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FAULT-TOLERANT SUBGRAPH FOR SINGLE-SOURCE
REACHABILITY: GENERAL AND OPTIMAL∗

SURENDER BASWANA† , KEERTI CHOUDHARY† , AND LIAM RODITTY‡

Abstract. Let G be a directed graph with n vertices, m edges, and a designated source vertex s.
We address the problem of single-source reachability (SSR) from s in the presence of failures of
vertices/edges. We show that for every k ≥ 1, there is a subgraph H of G with at most 2kn edges
that preserves the reachability from s even after the failure of any k edges. Formally, given a set F
of k edges, a vertex v ∈ V (G) is reachable from s in G \ F if and only if v is reachable from s in
H \F . We call H a k-fault tolerant reachability subgraph (k-FTRS). We also prove a matching lower
bound of Ω(2kn) edges for such subgraphs that holds for all n, k with 2k ≤ n. Our results extend to
vertex failures without any extra overhead. The construction of k-FTRS is interesting from several
different perspectives. From the Graph theory perspective it reveals a separation between SSR and
single-source shortest paths (SSSP) in directed graphs. More specifically, in the case of SSSP in
weighted directed and undirected graphs, Demetrescu et al. showed that there is a lower bound of
Ω(m) edges even for a single edge failure [SIAM J. Comput., 37 (2008), pp. 1299–1318]. In the case
of unweighted graphs Parter and Peleg gave a lower bound of Ω(n3/2) edges, again, even for a single
edge failure [Proc. Algorithms—21st Annual European Symposium, 2013, pp. 779–790]. From the
Algorithms perspective it implies fault-tolerant algorithms for other interesting problems, namely,
(i) verifying if the strong connectivity of a graph is preserved after k edge or vertex failures, and
(ii) computing a dominator tree of a graph after k-failures. From the perspective of techniques it
makes an interesting usage of the concept of farthest min-cut which was already introduced by Ford
and Fulkerson in their pioneering work on flows and cuts [Flows in Networks, Princeton University
Press, 1962; reprinted 2011]. We show that there is a close relationship between the farthest min-cut
and the k-FTRS. We believe that our new technique is of independent interest.
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1. Introduction. Networks in most real-life applications are prone to failures.
Such networks can be modeled as graphs where vertices (or edges) may change their
status from active to failed and vice versa. These failures, though unpredictable,
are small in numbers and are transient due to some simultaneous repair process that
is undertaken in these applications. This aspect can be captured by associating a
parameter k with the network such that there are at most k vertices (or edges) that
are failed at any stage, where k is much smaller than the number of vertices in the
underlying graph. This motivates research on designing fault-tolerant structures for
various graph problems.

In this paper we address the problem of single-source fault-tolerant reachability
in directed graphs. Our objective is to construct a sparse subgraph that preserves the
reachability from a given fixed source s even after k failures. The following definition
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precisely characterizes this subgraph.

Definition 1 (k-FTRS). Let G = (V,E) be a directed graph and s ∈ V be a
designated source vertex. A subgraph H of G is said to be a k-fault tolerant reachability
subgraph (k-FTRS) for G if for every subset F ⊆ E of at most k edges, a vertex v ∈ V
is reachable from s in G \ F if and only if v is reachable from s in H \ F .

The reachability problem is fundamental in many applications of both theoretical
and applied computer science (see [27] and references therein). Therefore, a result
on the existence of a sparse k-FTRS and its efficient construction will also be very
important and could have many real-world applications. Moreover, the reachability
problem lies at the core of many other graph problems, namely, strong-connectedness,
dominators [20], double-dominators [26], etc. Thus obtaining a sparse k-FTRS should
help in obtaining fault-tolerant solution for these problems.

Surprisingly, the only previously known result for k-FTRS was for k = 1. The
special case of 1-FTRS is closely related to the well-known concept of dominators
presented in the seminal work of Lengauer and Tarjan [20]. Given a depth-first-search
(DFS) tree T rooted at s, using the ideas of [20] it is straightforward to compute a
1-FTRS with at most 2n edges that contains T . In [2], Baswana, Choudhary, and
Roditty show that even if T is any arbitrary reachability tree,1 we can efficiently
compute a 1-FTRS with at most 2n edges that contains T .

In this paper we present efficient construction of a sparse k-FTRS for any k > 1.
We prove the following theorem.

Theorem 2. There exists an O(2kmn) time algorithm that, for any given integer
k ≥ 1 and any given directed graph G on n vertices, m edges, and a designated source
vertex s, computes a k-FTRS for G with at most 2kn edges. Moreover, the in-degree
of each vertex in this k-FTRS is bounded by 2k.

We also show that the 2kn bound on the size of k-FTRS is tight by proving the
following theorem.

Theorem 3. For any positive integers n, k with n ≥ 3 · 2k, there exists a directed
graph G = (V,E) on n vertices and a source vertex s ∈ V whose k-FTRS with respect
to s must have (2kn/3) edges.

The above theorems also hold in the case when the k-FTRS is defined with
respect to vertex failures instead of edge failures.

Our result on k-FTRS implies solutions to the following problems in a straight-
forward manner.

1. Strong connectedness of a graph. We show that it is possible to preprocess
G in polynomial time to build a data structure of O(2kn) words that, after
the failure of any set F of k edges or vertices, can determine in O(2kn) time
whether the strongly connected components of graph G \ F are the same as
those of graph G.

2. Fault-tolerant dominator tree. We show that any given directed graph G =
(V,E) with a source s ∈ V can be preprocessed in polynomial time to build a
data structure of O(2kn) words that, after the failure of any set F of k edges
or vertices, can report the dominator tree of G \ F in O(2kn) time.

In addition to the above applications, our techniques reveal an interesting connec-

1The term “reachability tree” in [2] is used for denoting a subgraph of G which (i) is an
arborescence (directed tree) rooted at source s, and (ii) contains all the vertices reachable from
s in G.
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tion between two seemingly unrelated structures: farthest min-cut and k-FTRS. The
farthest min-cut is a very basic concept in the area of flows and cuts and was already
introduced by Ford and Fulkerson (for more details, see subsection 4.2). It turns out
that the construction of k-FTRS employs a hierarchy of suitably constructed farthest
min-cuts. We believe that this relationship might be of independent interest from the
perspectives of graph theory and algorithm design.

