a:

C(i) ≤ a4i + 4C(i− 1).

The solution of this recurrence is C(i) = O(i4i). Now there are at least 4i/3 edge
deletions associated uniquely with a good natural epoch at a level i. This natural
epoch will be charged for the computation cost C(i) = O(i4i) associated with the
corresponding tree rooted at the epoch. So if t is the total number of updates in the
graph, then the computation cost associated with all trees rooted at the good natural
epochs in the forest is O(t log n). It follows from Lemma 4.10 and rule 3 (the other-
wise part) that, after excluding the unpaired bad epochs, the number of trees rooted
at good natural epochs at any level i is at least the number of trees rooted at bad
epochs at level i. Hence, after excluding the trees rooted at unpaired bad epochs, the
computation cost associated with all the trees in the forest is O(t log n). Since there
will be O(log n) unpaired bad epochs at any level i with high probability, the compu-
tation cost associated with the trees rooted at these unpaired bad epochs at all levels

is O(
∑log4 n

i=1 i4i log n) = O(n log2 n). Hence with high probability, the computation
time for processing t edge updates by the algorithm is O(t log n+ n log2 n). This also
implies that the total expected update time is O(t log n) for t = Ω(n log n). In the
following subsection, we will establish an O(t log n) bound on the expected update
time for all values of t.

4.3.3. Expected value of the total update time. During a sequence of t
updates in the graph, various epochs get created by various vertices at various levels.
Let Xv,i,k be a random variable which is 1 if v creates an epoch at level i during the kth
update, otherwise it is 0. We denote this epoch as epoch(v, i, k). Let Oinit

v denote the
set of edges that v owns at the time of the creation of the epoch. We now introduce
a random variable Zv,i,k. The creation of epoch(v, i, k) will be followed by the
updates (deletion or upward movements) on the edges of Oinit

v . Zv,i,k is the number
of updates of type “edge deletion” in the corresponding update sequence associated
with this epoch that occur before the epoch gets terminated. If epoch(v, i, k) is not

640 S. BASWANA, M. GUPTA, AND S. SEN

created, Zv,i,k is defined as 0. The key role in bounding the expected running time is
played by a random variable Bv,i,k defined as follows:

(2) Bv,i,k =

{
(8Zv,i,k − 2 · 4i)Xv,i,k if epoch(v, i, k) is natural,

(4i+1 − 2 · 4i)Xv,i,k if epoch(v, i, k) is induced.

First observe that Bv,i,k = 0 if Xv,i,k = 0, else the random variable Bv,i,k can be
seen as the credits associated with epoch(v, i, k) to be used for paying its computation
cost. For a natural epoch, the credits are defined in terms of the updates of type
edge deletion in the corresponding update sequence that occur before the epoch gets
terminated. So we define Bv,i,k to be 8Zv,i,k. However, we need to discount for the
two epochs at lower levels that may be destroyed due to epoch(v, i, k). To this end,
from the term, we deduct 2 · 4i. Similarly, if epoch(v, i, k) is an induced epoch, then
it gets 4i+1 credits from the epoch that destroyed it. But here again we need to
discount for the two epochs at lower levels that might be destroyed by it. To this end,
we again deduct 2 · 4i from 4i+1. The following lemma gives a bound on

∑
v,i,k Bv,i,k.

Lemma 4.11.
∑

v,i,k Bv,i,k ≤ 8
∑

v,i,k Zv,i,k ≤ 8t, where t is the total number of
updates in the graph.

Proof. We need to analyze the sum of Bv,i,k’s for all those (v, i, k) tuples for
which the epoch(v, i, k) got created. If this epoch is an induced epoch, it can be
associated with an epoch, say epoch(v′, i′, k′), at a higher level i′ > i whose creation
destroyed it. Notice that the negative 4i

′
term in Bv′,i′,k′ cancels out the positive

4i+1 term in Bv,i,t. Hence, the contribution of induced epochs in
∑

v,i,k Bv,i,k is
nullified and all that remains is the sum of terms 8Zv,i,k for each natural epoch. Hence∑

v,i,k Bv,i,k ≤ 8
∑

v,i,k Zv,i,k. Notice that the deletion of an edge can appear in the
update sequence of at most one of its endpoints, so an edge deletion will contribute
to at most one random variable Zv,i,k. Therefore,

∑
v,i,k Zv,i,k is upper bounded by

the total number of edge updates in the graph.

Corollary 4.1.
∑

v,i,k E[Bv,i,k] ≤ 8t.

Lemma 4.12. For each possible (v, i, k) tuple, E[Bv,i,k] ≥ Pr[Xv,i,k = 1] · 4i.
Proof. Since Xv,i,k is an indicator random variable,

E[Bv,i,k] = Pr[Xv,i,k = 1] ·E[Bv,i,k| Xv,i,k = 1].

