
On Dynamic DFS Tree in Directed Graphs

Surender Baswana and Keerti Choudhary

Department of CSE, IIT Kanpur
Kanpur, India

{sbaswana,keerti}@cse.iitk.ac.in

http://www.cse.iitk.ac.in

Keywords: dynamic, decremental, directed, graph, depth first search

Abstract. Let G = (V, E) be a directed graph on n vertices and m

edges. We address the problem of maintaining a depth first search (DFS)
tree efficiently under insertion/deletion of edges in G.

1. We present an efficient randomized decremental algorithm for main-
taining a DFS tree for a directed acyclic graph. For processing any
arbitrary online sequence of edge deletions, this algorithm takes ex-
pected O(mn log n) time.

2. We present the following lower bound results.

(a) Any decremental (or incremental) algorithm for maintaining the
ordered DFS tree explicitly may require Ω(n3) total update time
in the worst case.

(b) Any decremental (or incremental) algorithm for maintaining the
ordered DFS tree is at least as hard as computing all-pairs reach-
ability in a directed graph.

1 Introduction

Depth First Search (DFS) is a well known graph traversal technique. Tarjan,
in his seminal work [18], demonstrated the power of DFS traversal for solving
various fundamental graph problems, namely, connected components, topological
sorting and strongly connected components.

A DFS traversal is a recursive algorithm to traverse a graph. Let G = (V, E)
be a directed graph on n = |V | vertices and m = |E| edges. The DFS traversal
carried out in G from a vertex r ∈ V produces a tree, called DFS tree rooted
at r. This tree spans all the vertices reachable from r in G. It takes O(m + n)
time to perform a DFS traversal and generate its DFS tree. A DFS tree leads
to a classification of all non-tree edges into three categories, namely, back edges,
forward edges, and cross edges. Most of the applications of a DFS tree exploit
the relationship among the edges based on this classification. For a given graph,
there may exist many DFS trees rooted at a vertex r. However, if the DFS
traversal is performed strictly according to the adjacency lists, then there will
be a unique DFS tree rooted at r. The ordered DFS problem is to compute the
order in which the vertices get visited during this restricted traversal.

2 S. Baswana and K. Choudhary

Most of the graph applications in real life deal with a graph that is not static.
Instead, the graph keeps changing with time - some edges get deleted while
some new edges get inserted. The dynamic nature of these graphs has motivated
researchers to design efficient algorithms for various graph problems in a dynamic
environment. Any algorithmic graph problem can be modeled in the dynamic
environment as follows. There is an online sequence of insertion and/or deletion
of edges, and the aim is to update the solution of the graph problem efficiently
after each edge insertion/deletion. There exist efficient dynamic algorithms for
various fundamental problems in graphs [5, 10, 15, 16, 19].

In this paper we address the problem of maintaining a DFS tree in a dy-
namic graph. We believe that efficient algorithms for this problem will have
potential to provide efficient algorithms for many other graph problems. One
such problem is maintaining topological ordering in a directed acyclic graph
(DAG). Though there are efficient incremental algorithms for this problem [3,
9], there is no nontrivial algorithm for topological ordering in a fully dynamic
environment. Observe that we just need to compare the finish time of two ver-
tices in the DFS tree to determine their order in the topological ordering. Using
standard data structures for dynamic trees [17], this information can be retrieved
in O(log n) time. Hence an efficient dynamic algorithm for DFS tree in a DAG
will immediately imply a fully dynamic algorithm for topological ordering.

Though an efficient algorithm is known for the static version of the DFS
tree problem, the same is not true for its dynamic counterpart. Reif [12, 13]
and Milterson et al. [11] addressed the complexity of the ordered DFS problem
in a dynamic environment. Milterson et al. [11] introduced a class of problems
called non-redundant polynomial (NRP) complete. They showed that if the
solution of any NRP -complete problem is updatable in O(polylog(n)) time,
then the solution of every problem in the class P is updatable in O(polylog(n))
time. The ordered DFS tree problem was shown to be NRP -complete. So it is
highly unlikely that any O(polylog(n)) update time algorithm would exist for
the ordered DFS problem in the dynamic setting.