In this paper, we describe the construction of a k-FTRS with respect to edge
failures only. Vertex failures can be handled by simply splitting each vertex v into an
edge (vin, vout), where the incoming and outgoing edges of v are, respectively, directed
into vin and directed out of vout.

1.1. Related work. The problem most closely related to single-source reacha-
bility (SSR) is that of single-source shortest paths (SSSP). Similarly to the definition
of k-FTRS, one can define a k-fault tolerant subgraph that preserves the shortest path
tree rooted at vertex s. We denote such a subgraph by k-FTSS. Unfortunately, for
weighted graphs (directed or undirected), no sparse k-FTSS is possible—Demetrescu
et al. [13] showed that there exist graphs whose 1-FTSS must have Ω(m) edges. For
the case of unweighted graphs, Parter and Peleg [25] showed that we can compute
a 1-FTSS with O(n3/2) edges; they also showed a matching lower bound. Recently,
Parter [23] extended this result to 2-FTSS with O(n5/3) edges for unweighted undi-
rected graphs. She also showed a lower bound of Ω(n5/3). While the construction of
a 1-FTSS is relatively simple, the construction of 2-FTSS is relatively complicated.

In contrast to the situation with FTSS, our construction of general FTRS implies
that for every constant k there is a linear size k-FTRS. Therefore, from the perspec-
tive of graph theory, our tight k-FTRS reveals an interesting separation phenomena
between SSR and SSSP in directed graphs.

For undirected weighted graphs, there exist various results for sparse fault-tolerant
subgraphs that preserve an approximate distance from the source. Baswana and
Khanna [3] showed that there is a subgraph with O(n log n) edges that preserves the
distances from s up to a multiplicative stretch of 3 upon failure of any single vertex.
Nardelli, Proietti, and Widmayer [21] showed that that there is a subgraph with 2n
edges that preserves the distances from s up to a multiplicative stretch of 3 upon
failure of a single edge. Bilò et al. [5] showed that we can compute a subgraph with
O(n log n/ε2) edges that preserves a (1 + ε)-shortest path after failure of an edge as
well as a vertex. For the case of edge failures, sparse fault-tolerant subgraphs exist for
general k. Bilò et al. [6] showed that we can compute a subgraph with O(kn) edges
that preserves distances from s up to a multiplicative stretch of (2k+ 1) upon failure
of any k edges. They also gave a data structure of O(kn log2 n) words that can report
distances from s stretched by a factor of at most (2k + 1) in O(k2 log2 n) time.

For the case of all-pair shortest paths (APSP) in weighted directed graphs, Deme-
trescu et al. [13] showed that we can build an O(n2 log n) size data structure that can
report the distance from u to v avoiding x for any u, v, x ∈ V in O(1) time. Duan
and Pettie [15] extended this result to dual failures by designing a data structure of
O(n2 log3 n) space that can answer any distance query upon the failure of any two
vertices in O(log n) time.

Fault-tolerant structures for DFS trees, graph spanners, approximate distance
oracles, and compact routing schemes have been studied in [1, 10, 11, 12, 14, 22, 4, 24].

1.2. Organization of the paper. We describe notation and terminology in
section 2. In section 3 we provide an overview of our result, and in section 4 we
describe various tools used to obtain a k-FTRS. In order to describe the ideas
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underlying k-FTRS, for better understanding we first present a simple construction
of a 2-FTRS with 4n edges in section 5. We describe the general construction of
k-FTRS for any k ≥ 1 in section 6. The proof for the matching lower bound is given
in section 7. We present the applications of k-FTRS in section 8.

2. Preliminaries. Given a directed graph G = (V,E) on n = |V | vertices and
m = |E| edges, and a source vertex s ∈ V , the following notation will be used
throughout the paper:

• E(f): Edges of the graph G carrying a nonzero flow for a given flow f .
• E(P ): Edges lying on a path P .
• E(A): Edges of the graph G whose endpoints both lie in set A, where A ⊆ V .
• G(A): The subgraph of G induced by the vertices lying in a subset A of V .
• H \ F : The graph obtained by deleting the edges lying in set F from graph
H.

• H + (u, v) (respectively, H + F ): The graph obtained by adding an edge
(u, v) (respectively, a set of edges F ) to graph H.

• max-flow(H,S, t): The value of the maximum flow in graph H, where the
source is a set of vertices S and the destination is a single vertex t.

• out(A): The set of all those vertices in V \A having an incoming edge from
some vertex of A, where A ⊆ V .

• In-Edges(v,H): The set of all incoming edges to v in H. When the graph
H is clear from the context, we denote it simply by In-Edges(v).

• P [a, b]: The subpath of path P lying between vertices a and b, assuming a
precedes b on P .

• P :: Q : The path formed by concatenating paths P and Q in G. Here it is
assumed that the last vertex of P is the same as the first vertex of Q.

Our algorithm for computing a k-FTRS will involve the concepts of max-flow,
min-cut, and edge disjoint paths. Thus, at times we will visualize the same graph G
as a network with unit edge capacities. The following well-known result from graph
theory shows the connection between max-flow and edge disjoint paths.

Theorem 4. For any positive integer α, there is a flow from a source set S to a
destination vertex t of value α if and only if there are α edge disjoint paths originating
from set S and terminating at t.

The following definition introduces the notion of FTRS from the perspective of a
single vertex v ∈ V .

Definition 5. Given a vertex v ∈ V and an integer k ≥ 1, a subgraph G′ =
(V,E′), E′ ⊆ E, is said to be k-FTRS(v) if for every set F of k edge failures, the
following condition holds: v is reachable from s in G\F if and only if v is reachable
from s in G′\F .

This definition allows us to define k-FTRS in an alternative way as follows.