So we will estimate E[Bv,i,k| Xv,i,k = 1], that is, the expected value of Bv,i,k given
that epoch(v, i, k) got created.

Let (U , P) be the probability space of all the update sequences associated with
this epoch and let U ∈ U be any update sequence. Suppose among the updates in
U that precede the update associated with v, only d are edge deletions. It follows
from Lemma 4.8 that the matched edge of v is distributed uniformly over Oinit

v . So
epoch(v, i, k) will be an induced epoch with probability (|Oinit

v | − d)/|Oinit
v |, and in

that case B(v, i, k) will be 4i+1− 2 · 4i. If the epoch is natural, it could be due to any
one of the d edge deletions present in U . In that case the expected value of Bv,i,k will

be 1/d
∑d

j=1(8j − 2 · 4i) ≥ 4d − 2 · 4i. Considering the cases of induced and natural
epochs together,

E[Bv,i,k | U] =
|Oinit

v | − d
|Oinit

v |
(4i+1 − 2 · 4i) +

d

|Oinit
v |

(4d− 2 · 4i)

= 2 · 4i − 4i+1d− 4d2

|Oinit
v |

≥ 2 · 4i − 4i · 4i

|Oinit
v |

(for all values of d).

FULLY DYNAMIC MAXIMAL MATCHING 641

Therefore,

E[Bv,i,k | Xv,i,k = 1] =
∑
U∈U

E[Bv,i,k | U] · Pr[U]

≥
(

2 · 4i − 4i · 4i

|Oinit
v |

)
·
∑
U∈U

Pr[U] = 2 · 4i − 4i · 4i

|Oinit
v |

.

Since |Oinit
v | ≥ 4i for level i, the result follows.

Let Wv,i,k be a random variable with value equal to the computation time asso-
ciated with epoch(v, i, k) if the epoch is created, and 0 otherwise. It follows from
Lemma 4.6 that the computation time associated with an epoch at level i is c4i+1 for
some constant c. So, E[Wv,i,k] = Pr[Xv,i,k = 1]c4i+1. Therefore, using Lemma 4.12,

(3) E[Wv,i,k] ≤ 4cE[Bv,i,k].

Using the above equation and Corollary 4.1, the total expected computation cost
associated with all epochs that get destroyed during the algorithm can be bounded
by O(t) as follows: ∑

v,i,k

E[Wv,i,k] ≤
∑
v,i,k

4cE[Bv,i,k] ≤ 32ct = O(t).

Since for each update in the graph, we incur O(log n) time to update φ at various
levels, there is an O(t log n) overhead for t updates. We thus conclude with the
following result.

Theorem 4.1. Starting with a graph on n vertices and no edges, we can maintain
a maximal matching for any sequence of t updates in O(t log n) time in expectation
and O(t log n+ n log2 n) with high probability.

Having gone through the correct analysis of the algorithm, the reader may refer
to section 7.1 in the appendix for a succinct description of the error in the analysis
presented in [6].

4.4. Proof of Lemma 4.8. The matching M maintained by our algorithm
also has a level associated with each matched edge. So, for the sake of the proof of
Lemma 4.8, it is useful to view the matching M as a set of tuples:

M = {(u, v, `) | u is matched to v at level `}.

Our algorithm uses randomization to maintain a maximal matching. After any
given sequence of updates, there is a set of possible maximal matchings that the
algorithm may be maintaining and there is a probability distribution associated with
these maximal matchings. So it is useful to think about the probability space of these
matchings as the algorithm proceeds while processing a sequence of updates.

First, we introduce some notations. For any matchingM maintained at any stage
by our algorithm, letMi denote the matching at level i. LetM>i = ∪j>iMj denote
the matching at all levels > i. Let Vi denote the set of all the vertices belonging to
levels in the range ∈ [−1, i]. We now extend the notations to incorporate the updates
in the graph. For any k ≥ 1, let G(k) denote the graph after a given sequence of k
updates and let M(k) denote the maximal matching of G(k) as maintained by our
algorithm. LetM>i(k) denote the matching at all levels > i after the given sequence
of k updates.

642 S. BASWANA, M. GUPTA, AND S. SEN

After processing a certain number of updates by the algorithm, suppose M and
M ′ are any two possible matchings such that M>i = M ′>i though the two matchings
could differ at levels ≤ i. Consider any single update in the graph at this stage. In
order to process it, suppose we carry out two executions I and I ′ of our algorithm
with the initial matching being M and M ′, respectively. That is, M(0) = M in the
execution I and M(0) = M ′ in the execution I ′. Our claim is that the probability
distribution of matchings at levels > i will be identical at the end of both executions.
More precisely, for any maximal matching µ(1) on a subset of vertices in graph G(1),

(4) Pr[M>i(1) = µ(1)|M(0) = M] = Pr[M>i(1) = µ(1)|M(0) = M ′].

In order to establish our claim, we shall crucially exploit the following lemma.