Apart from showing the hardness of the ordered DFS tree problem, very little
work has been done on the design of any non-trivial algorithm for the problem
of maintaining any DFS tree in a dynamic environment, Franciosa et al. [7, 8]
designed an algorithm for maintaining a DFS tree in a DAG under insertion of
edges. For any arbitrary sequence of edge insertions, this algorithm takes O(mn)
total time to maintain the DFS tree from a given source. This incremental algo-
rithm is the only non-trivial result known for the dynamic DFS tree problem in
directed graphs. For the related problem of maintaining a breadth first search
(BFS) tree in directed graphs, Franciosa et al. [6] designed a decremental algo-
rithm that achieves O(n) amortized time per edge deletion.

In this paper, we complement the existing upper and lower bound results for
the dynamic DFS tree problem in a directed graph. Our main result is the first
non-trivial decremental algorithm for a DFS tree in a DAG.

On Dynamic DFS Tree in Directed Graphs 3

1.1 Decremental algorithm for DFS tree in DAG

We present a decremental algorithm for maintaining a DFS tree in a DAG that
takes takes expected O(mn log n) time to process any arbitrary online sequence
of edge deletions. Hence the expected amortized update time per edge deletion
is O(n log n). We now provide an overview of our randomized algorithm.

Consider the deletion of a tree edge, say (a, b), in a DFS tree. It may turn out
that each vertex of subtree T (b) may have to be hung from a different parent in
the new DFS tree (see Figure 1). This is because the parent for a vertex in a DFS
tree depends upon the order in which its in-neighbors get visited during the DFS
traversal.

r

a

b

c

d

e

Fig. 1. Deletion of edge (a, b)
results in the change of parent
of every vertex in T (b).

In order to achieve better update time, we use
randomization in the DFS traversal. Once the
traversal reaches a vertex v, the next vertex to be
traversed is selected randomly uniformly among
all unvisited neighbors of v. Our decremental al-
gorithm maintains this randomized DFS tree at
each stage. This randomization plays a crucial
role in fooling the adversary that generates the
sequence of edge deletions: For a pair of vertices,
say u and x, the deletion of very few (in expecta-
tion) outgoing edges of u will disconnect the tree
path from root to x. Hence a vertex will have to
search for a new parent fewer times during any

given sequence of edge deletions. We analyze this algorithm using probability
tools and some fundamental properties of a DFS tree in a DAG. This leads us
to achieve an upper bound of O(mn log n) on the expected running time of this
algorithm for any arbitrary sequence of edge deletions.

The DFS tree maintained (based on the random bits) by the algorithm at
any stage is not known to the adversary for it to choose the updates adaptively.
This oblivious adversarial model is no different from randomized data-structures
like universal hashing.

1.2 Lower bounds on dynamic DFS tree

We get the following lower bound results for maintaining an ordered DFS tree.

1. The most common way of storing any rooted tree is by keeping a parent
pointer for each vertex in the tree. We call this representation an explicit
representation of a tree. We establish a worst case lower bound of Ω(n3)
for maintaining the ordered DFS tree explicitly under deletion (or insertion)
of edges. This lower bound holds for undirected as well as directed graphs.
Recently, an O(n2) time incremental algorithm [2] has been designed for
maintaining a DFS tree explicitly in any undirected graph. Therefore, our
lower bound result implies that maintaining a DFS tree explicitly is provably
faster than maintaining an ordered DFS tree by a factor of Ω(n) in the
incremental environment.

4 S. Baswana and K. Choudhary

2. We show that the dynamic DFS tree problem in a directed graph is closely
related to the static all-pairs reachability problem. We provide an O(m + n)
time reduction from the static all-pairs reachability problem to decremental
(or incremental) maintenance of the ordered DFS tree in a graph G′ with
O(m) edges and O(n) vertices. This reduction is similar to the reduction
technique used by Roditty and Zwick [14] for decremental (or incremental)
BFS tree problem. This reduction implies a conditional lower bounds of
Ω(min(mn, nω)) on the total update time and Ω(min(m, nω−1)) on the worst
case update time per edge deletion for any decremental (or incremental)
algorithm for the ordered DFS tree problem. Here ω is the exponent of the
fastest matrix multiplication algorithm and, currently ω < 2.373 [20].