Definition 6. A subgraph H of G = (V,E) is a k-FTRS if and only if H is a
k-FTRS(v) for every v ∈ V .

3. Overview. Our starting point is a lemma (referred to as the locality lemma)
that allows us to focus on a single vertex for computing k-FTRS. It essentially
states that if there exists an algorithm that for any vertex v computes a k-FTRS(v)
in which the in-degree of v is bounded by some integer ck, then on applying this
algorithm recursively on an arbitrary sequence of vertices of G, we can get a k-FTRS
for G in which the in-degree of all the vertices is bounded by ck.
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Thus, the problem reduces to computing a k-FTRS(t) with at most 2k incoming
edges for any t ∈ V . The construction of a k-FTRS(t) employs farthest min-cut.
Recall that an (s, t)-cut C is a partition of the vertices into two sets: one containing
the source and the other containing the sink. The farthest min-cut is the (unique)
min-cut for which the set containing the source is of largest size. We now provide the
main idea underlying the construction of a k-FTRS(t).

If the max-flow from s to t in G is k+ 1 or greater, then we can define k-FTRS(t)
as any k + 1 edge disjoint paths from s to t. In order to convey the importance of
farthest min-cut, let us consider the case when max-flow is exactly k. Let us suppose
that there exists a path P from s to t in G\F , where F is the set of failing edges. Then
P must pass through an edge, say (ai, bi), of the farthest min-cut. It follows from the
properties of the farthest min-cut that if we include vertex bi in the source, then the
max-flow increases (see Lemma 9). That is, we get at least k + 1 edge disjoint paths
from the set {s, bi} to t. Note that one of these paths, say Q, must be intact even
after k failures. Though Q may start from bi (instead of s), this is not problematic
because the concatenation P [s, bi] :: Q will be preserved in G \ F . This suggests that
a subgraph H of G that contains k + 1 edge disjoint paths from {s, bi} to t, for each
i, will serve as a k-FTRS(t).

For the case when (s, t) max-flow in G is less than k, we compute a series of
farthest min-cuts built on a hierarchy of nested source sets. Our construction consists
of k rounds. It starts with a source set S containing the singleton vertex s. In each
iteration, we add to the previous source S, the endpoints bi’s of the edges correspond-
ing to the farthest (S, t)-min-cut. The size of the cuts in this hierarchy governs the
in-degree of t in k-FTRS(t). In order to get a bound on the size of these cuts, we
transform G into a new graph with O(m) vertices and edges, so that the following
assumption holds.

Assumption 1. The out-degree of all vertices in G is at most 2.

It turns out that a k-FTRS(t) for the original graph can be easily obtained by
a k-FTRS(t) of the transformed graph. Below we provide the justification for the
above assumption.

3.1. Justification for Assumption 1. Let G be the input graph. We construct
a new graph H = (V ′, E′) from G such that the out-degree of each vertex in H is
bounded by 2 as follows:

(i) For each u in V , construct a binary tree Bu such that the number of leaves
in Bu is exactly equal to the out-degree (say d(u)) of u in G. Let ur be the
root of this tree, and let u`1, . . . , u

`
d(u) be its leaves.

(ii) Insert the binary tree Bu in place of out-edges of u in G as follows. We delete
all the out-edges, say (u, v1), . . . , (u, vd(u)), of vertex u. Next we connect u
to ur, and u`i to vi, for each i ≤ d(u).

Observe that H constructed in this manner will have O(m) edges and vertices.
In this process, the out-degree of each vertex in H gets bounded by 2, though the
in-degree of the original vertices remains unchanged. Notice that an edge in G is
mapped to a path in H as follows:

(u, vi) 7→ (u, ur)::(path from ur to u`i in Bu)::(u`i , vi).

We now show how to construct a k-FTRS(t) (say G∗) for G. Let H∗ be a
k-FTRS(t) for graph H. For each out-neighbor vi of a vertex u in G, include edge
(u, vi) in G∗ if and only if edge (u`i , vi) is present in H∗. Now consider any set F of
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k failed edges in G. Define a set F ′ of failed edges in H by adding edge (u`i , vi) to F ′

for each (u, vi) ∈ F . It can be inferred from the mapping defined above that there is
a path from s to t in G∗ \F if and only if there is a path from s to t in H∗ \F ′. Thus,
graph G∗ is a k-FTRS(t) for graph G with in-degree(t, G∗) equal to in-degree(t,H∗).
This shows that computing a k-FTRS(t) for t ∈ V in G is equivalent to computing
k-FTRS(t) in graph H, which has O(m) edges and vertices, and the out-degree of
each vertex is bounded by 2. Hence Assumption 1 is justified.

4. The main tools. We now describe the main tools used in obtaining our
k-FTRS.

4.1. Locality lemma. We first formally state and prove the locality lemma.

Lemma 7. Suppose there exist an algorithm A and an integer ck satisfying the
following condition: Given any graph G and a vertex v in G, A computes a subgraph
H of G such that

(i) H is a k-FTRS(v), and
(ii) the in-degree of v in H is bounded by ck.

Then, we can compute a k-FTRS for G with at most ckn edges.

Proof. Let 〈v1, . . . , vn〉 be any arbitrary sequence of the n vertices of G. We
compute k-FTRS in n rounds as follows. Let G0 = G be the initial graph. In round
i, we compute a graph Gi which is a k-FTRS with in-degree of vertices v1, . . . , vi
bounded by ck. This is done as follows: (i) We compute a k-FTRS(vi), say H, for
graph Gi−1 using algorithm A; and (ii) we set Gi to be the graph obtained from Gi−1
by restricting the incoming edges of vi to only those present in H. It is easy to see
that the in-degree of vertices v1, . . . , vi in graph Gi would be bounded by ck. We now
show, using induction, that the graphs G0, G1, . . . , Gn are all k-FTRS for G. The
base case trivially holds true. In order to show that Gi (i > 0) is a k-FTRS for G, it
suffices to show that Gi is a k-FTRS for Gi−1.