Lemma 4.13. For both the matchings M and M ′, φv(j) is the same for each v ∈ V
and each j > i.

Proof. It is given that M>i = M ′>i. This implies that for each level j > i, the
set of vertices present at level j is identical in M and M ′. Hence the set Vi of all the
vertices present at levels ∈ [−1, i] is identical in M and M ′. Hence for any vertex v,
and any level j > i, the set of all the neighbors of v at levels < j is identical; notice
that φv(j) is just the cardinality of this set. So it follows that φv(j) is the same for
each vertex v and each j > i.

We shall now establish the validity of (4) for the deletion of an edge e = (u, v).
Establishing its validity for the insertion of an edge is similar and is sketched in
the appendix. Notice that our algorithm does not alter the matching if e is not a
matched edge. If e is a matched edge, a wave of free vertices originates from level(e)
and propagates downward. The following facts follow from the description of our
algorithm (see section 4.2.1).

F1. The algorithm won’t alter the matching at levels > level(e) while processing
the deletion of e.

F2. The matching is updated by our algorithm in the decreasing order of levels,
and once the updating of the matching at a level is complete, the matching
at that level will remain unchanged during the updates of the matching at
lower levels.

It follows from the description of M and M ′ that either level(e) is less than or
equal to i in both the matchings or level(e) is the same in M and M ′. Let us first
consider the (easier) case when level(e) ≤ i in M as well as in M ′. It follows from fact
F1 stated above that the only changes in matchings M and M ′ will be at levels ≤ i.
Hence the matchingM>i(1) will be identical at the end of both the executions I and
I ′. Let us now consider the more interesting case of level(e) > i. Let level(e) = `. Both
the executions I and I ′ invoke the procedure process-free-vertices(〈(u, `), (v, `)〉)
in this case. For a better understanding, the reader is recommended to revisit this
procedure from section 4.2.1 before proceeding further.

In order to establish our claim about I and I ′, we shall establish the following
assertion. While the matching at levels > i is being updated, for each step executed
in I, the same step will be executed in I ′. Moreover, if the step in I is executed with
some probability, the step will be executed with the same probability in I ′ as well.
In order to establish this assertion, let us analyze the first iteration of the procedure
process-free-vertices. Both I and I ′ will process u first. After disowning its edges
from its present level, u owns the same set of edges in both the executions. Thereafter,
u will either stay at level ` or fall by one level. If u stays at level `, it chooses a random

FULLY DYNAMIC MAXIMAL MATCHING 643

edge to get matched. The probability that any specific random edge is picked by u is
the same in both the executions. Let us consider the case that u falls by one level. It
follows from Lemma 4.13 that φx(j) is the same in I as well as I ′ for each vertex x and
each level j > i just before the fall of u. When u falls by one level, for each neighbor
z of u at any level < `, φz(`) increases exactly by one and remains unchanged for
all other levels (see Lemma 4.2). Hence the set of neighbors of u rising to level ` are
the same in both the executions I and I ′. In addition, the set of edges that each
such vertex owns on rising to level ` is also the same, hence, the probability that any
specific random mate is picked is the same in both the executions. So each update in
M and M ′ is equally likely during the processing of u. The reader may note that after
each such identical update in M and M ′, the matchings are identical at each level > i.
Hence, Lemma 4.13 holds again for the updated matchings. Unlike the first iteration,
a generic iteration of the procedure process-free-vertices may have free vertices
at levels ≤ level(e) that are kept in respective queues at these levels. Suppose in
the beginning of any such iteration of the procedure process-free-vertices there
are two possible configurations such that the matching as well as the queue storing
the free vertices are identical at each level > i but differ at levels ≤ i. Notice that
Lemma 4.13 will hold for these configurations as well. Therefore, along exactly the
same lines as the first iteration analyzed above, it can be shown that every update
in the matching at level > i will be carried out with the same probability during any
generic iteration for any two configurations that match at all levels > i.

Therefore, each sequence of updates in the matching is equally likely in both the
executions I and I ′ till the last free vertex at level i+ 1 is processed. Henceforth, the
two executions may differ. But as follows from fact F2, it will affect only the matching
at levels ≤ i and there won’t be any change in the matching at higher levels. This
establishes our claim, i.e., (4), for any single update in the graph. This claim can be
invoked appropriately for a sequence of updates giving us the following theorem.

Theorem 4.2. Let M and M ′ be any two possible matchings by our algorithm at
any time such that M>i = M ′>i. For any sequence of t updates in the graph, suppose
we carry out two executions I and I ′ of our algorithm with the initial matchings being
M and M ′, respectively. The probability distribution of matching at every level > i
will be identical after each update in both the executions. That is,

Pr[M>i(t) = µ(t), . . . ,M>i(1) = µ(1)|M(0) = M]

= Pr[M>i(t) = µ(t), . . . ,M>i(1) = µ(1)|M(0) = M ′],

where µ(j), for 1 ≤ j ≤ t, is any maximal matching on a subset of vertices in the
graph G(j).