1.3 Organization of the paper

We describe notations and terminologies related to a DFS tree in Section 2. In
Section 3, we first describe a deterministic algorithm for maintaining a DFS tree
in a DAG under deletion of edges. This algorithm is very simple. However, in
the worst case, it can take Θ(n4) time on a graph with Θ(n2) edges. In Section
4, we show that by adding a small amount of randomization to this algorithm,
its expected running time gets reduced to O(mn log n). In Section 5, we provide
lower bounds on the dynamic DFS tree problem.

2 Preliminaries

Given a directed acyclic graph G = (V, E) on n = |V | vertices and m = |E| edges,
and a given root vertex r ∈ V , the following notations will be used throughout
the paper.

– T : DFS tree of G rooted at r at any particular time.
– start-time(x): The time at which the traversal reaches x for the first time

when we carry out the DFS traversal associated with T .
– finish-time(x): The time at which DFS traversal is finished for vertex x.
– deg(x) : The number of edges entering into vertex x.
– IN(x) : The list of vertices of T having an outgoing edge into x; this list is

sorted in topological order.
– OUT (x) : The list of vertices of T having an incoming edge from x.
– par(x) : Parent of x in T .
– path(x) : Path from r to x in T .
– level(x) : Level of a vertex x in T s.t. level(r) = 0 and level(x) =

level(par(x)) + 1.
– T (x) : The subtree of T rooted at a vertex x.
– LCA(x, y) : The Lowest Common Ancestor of x and y in tree T .
– LA(x, k) : The ancestor of x at level k in tree T .

Our algorithm uses the following results for the dynamic version of the Lowest
Common Ancestor (LCA) and the Level Ancestors (LA) problems.

On Dynamic DFS Tree in Directed Graphs 5

Theorem 1 (Cole and Hariharan 2005[4]). There exists a data structure
for maintaining a rooted tree using linear space that can answer any LCA query
in O(1) time and can handle insertion or deletion of a leaf node in O(1) time.

Theorem 2 (Alstrup and Holm 2000[1]). There exists a data structure for
maintaining a rooted tree using linear space that can answer any level ancestor
query in O(1) time and can handle insertion of a leaf node in O(1) time.

The data structure for Level Ancestor problem can be easily extended to
handle deletion of a leaf node in amortized O(1) time using the standard tech-
nique of periodic rebuilding. The following lemma (with proof in the Appendix)
will play a crucial role in our randomized decremental algorithm for DFS tree.

Lemma 1. Let y and z be any two vertices in a given directed acyclic graph. If
there is a path from y to z, then the following two properties hold true for each
DFS traversal carried out in the graph.

P1: finish-time(z) < finish-time(y).
P2: If start-time(y) < start-time(z), then z must be a descendant of y in

the DFS tree.

3 A Simple and Deterministic Decremental Algorithm

We shall now present a deterministic and very simple algorithm for maintaining
the ordered DFS tree defined by a fixed permutation of vertices.

Let σ be a permutation of V (a bijective mapping from V to [1..n]). We
sort the adjacency list (i.e. OUT (x)) of each vertex x in the increasing order
of σ value. T is initialized as the ordered DFS tree of G with respect to these
sorted adjacency lists. Throughout the sequence of edge deletions, our algorithm
maintains the following invariant.

I: T is the ordered DFS tree corresponding to σ at any instant of time.

Consider deletion of an edge (u, v). We first remove u from IN(v) and v from
OUT (u). Now if (u, v) is not a tree edge, then we just delete edge (u, v). Other-
wise we scan the vertices of T (v) in the topological ordering, and process each
vertex x ∈ T (v) as follows.