Consider any set F of k edge failures in Gi−1. Let x be any vertex reachable from
s in Gi−1 \ F by some path, say P . We need to show the existence of a path Q from
s to x in Gi \ F . If path P does not pass through vi, then we can simply set Q as
P . If P passes through vi, then we consider the segments P [s, vi] and P [vi, x]. Since
Gi and Gi−1 may differ only in incoming edges of vi, path P [vi, x] must be intact in
Gi \ F . Now H is a k-FTRS(vi) for Gi−1, and thus there must exist a path, say Q,
from s to vi in H \ F . Note that Gi contains H. Thus, Q :: P [vi, x] is a walk from
s to x in Gi \ F , and after removal of all loops from it, we get a path from s to x in
Gi \ F . Hence Gi is a k-FTRS for Gi−1.

4.2. Farthest min-cut.

Definition 8. Let S be a source set and t be a destination vertex. Any (S, t)-cut
C is a partition of the vertex set into two sets, A(C) and B(C), where S ⊆ A(C) and
t ∈ B(C). An (S, t)-min-cut C∗ is said to be the farthest min-cut if A(C∗) ) A(C)
for every (S, t)-min-cut C other than C∗. We denote C∗ by FMC(G,S, t).

In 1962 Ford and Fulkerson [16] showed the construction of the farthest (S, t)-
min-cut and also gave an algorithm for constructing it. For the sake of completeness
we state the following result from the 2011 reprint of [16] (for the proof see Theorem
5.5 of Chapter 1, which is freely available on the Web).

Lemma 9. Let Gf be the residual graph corresponding to any max-flow fS from
S to t. Let B be the set of those vertices from which there is a path to t in Gf ,
and A = V \ B. Then the set C of edges originating from A and terminating at B
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is the unique farthest (S, t)-min-cut and is independent of the choice of the initial
max-flow fS.

We now state an important property of the farthest min-cut. Informally, this
property claims that the max-flow in G increases by 1 if we add to G a new edge from
the set S ×B. (If the new edge already exists in E, then we add one more copy of it
to G.)

Lemma 10. Let S be a source set, t be a destination vertex, C be FMC(G,S, t),
and (A,B) be the partition of V corresponding to cut C. Let (s, w) ∈ (S ×B) be any
arbitrary edge, and G′ = G + (s, w) be a new graph. Then, max-flow(G′, S, t) =
1 + max-flow(G,S, t), and C ′ = C ∪ {(s, w)} forms an (S, t)-min-cut for graph G′.

Proof. Let fS be a max-flow from S to t, and Gf be the corresponding residual
graph. Since w ∈ B, Lemma 9 implies that there exists a path from w to t in Gf .
This shows that there exists a path from s to t in Gf + (s, w). Note that Gf + (s, w)
is the residual graph for G′ with respect to flow fS . Thus max-flow(G′, S, t) is
greater than max-flow(G,S, t). Since G′ is obtained by adding only one extra edge
to G, the value of max-flow cannot increase by more than 1, and hence we get that
max-flow(G′, S, t) is equal to 1 + max-flow(G,S, t).

To prove the second part, note that the existence of a path P from S to t in
G′ \ C ′ would imply the existence of a path from S to t in G not passing through
cut C. Since this cannot be possible, C ′ must be an (S, t)-cut for graph G′. Now
|C ′| = 1 + |C| = 1 + max-flow(G,S, t) = max-flow(G′, S, t). That is, the car-
dinality of C ′ is the same as the value of max-flow from S to t. Hence, C ′ is an
(S, t)-min-cut.

We state two more properties of farthest min-cut that will be used in the con-
struction of k-FTRS.

Lemma 11. Let s and t be a pair of vertices. Let S ⊆ V such that s ∈ S and
t /∈ S. Let fS be a max-flow from S to t, C be FMC(S, t), and (A,B) be the partition
of V induced by cut C. Then we can find a max-flow, say f , from s to t such that
E(f) ⊆ E(A) ∪ E(fS).

Proof. Let α = max-flow(G,S, t) and β = max-flow(G, s, t). Let e1, . . . , eα
be the edges lying in the cut C, and let f ′ be any arbitrary max-flow from s to t.
Note that C is also an (s, t)-cut. Thus, without loss of generality we can assume that
C ∩E(f ′) = {e1, . . . , eβ}. Now let {(Pi :: ei :: P ′i ) : i ≤ α}2 be a set of α edge disjoint
paths from S to t corresponding to max-flow fS . Since the edges of cut C are fully
saturated with respect to flow fS , each Pi will lie entirely in G(A) and each P ′i will
lie entirely in G(B).

Let {(Qi :: ei :: Q′i) : i ≤ β} be a set of β edge disjoint paths from s to t
corresponding to flow f ′ such that each Qi lies entirely in G(A). Note that since C
is not necessarily an (s, t)-min-cut, a path Q′i may pass multiple times through cut
C. Now {(Qi :: ei :: P ′i ) : i ≤ β} forms β edge disjoint paths from s to t. This is
because the Qi’s lie entirely in G(A) and the P ′i ’s lie entirely in set G(B). Let f be
the flow corresponding to these paths. Then f gives a max-flow from s to t such that
E(f) ⊆ E(A) ∪ E(fS).

Lemma 12. Let s and t be a pair of vertices. Let S ⊆ V such that s ∈ S and
t /∈ S. Let (Â, B̂) be the partition of V induced by FMC(s, t), and (A,B) be the
partition of V induced by FMC(S, t). Then B ⊆ B̂.

2With slight abuse of notation, while concatenating, we can view an edge as a path of length 1.
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Proof. Consider any vertex x ∈ B. We first show that we can find a max-
flow (say fS) from S to t, and path (say P ) from x to t, such that E(fS) ∩ E(P )
is empty. Consider the graph G′ = G + (s, x). From Lemma 10, we have that
max-flow(G′, S, t) = 1 + max-flow(G,S, t) = 1 + α (say). Consider any max-flow
f ′S from S to t in G′. Notice that E(f ′S) must contain the edge (s, x). On removal of
this edge from f ′S , it decomposes into a flow fS (from S to t in G of capacity α) and
a path P (from x and to t in G). It is easy to verify that fS is a max-flow in G, and
E(fS) ∩ E(P ) = ∅.