For the proof of Theorem 4.2, we shall apply the argument for a single update
inductively and use the following lemma from elementary probability theory.

Lemma 4.14. Suppose A,B,C are three events defined over a probability space
(Ω, P). Then,

Pr[A ∩B | C] = Pr[A | B ∩ C] ·Pr[B | C].

Let us define events C as M(0) = M and C ′ as M(0) = M ′. Let us define event
B as M>i(1) = µ(1). We have shown that

Pr[M>i(1) = µ(1) | C] = Pr[M>i(1) = µ(1) | C ′].

That is, Pr[B | C] = Pr[B | C ′]. By another application of the arguments that we

644 S. BASWANA, M. GUPTA, AND S. SEN

used for a single update, we get

Pr[M>i(2) = µ(2) | B,C] = Pr[M>i(2) = µ(2) | B,C ′].

Applying Lemma 4.14, we get

Pr[M>i(2) = µ(2), B | C] = Pr[M>i(2) = µ(2) | B,C] ·Pr[B | C].

Since Pr[B | C] = Pr[B | C ′], it follows that

Pr[M>i(2) = µ(2), B | C] = Pr[M>i(2) = µ(2), B | C ′].

The above argument can be inductively applied for every subsequent update. This
completes the proof of Theorem 4.2.

4.4.1. Connection to the analysis. We first state two lemmas from elemen-
tary probability theory that deal with the independence of events. For the sake of
completeness, the proof of these lemmas is given in the appendix.

The first lemma deals with conditional probability.

Lemma 4.15. Let A be an event and B1, . . . , Bk be k mutually exclusive events
defined over a probability space (Ω, P). If Pr[A | Bj] = ρ for each 1 ≤ j ≤ k, then
Pr[A | C] = ρ, where event C = ∪jBj.

The second lemma deals with independence of events. Let A and B be two
events defined over a probability space (Ω, P). A is said to be independent of B if
Pr[A | B] = Pr[A | B̄] = Pr[A]. Alternatively, Pr[A ∩ B] = Pr[A] · Pr[B]. The
notion of independence gets carried over from events to random variables in a natural
manner as follows.

Definition 4.1. An event A is said to be independent of a random variable X if
for each x ∈ X, Pr[A | X = x] = Pr[A].

Lemma 4.16. Suppose A is an event and X is a random variable defined over
probability space (Ω, P). If A is independent of X, then for each x ∈ X,

Pr[X = x | A] = Pr[X = x].

Now we shall establish the connection of Theorem 4.2 to the analysis of our
algorithm. In particular, we shall use this theorem to prove Lemma 4.8. Suppose a
vertex v creates an epoch at level i while the algorithm processes the kth update in the
graph for any k < t. We shall analyze the probability space of the future matchings
starting from the time just before the creation of this epoch.

While creating its epoch, v chooses its mate randomly uniformly out of Oinit
v .

Clearly, the change in the matching at levels ≤ i will depend on the mate that v
picks. Let M be the set of all possible matchings once the algorithm completes the
processing of the kth update. Notice that all matchings from the set M are identical
at each level > i due to fact F2. So it follows from Theorem 4.2 that for any two
matchings M,M ′ ∈M,

Pr[M>i(t) = µ(t), . . . ,=M>i(k + 1) = µ(k + 1) | M(k) = M]

= Pr[M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1) | M(k) = M ′].

Let this conditional probability be ρ. For each (v, w) ∈ Oinit
v , there may be multiple

matchings in M in which v is matched to w. By applying Lemma 4.15, the following
equation holds for every (v, w) ∈ Oinit

v :

Pr[M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1) | mate(v) = w] = ρ.

FULLY DYNAMIC MAXIMAL MATCHING 645

Notice that this probability is the same for each (v, w) ∈ Oinit
v . So using Defini-

tion 4.1, it follows that the matchings at levels > i during any sequence of updates is
independent of the mate that v picks during the creation of its epoch. Now applying
Lemma 4.16 we get the following lemma.

Lemma 4.17. Suppose a vertex v creates an epoch at level i while the algorithm
processes the kth update in the graph. Consider any sequence of subsequent updates
in the graph. The mate picked by v while creating the epoch is independent of the
sequence of matchings at levels > i computed by the algorithm while processing these
updates. That is, for any t > k, and any (v, w) ∈ Oinit

v ,

Pr[mate(v) = w|M>i(t) = µ(t), . . . ,M>i(k + 1) = µ(k + 1)] = Pr[mate(v) = w]

=
1

|Oinit
v |

.