1. If IN(x) is empty, then we set its parent pointer to null and for each out-
neighbor y of x, delete x from IN(y).

2. If IN(x) is non-empty then we hang x appropriately from its new parent in
the DFS tree by executing procedure Hang(x) explained below.

Note that the processing of vertices in the topological ordering is helpful because
when a vertex x is processed the positions of all its in-neighbors would have
already been fixed in the new DFS tree.

6 S. Baswana and K. Choudhary

Procedure Hang(x): hangs ver-
tex x appropriately in T to pre-
serve the invariant I.

1 par(x)← ∅;
2 w ← MinFinish(x);
3 for y ∈ IN(x)\{w} do
4 if y = LCA(y, w) then
5 z ← LA(w, 1+level(y));
6 if σ(x) < σ(z) then
7 par(x)← y;
8 end

9 end

10 end
11 if par(x) = ∅ then par(x)← w;
12 level(x) = 1 + level(par(x));
13 Return;

Procedure MinFinish(x): com-
puting x’s in-neighbor having
minimum finish time.

1 w ← First vertex in IN(x);
2 for y ∈ IN(x)\{w} do
3 z ← LCA(y, w);
4 if w = z then w← y;
5 else if y 6= z then
6 a← LA(y, 1+level(z));
7 b← LA(w, 1+level(z));
8 if σ(a) < σ(b) then
9 w ← y;

10 end

11 end

12 end
13 Return w;

We now explain procedure Hang(x). Let w be the vertex from IN(x) with
minimum finish time. Then the in-neighbors of x visited before w must lie on
path(w). Now consider any in-neighbor y of x lying on path(w). Let z be its child
on path(w). Then at the time when DFS traversal reaches w, vertex y would
have scanned only upto those vertices in its adjacency list whose σ value is less
than equal to σ(z). Thus if σ(x) > σ(z), then x would not have been scanned by
y and thus cannot be its child. But if σ(x) < σ(z), then x would be a child of y
in case it is unvisited at the time when DFS traversal reaches y. Based on this
observation we can conclude the following. Let b be the first vertex in IN(x)
such that b is ancestor of w and the child of b on path(w) has σ value greater
than σ(x) (see Figure 2). Then b is assigned as parent of x. However, if no such
vertex exists, then x is hung from w. Hanging x in this manner ensures that the
invariant I is maintained.

rr

uu

vv
ww x

x

aa

bb

cc

a′

a′

b′b′

Fig. 2. Illustration of procedure Hang(x) : (i) w is vertex in IN(x) having minimum
finish time; (ii) x does not hang from c as it is not on path(w); (iii) x does not hang
from a as σ(a′) < σ(x); (iv) x hangs from b as σ(x) < σ(b′).

On Dynamic DFS Tree in Directed Graphs 7

We now explain procedure MinFinish(x) that computes the in-neighbor w
of x with minimum finish time. w is first initialized to be an arbitrary vertex
in IN(x). Then we scan IN(x), and for each y ∈ IN(x) if finish-time(y) <
finish-time(w) then we update w to y. The finish-time of vertices y and w
can be compared as follows. Let z = LCA(y, w). If w is ancestor of y, i.e. w = z
then finish-time of w would be greater than that y, and vice-versa. Otherwise if
there is no ancestor-child relationship between them, then let a, b be respectively
the children of z on path(y) and path(w). Now finish-time of y would be less
than that of w if and only if σ(a) < σ(b). This is because a would be visited
before b if σ(a) < σ(b), and then start-time (as well as finish-time) of all the
vertices in T (a) would be less than that of vertices in T (b), and vice versa.

We shall now analyze the time complexity of this decremental algorithm.
The procedure Hang(x) and MinFinish(x) scans IN(x) and uses only LA/LCA
queries that can be answered in O(1) time (see Theorems 1 and 2). So, time taken
by each of them is O(deg(x)). The scanning of the vertices of T (v) in topological
ordering can be done in linear time by using any integer sorting algorithm. Thus
the time taken to handle deletion of tree edge (u, v) is Θ(

∑
x∈T (v) deg(x)). Now

it follows from the discussion given above that a vertex x is processed during
an edge deletion if that edge lies on the tree path from root to x. Suppose for a
given sequence of edge deletions, this event happens c(x) times for a vertex x.
Then we get the following theorem.