Now from Lemma 11 we have that there exists a max-flow, say f , from s to t such
that E(f) ⊆ E(A) ∪ E(fS). Also note that path P will lie entirely in graph G(B),
since edges of cut (A,B) are fully saturated by flow fS , so if path P enters set A, it
will not be able to return to vertex t ∈ B. Thus E(f) ∩ E(P ) is also empty. Hence
path P lies in the residual graph corresponding to max-flow f from s to t in G. So
vertex x must lie in B̂. Hence we have B ⊆ B̂.

5. A 2-FTRS with 4n edges. From Lemma 7 it follows that in order to
construct a 2-FTRS for a vertex s of graph G, it is sufficient to construct for an
arbitrary vertex t a subgraph H which is a 2-FTRS(t), such that the in-degree of t
in H is at most 4.

By Assumption 1 stated in section 3, we have that the out-degree of s is at most
2. Thus, the value of max-flow from s to t must be either 1 or 2. Below we explain
how to construct a 2-FTRS(t) in each of these cases.

Case 1. max-flow(G, s, t) = 2: Let C = {(a, b), (a′, b′)}3 be the farthest (s, t)-
min-cut in G. (See Figure 1(i).) So after the failure of a set F of any two edges, a path
from s to t (if it exists) in G \ F must pass through C. We construct an auxiliary
graph H by adding the edge (s, b) or (s, b′) to G, depending on whether this path
passes through (a, b) or (a′, b′). Since C is the farthest min-cut of G, it follows from
Lemma 10 that the value of (s, t) max-flow in both graphs G + (s, b) and G + (s, b′)
must be 3. So we denote by P0, P1, P2 any three edge disjoint paths from s to t in
G+(s, b) (see Figure 1(ii)) and similarly denote by P ′0, P

′
1, P

′
2 three edge disjoint paths

in G + (s, b′). The lemma below shows how these paths can be used to compute a
2-FTRS(t).

Lemma 13. Let Et be a subset of incoming edges to t satisfying the following two
conditions:

(i) Et contains the last edges on paths P0, P1, P2 in case b 6= t and contains the
edge (a, b) in case b = t.

(ii) Et contains the last edges on paths P ′0, P
′
1, P

′
2 in case b′ 6= t and contains the

edge (a′, b′) in case b′ = t.
Then the graph G∗ formed by restricting the incoming edges of t in G to Et is a
2-FTRS(t).

Proof. Consider any set F of two edge failures. Note that if t is unreachable from
s in G \ F , then we have nothing to prove. So let us assume that there exists a path
R from s to t in G \F , and it passes through edge (a, b) of cut C. Thus, the auxiliary
graph is H = G + (s, b). Now if b = t, then R is in G∗ \ F since (a, b) = (a, t) ∈ Et.
Consider the case when b 6= t. Since P0, P1, and P2 are edge disjoint, at least one of
them is in the graph H \ F ; let this path be P0. Now either (i) P0 is in G \ F , or
(ii) the first edge on P0 must be (s, b). In the latter case we replace the edge (s, b) by

3Note that (a, b) and (a′, b′) are two different edges; however, it may happen that either a = a′

or b = b′.
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(i)                                                              (ii)                                                  (iii)(i) (iii)

Fig. 1. (i) Edges (a, b) and (a′, b′) represent the farthest min-cut from s to t. (ii) Paths
highlighted in yellow represent three edge disjoint paths P0, P1, P2 in graph G + (s, b). (iii) As
b, b′ 6= t, source S is equal to A ∪ {b, b′}, and FMC(G, S, t) = 3.

path R[s, b], so that the path R[s, b]::P0[b, t] is in G \ F . In both cases we get a path
from s to t in G \ F that enters t using only edges of the set Et. Similar analysis can
be carried out when path R passes through edge (a′, b′). Hence we get that G∗ is a
2-FTRS(t).

Using the above lemma we can get a 2-FTRS(t) in which the in-degree of t is
bounded by 6, by including the last edges of all six paths P0, P1, P2, P

′
0, P

′
1, P

′
2 in

Et. But our aim is to achieve a bound of 4. For this we construct a source set
S = A ∪ ({b, b′} \ {t}), where A and B form a partition of V induced by C, and
compute a max-flow fS from S to t. (See Figure 1(iii).) The following lemma shows
that the graph obtained by restricting the incoming edges of t to those carrying a
nonzero flow with respect to fS is a 2-FTRS(t).

Lemma 14. Let E(t) be the set of incoming edges to t carrying a nonzero flow
with respect to fS. Then the graph G∗ =

(
G \ In-Edges(t)

)
+ E(t) is a 2-FTRS(t).

Proof. In order to prove this lemma it suffices to show that E(t) satisfies the
conditions required in Lemma 13. Here we show that E(t) satisfies condition (i) of
Lemma 13. The proof of condition (ii) follows in a similar manner.

Note that if b = t, then edge (a, b) will be a direct edge from S to t and would
thus be in fS . In this case (a, b) is in E(t). So consider the case b 6= t. In order
to compute the paths P0, P1, P2 we consider the graph Gb = G + (s, b). Since both
endpoints of edge (s, b) lie in S, we have that fS is a max-flow from S to t in graph
Gb, as well. Let (AS , BS) be the partition of V induced by any (S, t) min-cut in graph
Gb. Lemma 11 implies that we can find a max-flow, say f , from s to t in Gb such that
E(f) ⊆ E(AS) ∪ E(fS). In other words, the incoming edges to t in E(f) are from
the set E(t). Recall that Lemma 10 implies that the value of flow f is 3. So we set
P0, P1, P2 to be just the three paths corresponding to flow f .

We now show that the in-degree of t in G∗ is bounded by 4. In order to prove
this, it suffices to show that the value of (S, t) max-flow in G is at most 4. Now if

1. b, b′ 6= t, then outgoing edges of b and b′ will form an (S, t) cut;
2. b = t, then (a, b) along with outgoing edges of b′ will form an (S, t) cut; and
3. b′ = t, then (a′, b′) along with outgoing edges of b will form an (S, t) cut.