Consider any given sequence of t updates in the graph. Subsequent to the time
when v creates an epoch at level i during (the processing of) the kth update, let
µ = 〈µ(k+1), . . . , µ(t)〉 be the sequence of matchings at levels > i as computed by our
algorithm after each of the subsequent updates in the graph. Notice that the upward
movement of v and each (v, w) ∈ Oinit

v after the creation of the epoch is captured
precisely by the corresponding update in the matching at levels > i. Therefore, using
µ, we can define the update sequence associated with the epoch as follows. Consider an
edge (v, w) ∈ Oinit

v , and let the `th update in the graph be the deletion of (v, w). Let
j < ` be the smallest integer such that w ∈ µ(j), that is, w appears in the matching at
a level > i while processing of the jth update in the graph, then the update associated
with (v, w) is the upward movement. If no such j exists, the update associated with
(v, w) is its deletion. Likewise, we define the update associated with v. The update
sequence U for the epoch is the sequence of these updates on the edges of Oinit

v along
with vertex v arranged in chronological order.

For an update sequence U associated with an epoch, there may exist many se-
quences {µ1, . . . , µq} of matchings at levels > i such that for each of them, the update
sequence associated with the epoch is U . It follows from Lemma 4.17 that the mate
picked by v while creating its epoch at level i is independent of each such sequence
µr, 1 ≤ r ≤ q. Therefore, using Lemma 4.15, the mate picked by v while creating its
epoch at level i is independent of U as well. Thus we have established the validity of
Lemma 4.8.

5. A tight example. We tested our algorithm on random graphs of various den-
sities and found that the matching maintained is very close to the maximum matching.
This suggests that our algorithm might be able to maintain nearly maximum match-
ing for dynamic graphs appearing in various practical applications. However, it is
not hard to come up with an update sequence such that at the end of the sequence,
the matching obtained by our algorithm is strictly half the size of maximum match-
ing. In other words, the approximation factor 2 for the matching maintained by our
algorithm is indeed tight. We present one such example as follows (see Figure 8).

Let G(V ∪W,E) be a graph such that V = {v1, . . . , vn} and W = {w1, . . . , wn}
for some even number n. Consider the following update sequence. In the first phase,
add edges between every pair of vertices present in V . This results in a complete
subgraph on vertices of V . The size of any maximal matching on a complete graph
of size n is n/2. After the first phase of updates ends, the size of matching obtained
by our algorithm is n/2. In the second phase, add edge (vi, wi) for all i. Note that
the degree of each wi is one at the end of the updates. Let us now find the matching

646 S. BASWANA, M. GUPTA, AND S. SEN

Fig. 8. An example where our algorithm gives a 2-approximation. The vertices on top are in
V and form a complete graph. The vertices at the bottom of the figure are in W .

which our algorithm maintains. Let (vi, vj) be an edge in the matching after phase 1.
Note that both these endpoints are at a level greater than −1. A vertex in W is at
level −1 as it does not have any adjacent edges after phase 1. When an edge (wi, vi)
is added, since vi is at a higher level than wi, vi becomes the owner of this edge. The
second invariant of vi is not violated after this edge insertion and nothing happens
at this update step and wi still remains at level −1. Using the same reasoning, we
can show that wj also remains at level −1 after the addition of edge (vj , wj). So
matching maintained by the algorithm remains unchanged. It is easy to observe that
the maximum matching of the graph G now has size n which is twice the size of the
matching maintained by our algorithm.

6. Conclusion. We presented a fully dynamic randomized algorithm for max-
imal matching which achieves expected amortized O(log n) time per edge insertion
or deletion. An interesting question is to explore how crucial randomization is for
dynamic maximal matching.

Recently Bhattacharya, Henzinger, and Nanongkai [10] almost answered this ques-
tion in the affirmative by designing a determinstic algorithm that maintains (2 + ε)-
approximate matching in amortized O(poly(log n, 1/ε) update time. Another interest-
ing question is to explore whether we can achieve O(1) amortized update time. Very
recently Solomon [31] answered this question in the affirmative as well by designing
a randomized algorithm that takes O(t + n log n) update time with high probability
to process any sequence of t edge updates. Though the basic building blocks of his
algorithm are the same as ours, the two algorithms are inherently different and so is
their analysis.

In our algorithm, a vertex may rise to a higher level and create a new epoch
even when its matched edge is intact. But the algorithm of Solomon [31] takes a
lazy approach to maintain the hierarchy of vertices wherein a vertex is processed only
when it becomes absolutely necessary. Another crucial difference is the following.
Our algorithm maintains a function φv(j) for each vertex v and each level j. This
function is used to ensure an invariant that each vertex v is at the highest possible
level ` such that the number of edges incident from lower levels is at least 4`. An
important property guaranteed by this invariant is that the mate of a vertex while
creating an epoch is independent of the update sequence associated with the epoch.
The analysis of our algorithm crucially exploits this property. However, the explicit
maintenance of φv(j) imposes an overhead of Θ(log n) in the update time. In order
to achieve O(1) update time, Solomon [31] gets rid of the maintenance of φv(j) by
taking a lazy approach and a couple of new ideas. As a result, unfortunately, the
property of our algorithm no longer holds for the algorithm of Solomon [31]—indeed

FULLY DYNAMIC MAXIMAL MATCHING 647

there is dependence between the update sequence associated with an epoch created by
a vertex and the random mate picked by it. Solomon [31] makes use of a new concept
called uninterrupted duration of an epoch that bypasses the need of our property for
the analysis. His analysis can be adapted to our algorithm as well and can be viewed
as the correct counterpart of [6, Lemma 4.10]. However, our new analysis presented
in this article has its own merits since it is based on an insightful property of our
algorithm which we believe is of its own independent interest and importance.