Theorem 3. There exists a decremental algorithm for maintaining a DFS tree
T that takes Θ(

∑
x deg(x) · c(x)) time where c(x) is the number of times vertex

x loses an edge on its path from the root in T during a given sequence of edge
deletions.

The algorithm for handling deletion of an edge described above is simple.
However, this algorithm can be as inefficient asymptotically as recomputing the
DFS tree from scratch after each edge deletion (see Observation 1 in Section 5).

4 Randomized Algorithm

The only difference between our deterministic algorithm described above and the
randomized algorithm is that in the randomized version σ is chosen randomly
uniformly in the beginning of the algorithm. We shall now show that for any ar-
bitrary sequence of edge deletions, the algorithm will take expected O(mn log n)
time to maintain a DFS tree.

4.1 Analysis of the algorithm

Let x be any vertex reachable from u in G. x may be reachable from u by a direct
edge or through a path from some of its outgoing neighbors. Let Su be the set
consisting of all those vertices v ∈ OUT (u) such that at the time of deletion of
edge (u, v), x was reachable from v. Note that x may also be present in set Su

if (u, x) ∈ E. It can be observed that for vertex v ∈ OUT (u)\Su, the deletion of

8 S. Baswana and K. Choudhary

(u, v) will have no influence on x, as at that time x was already unreachable from
v. For each vertex v ∈ Su, define delete-time(v) as the time at which (u, v)
is deleted. Let 〈v1, v2, . . . , vk〉 be the sequence of vertices from Su arranged in
increasing order of delete-time. Observe that every edge from {u}×Su, at the
time of its deletion, could potentially be present on the path from x to root in T .
However, we will now prove that if σ is selected randomly uniformly, then this
may happen only O(log k) times on expectation for any given sequence of edge
deletions. For this purpose, we first state a lemma that shows the relationship
between any two vertices from set Su. This lemma crucially exploits the fact the
G is acyclic.

Lemma 2. Suppose (u, vi) is present in the DFS tree T . If there is any j > i
with σ(vj) < σ(vi), then

1. start-time(vj) < start-time(vi).
2. There is no path from vj to vi in the present graph.

Proof (u, vi) belongs to the DFS tree. So at the moment DFS visited u, vi

must be unvisited. Since σ(vj) < σ(vi) and vj has an incoming edge from u,
so vj will be visited (if not already visited) before vi. So start-time(vj) <
start-time(vi).

If there is a path from vj to vi in the present graph, then it follows from
property P2 of DFS traversal in DAG (stated in Lemma 1) that vi must be
a descendant of vj in the DFS tree T . But this would imply that u is also
descendant of vj in T since u is parent of vi in T . This tree path from vj to u, if
exists, and the edge (u, vj) ∈ E would form a cycle. This is a contradiction since
the graph is acyclic. �

The following lemma precisely states the conditions under which the deletion
of (u, vi) will have no influence on x.

Lemma 3. Suppose (u, vi) is a tree edge at some time. If there is any j > i
with σ(vj) < σ(vi), then x does not belong to T (vi) at that time.

Proof As stated above vertex x is reachable from vj , or x is vertex vj itself. So
from property P1 stated in Lemma 1 it follows that finish-time(x) ≤ finish-

time(vj). It also follows from Lemma 2 that start-time(vj) < start-time(vi)
and there is no path from vj to vi in the graph. Therefore, finish-time(vj) <
start-time(vi). Hence we get the following relations.

finish-time(x) ≤ finish-time(vj) < start-time(vi)

So vi can not be ancestor of x in T . Hence x /∈ T (vi). �

Lemma 3 leads to the following corollary.

Corollary 1. If there exists j satisfying i < j and σ(vj) < σ(vi), then the
deletion of the edge (u, vi) will have no influence on the path from root to x in
the DFS tree.