By Assumption 1, the out-degree of every vertex is bounded by 2. Therefore, the
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value of (S, t)-min-cut (and max-flow) can be at most 4.

Case 2. max-flow(G, s, t) = 1: Let C = {(x, y)} be the farthest min-cut from s
to t. Then every path from s to t must pass through edge (x, y). Note that if y = t,
then we can simply return the graph obtained by deleting all incoming edges of t
except (x, t). If y 6= t, then the value of (y, t)-max-flow must be 2. So in this case
we return a 2-FTRS(t) with y as a source (using Case 1); let this graph be G∗. It is
easy to verify that G∗ is a 2-FTRS(t) with s as source, and the in-degree of t in G∗

is bounded by 4.

This completes the construction of a 2-FTRS(t). We thus have the following
theorem.

Theorem 15. There exists a polynomial time algorithm that, for any given di-
rected graph G on n vertices, computes a 2-FTRS for G with at most 4n edges.

6. Computing a k-FTRS. In this section we prove Theorem 2. Let t be a
vertex in G for which k-FTRS(t) from s needs to be computed. (Recall that from
Lemma 7 it follows that this is sufficient in order to prove Theorem 2.) Before we
present the construction of k-FTRS(t) we state one more assumption on the graph G
(in addition to Assumption 1).

Assumption 2. The out-degree of the source vertex s is 1.

The above assumption can be easily justified by adding a new vertex s′, together
with an edge (s′, s), to G and then setting s′ as the new source vertex. Algorithm 1
constructs a k-FTRS(t) with at most 2k incoming edges of t.

Algorithm 1. Algorithm for computing k-FTRS(t).
1: S1 ← {s}
2: for i = 1 to k do
3: Ci ← FMC(G,Si, t)
4: (Ai, Bi)← Partition(Ci)
5: Si+1 ← (Ai ∪ out(Ai)) \ {t}
6: end for
7: f0 ← max-flow from Sk+1 to t
8: E(t)← Incoming edges of t present in E(f0)
9: return G∗ = (G \ In-Edges(t)

)
+ E(t)

Algorithm 1 works as follows. It performs k iterations. In the ith iteration it
computes the farthest min-cut Ci between a source set Si and vertex t. For the 1st
iteration, the source set S1 consists of only vertex s. For i ≥ 1, the source set Si+1
is defined by the farthest min-cut computed in the ith iteration. If (Ai, Bi) is the
partition of V induced by Ci, then we set Si+1 as Ai unioned with those vertices in
Bi \{t} that have an incoming edge from any vertex of Ai. Notice that since Si ⊆ Ai,
this implies that Si ⊆ Si+1. After k iterations the algorithm computes a max-flow f0
from Sk+1 to t and sets E(t) to be the incoming edges of t that are in E(f0). The
algorithm returns a graph G∗ obtained by restricting the incoming edges of t to E(t).
We show in the next subsection that G∗ is a k-FTRS(t) with in-degree(t) bounded by
2k. We must note that after some iteration i < k, the source set may become V \ {t}.
In this case, all subsequent iterations will be redundant.

For a better understanding of the hierarchy of cuts and the source sets constructed
in our algorithm, refer to Figure 2(i). Note that some of the edges in a cut Ci
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(i)                                                                                    (ii)

Fig. 2. (i) The edges in brown constitute the set E(t) when k = 4. (ii) Paths highlighted in
yellow represent five edge disjoint paths in graph H.

(i ∈ [1, k]) may terminate at t; we denote this set by Eti . The following lemma shows
that these edges are always included in our FTRS G∗.

Lemma 16. For every 1 ≤ i ≤ k, Eti ⊆ E(t).

Proof. Consider any edge (u, t) ∈ Eti . Since u belongs to Ai it follows from the
algorithm that u is added to the source set Si+1 ⊆ Sk+1. Thus, (u, t) is a direct edge
from source Sk+1 to t and must be in every max-flow from Sk+1 to t.

6.1. Analysis. We now show that G∗ is a k-FTRS(t). Let F be any set of k
failed edges. Assume that there exists a path R from s to t in G \ F . We shall prove
the existence of a path R̂ from s to t in G∗ \ F . Let i ∈ [1, k]. Since each cut Ci is
an (s, t)-cut, the path R must pass through an edge, say (ui, vi), in Ci. Let us first
consider the case when (ui, vi) ∈ Eti for some i ∈ [1, k]. Since Lemma 16 implies that
(ui, vi) is present in G∗ and vi = t, the path R is contained in G∗. So we can set R̂ to
R. We now turn to the case when the edge (ui, vi) belongs to the set Ci \Eti for every
i ∈ [1, k]. In order to show the existence of a path R̂ in G∗, we introduce a sequence
of auxiliary graphs, namely, Hi’s (for every i ∈ [1, k + 1]) as follows:

H1 = G, Hi = G+ (s, v1) + · · ·+ (s, vi−1), i ∈ [2, k + 1].

Let H = Hk+1 be the graph obtained by adding all the edges (s, v1), . . . , (s, vk)
to graph G. (See Figure 2(ii).) We will show using induction that Hi contains exactly
i edge disjoint paths from s to t. Before presenting the proof, we show that for any i,
the cut Ci, which is the farthest min-cut between Si and t in G, is also the farthest
min-cut between Si and t in Hi.

Lemma 17. Ci = FMC(Hi, Si, t).

Proof. The cut Ci is defined as FMC(G,Si, t) and Hi = G +
∑
j<i(s, vj). Since

the algorithm adds to the source set Sj+1 all the vertices in out(Aj) \ {t}, the vertex
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vj ∈ out(Aj) \ {t} is added to Sj+1 ⊆ Si. This implies that the graph Hi is formed
by adding edges such that both of their endpoints are in Si. Hence, Ci is also equal
to FMC(Hi, Si, t), and Ai, Bi form the partition of V induced by Ci in Hi.