Subsequent to the publication of [6] there has been interesting progress in the
area of dynamic matching with approximation less than 2 [8, 9, 16, 26], and dynamic
weighted matching [3, 4, 16].

One of the technical challenges in theoretical computer science is to prove lower
bounds for algorithmic problems. Recently there has been some progress on proving
conditional lower bounds for dynamic graph algorithms [1, 17]. In the light of the lower
bound presented by Abboud and Williams [1] based on Ω(n2) hardness of the 3SUM
problem, it would be an interesting and challenging problem to see if c-approximate
maximum matching for c < 2 can be maintained in o(n) update time.

7. Appendix.

7.1. The error in the analysis of the main algorithm in [6]. In order to
establish the high probability bound on the update time of our algorithm, we took
the following approach in [6]. We introduced the following terminology. An edge e is
said to be deleted at level i if at the time of the deletion, one of the endpoints of e is
present at level i. So an edge deletion is associated with at most 2 levels. We made
an attempt to bound the number of natural epochs terminated at a level in terms
of the number of edge deletions occuring at that level. We made the following claim
(stated as [6, Lemma 4.10]). If ti is the number of edge deletions occuring at level
i, then the number of natural epochs terminated at a level i is O(ti/2

i + log n) with
high probability. However, the following example shows that this claim does not hold
for some situations.

Consider an epoch created by a vertex u. Let the set of edges Oinit
u owned by

u at the time of creation of the epoch be incident from vertices v1, . . . , vq. With-
out loss of generality, suppose the sequence of edge deletions of the owned edges is
〈(u, v1), . . . , (u, vq)〉. Duration of the epoch is defined as the number of deletions of
the edges from Oinit

u before the epoch gets terminated. Since u picks its mate ran-
domly, if all the updates associated with the epoch are deletions only, the duration
of the epoch will be a random variable distributed uniformly in the range [1, q]. This
property was rightly used to establish that the number of epochs terminated at level
1 in our 2-level algorithm is bounded by O(t/

√
n+ log n) with high probability. How-

ever, this property fails in the case where the updates associated with the edges of
Oinit

u can be upward movement as well. As an illustration of this, suppose the update
sequence associated with the epoch is

U :

〈
↑
v2,

↑
v3, · · · ,

↑
vq−1,

↑
vq,

•
v1,

〉
.

Basically before the first edge, that is (u, v1), is deleted, all other edges from the set
Oinit

u move upward. If the mate picked by u is v1, then the epoch will terminate
naturally, and only one edge deletion, that is (u, v1), will be associated with the
termination of this epoch. If the mate of u is any other vertex, the epoch will be
induced epoch only and no edge deletion will be associated with the epoch. Now
suppose a series of epochs appear at level i such that the update sequence for each

648 S. BASWANA, M. GUPTA, AND S. SEN

of them looks identical to the update sequence shown above. It follows that if ti
edge deletions take place at level i, the number of natural epochs terminated at level
i will be ti and not O(ti/2

i). Hence [6, Lemma 4.10] is incorrect. However, in the
current article, we presented an alternate way to establish that the total update time
for maintaining a maximal matching by our algorithm for any sequence of t updates
is O(t + n log n) with high probability. The new analysis is based on an insightful
property of the algorithm, stated in Theorem 4.2, and it makes use of a more careful
amortization argument spanning multiple levels.

7.2. Proof of (4) for insertion of an edge. Consider insertion of an edge
(u, v). It follows from the initial matchings M and M ′ that just after this insertion,
the edges that u (likewise v) will own upon rising to any level j > i will be the same
though it may differ for j ≤ i. Lemma 4.13 indeed holds. So if u rises to a level j > i
in I, u will also rise to level j in I as well. Otherwise, that is, if u rises to a level
≤ i in I, then u may rise, if at all, to a level ≤ i. In the latter case, the changes in
M and M ′ will be only in levels ≤ i due to fact F2 and we are done. In the former
case, where u rises to the same level j > i in I and I ′, henceforth, the proof becomes
identical to the case of deletion of an edge.

7.3. Proof of Lemma 4.15.

Proof.