On Dynamic DFS Tree in Directed Graphs 9

Lemma 4. On expectation, there are O(log k) edges from {(u, vi)|1 ≤ i ≤ k}
that may lie on the tree path from u to x at the time of their deletion.

Proof For each vertex vi, 1 ≤ i ≤ k, we define a random variable Yi as follows.
Yi is 1 if x belongs to T (vi) at the time of deletion of edge (u, vi), and 0 otherwise.

Let Y =
∑k

i=1 Yi. It follows from Corollary 1 that if Yi = 1 then for all j > i,
σ(vj) is greater than σ(vi). As σ is a uniformly random permutation, so

P [σ(vj) > σ(vi), ∀j, i < j ≤ k] =
1

k − i + 1

Thus E[Yi] ≤
1

k−i+1 , and so using linearity of expectation, E[Y] ≤
∑k

i=1
1

k−i+1 =
O(log k). �

Hence, if x is reachable from u in the initial graph, then for any arbitrary
sequence of edge deletions, we can conclude the following. Upon deletion of
expected O(log n) outgoing edges of u, x will have to be re-hung in the DFS tree.
Therefore, using Theorem 3, the expected time complexity of the randomized
algorithm for processing any arbitrary sequence of edge deletions is O(mn log n).

Theorem 4. Let G be a DAG on n vertices and m edges and let r ∈ V . A DFS
tree rooted at r can be maintained under deletion of edges using an algorithm that
takes expected O(mn log n) time for any arbitrary sequence of edge deletions.

5 Lower bounds for dynamic DFS tree problem

5.1 Maintaining ordered DFS tree explicitly

We show that the problem of maintaining the ordered DFS tree explicitly may
require Ω(n3) time in total for directed as well as undirected graphs. For this we
provide constructions of graphs with Θ(n) vertices and then present a sequence of
edge deletions and an ordering σ such that each edge deletion results in changing
the parent of Θ(n) vertices in the ordered DFS tree defined by σ.

A

B

a1 a2 an

b1 b2 bn

y1 y2 yn

z1 z2 zn

r

Graph H1

Graph H2

Fig. 3. Subgraphs H1 and H2

First we prove the result for the undirected graphs. Let H1 be a graph with
2n + 1 vertices - r, a1, .., an, b1, .., bn. The edges of H1 are the pairs (r, ai) and
(ai, bj) for i, j in range 1 to n. Let H2 be another graph with 2n vertices -

10 S. Baswana and K. Choudhary

y1, .., yn, z1, .., zn, such that each yt has edges to zt−1, zt and zt+1. (see Figure
3). Now graph G is obtained by adding edge from bj to y1 whenever j is odd,
and from bj to z1 when j is even. This completes the construction of graph G.
Let σ =< r, y1, .., yn, z1, .., zn, a1, .., an, b1, .., bn >. We delete the edges in stages.
In stage i, we delete the edges incident on vertex ai and the sequence of deletions
is - (ai, b1), .., (ai, bn).

Lemma 5. On each edge deletion (ai, bj), parent of all the vertices in H2 is
altered in the ordered DFS tree T defined by σ.

Proof Consider the DFS tree just before the deletion of edge (ai, bj). The
DFS traversal starts with r and visit vertices a1 to ai. After ai it visits bj, and
then visits y1/z1 depending on whether j is odd or even. If y1 is the first vertex
visited in H2 then the sequence of vertices visited in H2 would be y1, z1, y2, z2, ..,
yn, zn. And if z1 is visited first then the sequence would be z1, y1, z2, y2, .., zn, yn.
Thus if j is odd then for each t, yt is parent of zt in T , and if j is even then for
each t, yt is child of zt in T . Hence each edge deletion (ai, bj) results in changing
of parent of all vertices in H2. �

We now prove the result for the directed graphs. Let H1 be the same graph
as described earlier except that (r, ai) and (ai, bj) are now directed edges. Let H3

be a graph on n vertices - x1, .., xn where each xt is a singleton vertex. Directed
graph G′ is obtained by adding edges from each bj to all vertices in H3. The
ordering is σ =< r, x1, .., xn, a1, .., an, b1, .., bn > and we use the same sequence
of edge deletions as for the undirected case.