Lemma 18. max-flow(H, s, t) = k + 1.

Proof. We show by induction that max-flow(Hi, s, t) = i for each i ∈ [1, k + 1].
Note that H1 = G. The base case holds since the out-degree of s is 1 and t is reachable
from s; thus max-flow(H1, s, t) = 1.

Recall that Hi+1 is formed by adding the edge (s, vi) to Hi, where (ui, vi) was an
edge present in cut Ci. It follows from Lemma 17 that Ci is the farthest min-cut in
Hi with Si as source, and (Ai, Bi) is the partition of V induced by Ci. Let (Â, B̂) be
the partition of V induced by FMC(Hi, s, t). It follows from Lemma 12 that Bi ⊆ B̂.
Therefore, using Lemma 10 we get max-flow(Hi+1, s, t) = 1+max-flow(Hi, s, t) =
i+ 1.

Next, we define H∗ to be a graph obtained from H where the incoming edges of
t are only those present in the set E(t), that is, H∗ = (H \ In-Edges(t)) + E(t). The
following lemma shows that the value of max-flow remains unaffected by restricting
the incoming edges of t to E(t).

Lemma 19. max-flow(H∗, s, t) = k + 1.

Proof. Recall that f0 is a max-flow from Sk+1 to t in G. Since both endpoints
of the edges (s, v1), . . . , (s, vk) are in Sk+1, we get that f0 is a max-flow from Sk+1

to t in graph H = G +
∑k
i=1(s, vi) as well. From Lemma 11 it follows that we

can always find an (s, t) max-flow, say f , in H such that E(f) ⊆ E(f0) ∪ E(Ak+1).
The flow f terminates at t using only edges from E(t); therefore, it is a flow in
graph H∗ = (H \ In-Edges(t)) + E(t) as well. Since f is an (s, t) max-flow in
H and max-flow cannot increase on edge removal, it follows from Lemma 18 that
max-flow(H∗, s, t) = k + 1.

Note that graph H∗ defined above is also equal to G∗+
∑k
j=1(s, vj). Next, using

the k + 1 edge disjoint paths in H∗ we show that G∗ is a k-FTRS(t).

Lemma 20. For any set F of k edges, if t is reachable from s in G \ F , then t is
reachable from s in G∗ \ F as well.

Proof. Recall that we started with assuming that R is a path from s to t in G\F .
We need to show that there exists a path R̂ from s to t in G∗ \F . Consider the graph
H∗. By Lemma 19 we get that there exist k+ 1 edge disjoint paths from s to t in H∗;
let these be P0, P1, . . . , Pk. Since |F | = k, we have that at least one of these k + 1
paths, say P0, must be intact in H∗ \ F . Now if P0 lies entirely in G∗ \ F , then we
can set R̂ to be P0. Thus let us assume that P0 does not lie in G∗ \ F . Since H∗ is
formed by adding edges (s, v1), . . . , (s, vk) to G∗, we will have that the first edge on
P0 is one of the newly added edges, say (s, vj), and the remaining path P0[vj , t] will
lie entirely in G∗ \ F . Now we can simply replace edge (s, vj) by path R[s, vj ] to get
path R̂ = R[s, vj ]::P0[vj , t] from s to t in G∗ \ F .

We shall now establish a bound on the number of incoming edges of t in G∗.

Bounding the size of set E(t). Let Ck+1 = FMC(G,Sk+1, t). We now prove
using induction that |Ci| is bounded by 2i−1, where i ∈ [1, k], thus achieving a bound
of 2k on |E(t)| = |Ck+1|. For the base case of i = 1, |C1| = 1 is obvious since the
out-degree of s is 1. In the following lemma we prove the induction step.
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Lemma 21. For each i ≥ 1 and i ≤ k, |Ci+1| ≤ 2|Ci|.

Proof. Let D denote the set of edges originating from Si+1 and terminating to
V \ Si+1. Since Si+1 contains Ai, all the edges in set Eti must lie in D. Now consider
an edge in (u, v) ∈ D \ Eti . Note that vertex u cannot lie in Ai, because then v must
be either t or lie in (out(Ai) \ {t}) ⊆ Si+1. Thus edges of D \ Eti must originate
from vertices of the set out(Ai) \ {t}. Since |out(Ai) \ {t}| ≤ |Ci \ Eti | and the
out-degree of every vertex is at most two, we get that |D \ Eti | ≤ 2|Ci \ Eti |. Thus,
|D| ≤ |Eti | + 2|Ci \ Eti | ≤ 2|Ci|. Since D is an (Si, t) cut, we get that the size of
(Si, t)-min-cut must be bounded by 2|Ci|.

Remark. The fact that the out-degree of each vertex is upper bounded by 2 played
a crucial role in bounding the size of k-FTRS in the proof of Lemma 21.

Analysis of running time. We now analyze the running time of our algo-
rithm to compute a k-FTRS(t) for any t ∈ V . The first step in the computation of
k-FTRS(t) is to transform G into a graph with O(m) vertices and edges such that the
out-degree of each vertex is bounded by 2. This takes O(m) time (see subsection 3.1).
Next we apply Algorithm 1 on this transformed graph. The time complexity of Al-
gorithm 1 is dominated by the time required for computing the k farthest min-cuts
which is O(

∑k
i=1m×|Ci|) = O(2km) (see [16]). Finally, a k-FTRS(t) for the original

graph can be extracted from a k-FTRS(t) of the transformed graph in O(m) time
(see subsection 3.1). Thus a k-FTRS(t) for any vertex t can be computed in O(2km)
time. Since computation of a k-FTRS requires n rounds, where in each round we
compute k-FTRS(v) for some v ∈ V , the total time complexity is O(2kmn) (see the
proof of Lemma 7).

We conclude with the following theorem.

Reminder of Theorem 2. There exists an O(2kmn) time algorithm that for
any given integer k ≥ 1, and any given directed graph G on n vertices, m edges,
and a designated source vertex s, computes a k-FTRS for G with at most 2kn edges.
Moreover, the in-degree of each vertex in this k-FTRS is bounded by 2k.