Pr[A ∩ C] = Pr[A ∩ (∪iBi)]

=
∑
i

Pr[A ∩Bi] since Bi’s are mutually exclusive

=
∑
i

Pr[A | Bi] ·Pr[Bi] using the definition of conditional probability

= ρ ·
∑
i

Pr[Bi]

= ρ ·Pr[∪iBi] = ρ ·Pr[C] since Bi’s are mutually exclusive

Hence Pr[A | C] = Pr[A ∩ C]/Pr[C] = ρ.

7.4. Proof of Lemma 4.16.

Proof. Since A is independent of X, so for each x ∈ X,

(5) Pr[A ∩X = x] = Pr[A] ·Pr[X = x].

Hence

Pr[X = x|A] =
Pr[A ∩X = x]

Pr[A]

=
Pr[A] ·Pr[X = x]

Pr[A]
using (5)

= Pr[X = x].

Acknowledgments. We are very thankful to Sayan Bhattacharya and Divyarthi
Mohan for pointing out the error in [6, Lemma 4.10]. The second author would also
like to thank them for the discussions on the proof of the expectation bound and the
definition of B(v, i, k). In [6], we used 2i as the threshold for raising a vertex to level
i. The possibility of increasing this threshold from 2i to bi for any constant b without

FULLY DYNAMIC MAXIMAL MATCHING 649

any impact on the time complexity of the algorithm was observed by Shay Solomon
[31]. We are very thankful to him for this useful observation. Last but not least we
are very grateful to the anonymous referee for a very meticulous and thorough review
of this article.

REFERENCES

[1] A. Abboud and V. V. Williams, Popular conjectures imply strong lower bounds for dynamic
problems, in 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, IEEE, Piscataway, NJ, 2014, pp. 434–443, https://doi.org/10.1109/
FOCS.2014.53.

[2] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, Popular matchings, SIAM
J. Comput., 37 (2007), pp. 1030–1045, https://doi.org/10.1137/06067328X.

[3] A. Anand, S. Baswana, M. Gupta, and S. Sen, Maintaining approximate maximum weighted
matching in fully dynamic graphs, in IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, Hyderabad, India, Schloss
Dagstuhl, Wadern, Germany, 2012, pp. 257–266, https://doi.org/10.4230/LIPIcs.FSTTCS.
2012.257.

[4] A. Anand, S. Baswana, M. Gupta, and S. Sen, Maintaining approximate maximum weighted
matching in fully dynamic graphs, preprint, arXiv:1207.3976, 2012.

[5] S. Baswana, S. R. Chaudhury, K. Choudhary, and S. Khan, Dynamic DFS in undirected
graphs: breaking the O(m) barrier, in Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, SIAM, Philadel-
phia, 2016, pp. 730–739, https://doi.org/10.1137/1.9781611974331.ch52.

[6] S. Baswana, M. Gupta, and S. Sen, Fully dynamic maximal matching in O(logn) update
time, (Preliminary version appeared in FOCS 2011) SIAM J. Comput., 44 (2015), pp. 88–
113, https://doi.org/10.1137/130914140.

[7] S. Baswana, S. Khurana, and S. Sarkar, Fully dynamic randomized algorithms for graph
spanners, ACM Trans. Algorithms, 8 (2012), 35, http://doi.acm.org/10.1145/2344422.
2344425.

[8] A. Bernstein and C. Stein, Fully dynamic matching in bipartite graphs, in Proceedings of
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Part I, Springer, Berlin, 2015, pp. 167–179, http://doi.org/10.1007/978-3-662-47672-7 14.

[9] A. Bernstein and C. Stein, Faster fully dynamic matchings with small approximation ra-
tios, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, SIAM, Philadelphia, 2016, pp. 692–711,
http://doi.org/10.1137/1.9781611974331.ch50.

[10] S. Bhattacharya, M. Henzinger, and D. Nanongkai, New deterministic approximation
algorithms for fully dynamic matching, in Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, ACM, New York,
2016, pp. 398–411, http://doi.acm.org/10.1145/2897518.2897568.

[11] J. Edmonds, Paths, trees, and flowers, Canad. J. Math., 17 (1965), pp. 449–467.
[12] J. Edmonds and E. L. Johnson, Matching, Euler tours, and the Chinese postman, Math.

Program., 5 (1973), pp. 88–124.
[13] W. Feller, Random walk and ruin problems, in An Introduction to Probability Theory and

Its Applications, Vol. 1, 3rd ed., Wiley, New York, 2000, pp. 344–348.
[14] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching prob-

lems, J. ACM, 38 (1991), pp. 815–853, http://doi.acm.org/10.1145/115234.115366.
[15] D. Gale and L. S. Shapley, College admissions and the stability of marriage, Amer. Math.

Monthly, 69 (1962), pp. 9–14.
[16] M. Gupta and R. Peng, Fully dynamic (1 + e)-approximate matchings, in 54th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2013, 2013, Berkeley, CA, IEEE,
Piscataway, NJ, 2013, pp. 548–557, https://doi.org/10.1109/FOCS.2013.65.