7. A matching lower bound. We shall now show that for each k, n (n ≥ 3·2k),
there exists a directed graph G with n vertices whose k-FTRS must have Ω(2kn) edges.
Let T be a balanced binary tree of height k rooted at s. Let X be the set of leaf nodes
of T ; thus |X| = 2k. Let Y be another set of n − |V (T )| vertices. Then the graph
G is obtained by adding an edge from each x ∈ X to each y ∈ Y . In other words,
V (G) = V (T ) ∪ Y and E(V ) = E(T ) ∪ (X × Y ). Figure 3 illustrates the graph for
k = 3.

We now show that a k-FTRS for G must contain all edges of G. It is easy to
see that all edges of T must be present in a k-FTRS of G. Thus, let us consider an
edge (x, y) ∈ X × Y . Let P be the tree path from s to leaf node x. Let F be the set
of all those edges (u, v) ∈ T such that u ∈ P and v is the child of u not lying on P .
Clearly |F | = k. Observe that x is the only leaf node of T reachable from s on the
failure of the edges in set F . Thus P ::(x, y) is the unique path from s to y in G \ F .
This shows that edge (x, y) must lie in a k-FTRS for G. Notice that G contains at
least 2k|Y | > 2k(n− 2k+1) ≥ 2kn/3 edges. This establishes a lower bound of (2kn/3)
on the size of k-FTRS for G.

Reminder of Theorem 3. For any positive integers n, k with n ≥ 3 · 2k, there
exists a directed graph G = (V,E) on n vertices and a source vertex s ∈ V whose
k-FTRS with respect to s must have (2kn/3) edges.
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T
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Y

…

Fig. 3. For each edge (x, y), there exist three edges (shown dotted) whose failure will render y
unreachable from s unless (x, y) is kept in the 3-FTRS.

8. Applications. In this section we present a few applications of k-FTRS.

8.1. Detecting if a set of k edge/vertex failures alters the strong con-
nectivity of a graph. Georgiadis, Italiano, and Parotsidis [17] gave an O(n) size
oracle that, after any edge or vertex failure, can report the strongly connected com-
ponents (SCCs) of the remaining graph in O(n) time. Here we consider the more re-
stricted problem, where we are only interested in finding out if a set of k edge/vertex
failures alters the SCCs of G. Our construction works as follows. Let GR denote the
graph obtained by reversing each edge of graph G. Let S1, . . . , St be the partition
of V corresponding to the SCCs of G, and let si be any arbitrary vertex in Si. For
1 ≤ i ≤ t, let Gi (GRi ) denote the graph induced by set Si in G (GR). For each
i ∈ [1, t], let Hi and HR

i denote the k-FTRS for Gi and GRi , respectively, with si
as the source vertex. Our data structure is simply the collection of the subgraphs
H1, H

R
1 , . . . ,Ht, H

R
t . Given any query set F of at most k failing edges/vertices, we

perform traversal from si in graphs Hi \ F and HR
i \ F , where i ∈ [1, t]. The SCC

Si is preserved if and only if the set of vertices reachable from si in both Hi \ F and
HR
i \ F is the same as the set Si. Note that the total space used and the query time

after any k failures are both bounded by O(2kn). Thus we get the following theorem.

Theorem 22. Given any directed graph G = (V,E) on n vertices and a positive
integer k, we can preprocess G in polynomial time to build a data structure of O(2kn)
words that, after the failure of any set F of at most k edges or vertices, can determine
in O(2kn) time whether the SCCs of graph G \ F are the same as those of graph G.

8.2. Fault-tolerant algorithm for reporting dominator tree of a graph.
Given a directed graph G and a source vertex s we say that vertex v dominates vertex
w if every path from s to w contains v [20]. The vertex v is the immediate dominator of
w if every dominator of w (other than w itself) is also a dominator of v. A dominator
tree is a tree rooted at s where the children of each node are those nodes that it
immediately dominates [20]. Buchsbaum et al. [9] gave an O(m) time algorithm for
computing dominators and dominator tree. Here we show how this algorithm can
be combined with the concept of k-FTRS to obtain a fault-tolerant algorithm for
reporting the dominator tree after the failure of any k edges or vertices. Let H be a
(k+ 1)-FTRS for graph G. It is easy to see that on failure of any set F of k edges or
vertices, the graph H \ F is still a 1-FTRS for graph G \ F . Thus dominators of a
vertex w in graph H \F are identical to those in graph G\F . So in order to compute
the dominator tree of G \ F it suffices to run the algorithm of Buchsbaum et al. [9]
on graph H \F . This would take time of the order of the number of edges in H, that
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is, O(2kn). The space used is also O(2kn), as it suffices to store just the graph H.
Thus we get the following theorem.

Theorem 23. Given any directed graph G = (V,E) on n vertices, a source s ∈ V ,
and a positive integer k, we can preprocess G in polynomial time to build a data
structure of O(2kn) words that, after the failure of any set F of at most k edges or
vertices, can compute the dominator tree of G \ F in O(2kn) time.

9. Future work. In this paper, we showed the construction of a sparse subgraph
with at most 2kn edges that preserves reachability from a designated source s to each
v ∈ V after a failure of any set of at most k edges or vertices. There are two natural
extensions of this problem. The first is to extend it from single-source to multiple
sources: given a source set S ⊂ V and any integer k, compute a sparse subgraph that
preserves reachability for each v ∈ V from each s ∈ S upon failure of any k edges or
vertices. The second is to compute a pairwise FTRS structure: given a set of pairs
P ⊂ V ×V , and any integer k, compute a sparse subgraph that preserves reachability
from u to v for each (u, v) ∈ P upon failure of any k edges or vertices. These extensions
have been previously studied for the well-known problem of spanners for undirected
graphs [18, 19, 8, 7]. Another important direction of study is computing a sparse
subgraph that preserves a strong-connectivity or a biconnectivity relation among the
vertices of a given graph upon failure of any k edges or vertices.
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