[17] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak, Unifying and strengthen-
ing hardness for dynamic problems via the online matrix-vector multiplication conjecture,
in Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
STOC 2015, Portland, OR, ACM, New York, 2015, pp. 21–30, http://doi.acm.org/10.1145/
2746539.2746609.

[18] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM,
48 (2001), pp. 723–760, http://doi.acm.org/10.1145/502090.502095.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/06067328X
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.257
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.257
https://doi.org/10.1137/1.9781611974331.ch52
https://doi.org/10.1137/130914140
http://doi.acm.org/10.1145/2344422.2344425
http://doi.acm.org/10.1145/2344422.2344425
http://doi.org/10.1007/978-3-662-47672-7_14
http://doi.org/10.1137/1.9781611974331.ch50
http://doi.acm.org/10.1145/2897518.2897568
http://doi.acm.org/10.1145/115234.115366
https://doi.org/10.1109/FOCS.2013.65
http://doi.acm.org/10.1145/2746539.2746609
http://doi.acm.org/10.1145/2746539.2746609
http://doi.acm.org/10.1145/502090.502095

650 S. BASWANA, M. GUPTA, AND S. SEN

[19] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231, https://doi.org/10.1137/0202019.

[20] C.-C. Huang and T. Kavitha, Efficient algorithms for maximum weight matchings in general
graphs with small edge weights, in Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, SIAM, Philadelphia, 2012,
2012, pp. 1400–1412, http://portal.acm.org/citation.cfm?id=2095226&CFID=63838676&
CFTOKEN=79617016.

[21] J. Kleinberg and E. Tardos, Algorithm Design, Addison Wesley, Boston, 2005.
[22] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Winston,

New York, 1976.
[23] L. Lovasz and M. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[24] S. Micali and V. V. Vazirani, An O(sqrt(|v|) |e|) algorithm for finding maximum matching in

general graphs, in 21st Annual Symposium on Foundations of Computer Science, Syracuse,
New York, Long Beach, CA, 1980, pp. 17–27, https://doi.org/10.1109/SFCS.1980.12.

[25] M. Mucha and P. Sankowski, Maximum matchings via Gaussian elimination, in Proceedings
of the 45th Symposium on Foundations of Computer Science (FOCS 2004), Rome, Italy,
IEEE Computer Society, Los Alamitos, CA, 2004, pp. 248–255, https://doi.org/10.1109/
FOCS.2004.40.

[26] O. Neiman and S. Solomon, Simple deterministic algorithms for fully dynamic maximal
matching, ACM Trans. Algorithms, 12 (2016), 7, http://doi.acm.org/10.1145/2700206.

[27] K. Onak and R. Rubinfeld, Maintaining a large matching and a small vertex cover,
in Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, ACM, New York, pp. 457–464, http://doi.acm.org/10.1145/
1806689.1806753.

[28] R. Pagh and F. F. Rodler, Cuckoo hashing, J. Algorithms, 51 (2004), pp. 122–144.
[29] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs,

SIAM J. Comput., 37 (2008), pp. 1455–1471, https://doi.org/10.1137/060650271.
[30] L. Roditty and U. Zwick, Dynamic approximate all-pairs shortest paths in undirected graphs,

SIAM J. Comput., 41 (2012), pp. 670–683, https://doi.org/10.1137/090776573.
[31] S. Solomon, Fully dynamic maximal matching in constant update time, in IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ, IEEE,
Piscataway, NJ, 2016, pp. 325–334, https://doi.org/10.1109/FOCS.2016.43.

[32] M. Thorup, Fully-dynamic min-cut, Combinatorica, 27 (2007), pp. 91–127.

https://doi.org/10.1137/0202019
http://portal.acm.org/citation.cfm?id=2095226&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095226&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1109/FOCS.2004.40
http://doi.acm.org/10.1145/2700206
http://doi.acm.org/10.1145/1806689.1806753
http://doi.acm.org/10.1145/1806689.1806753
https://doi.org/10.1137/060650271
https://doi.org/10.1137/090776573
https://doi.org/10.1109/FOCS.2016.43

	Introduction
	Organization of the result

	An overview
	Fully dynamic algorithm with expected amortized O(n) time per update
	Analysis of the algorithm
	High probability bound on the total update time
	Expected value of the total update time
	On improving the update time beyond O(n)

	Fully dynamic algorithm with expected amortized O(logn) time per update
	Invariants and a basic subroutine used by the algorithm
	Handling edge updates by the fully dynamic algorithm
	Description of procedure process-free-vertices

	Analysis of the algorithm
	Analyzing an epoch
	High probability bound on the total update time
	Expected value of the total update time

	Proof of Lemma 4.8
	Connection to the analysis

	A tight example
	Conclusion
	Appendix
	The error in the analysis of the main algorithm in BaswanaGS15
	Proof of (4) for insertion of an edge
	Proof of Lemma 4.15
	Proof of Lemma 4.16

	References