Lemma 6. On each edge deletion (ai, bj), parent of all the vertices in H3 is
altered in the ordered DFS tree T defined by σ.

Proof Note that at any instant of time all the vertices of H3 would be hanging
from the same vertex in H1. Now after deletion of (ai, bj) edge, each vertex of
H3 will hang from vertex bj+1 if j < n, and b1 otherwise. Thus on each edge
deletion, parent of all vertices in H3 changes. �

Theorem 5. For each n > 1, there exists a directed (undirected) graph with
Θ(n) vertices such that any decremental algorithm for maintaining the explicit
ordered DFS tree for it requires Ω(n3) time in total.

Observation 1 In the directed graph G′ described above, each vertex xt in H3

changes its parent on deletion of (ai, bj) edge. So the total number of times xt

changes its parent is Θ(n2). Notice that the in-degree of xt remains n through
out the sequence of edge deletions. Thus Theorem 3 implies that the total time
taken by the deterministic algorithm in Section 3 for this graph will be Θ(n4).

5.2 Partial dynamic ordered DFS tree and static all-pairs
reachability

Let G = (V, E) be a directed graph. LetR(v) denote the set of vertices reachable
from v ∈ V . The objective of the all-pairs reachability problem is to compute

On Dynamic DFS Tree in Directed Graphs 11

R(v) for each v ∈ V . Let A be any decremental algorithm for maintaining the
ordered DFS tree from a vertex in a directed graph. We shall now show that we
can compute R(v) for all v by executing A on a graph G′ of almost same size
formed by suitable augmentation of G.

v1 v2 v3

s

G

vn

Fig. 4. Graph G′

Add a dummy vertex s to G and con-
nect it to each vertex of G by an edge. This
completes the description of graph G′. Let
v1, . . . , vn be any arbitrary sequence of V
and let σ be the ordering defined by this
sequence. We sort all the edges in the adja-
cency lists of G′ according to σ. This takes
O(m) time using any integer sorting algo-
rithm. Figure 4 illustrates G′.

We now execute A on graph G′ to maintain the ordered DFS tree from s.
The sequence of edge deletions is (s, v1), (s, v2), ..., (s, vn−1). The definition of
ordered DFS tree implies the following. Just before the deletion of edge (s, vi),
the set of vertices in the subtree T (vi) is exactly equal to R(vi). So we can
compute R(vi) by traversing T (vi) just before the deletion of edge (s, vi). In
this manner, at the end of deletion of edge (s, vn−1), we have obtained entire
reachability information of the graph. Since

∑
i |R(vi)| = O(n2), we can state

the following theorem.

Theorem 6. Let f(m, n) be the total time taken by any decremental algorithm
for maintaining the ordered DFS tree in a directed graph for any sequence of n
edge deletions. If the algorithm can report DFS tree at any stage in O(n) time,
we can compute all-pairs reachability of a directed graph on n vertices and m
edges in O(f(m, n) + n2) time.

Static all-pairs reachability is a classical problem and its time complexity
is O(min(mn, nω)) [20]. This bound has remained unbeaten till now. So it is
natural to believe that O(min(mn, nω)) is the best possible bound on the time
complexity of static all-pairs reachability. Therefore, Theorem 6 implies the fol-
lowing conditional lower bounds on the dynamic complexity of ordered DFS
tree.

Theorem 7. Let G be a directed graph on n vertices and m edges. Let A
be a decremental algorithm for maintaining the ordered DFS tree in G with
O(n) query time. The following lower bounds hold for A unless we have an
o(min(mn, nω)) time algorithm for the static all-pairs reachability problem.

– The total update time for any sequence of deletion of edges is Ω(min(mn, nω))

– The worst case time to handle an edge deletion is Ω(min(m, nω−1)).

For an algorithm that takes more than O(n) query time our reduction implies
the following lower bound.

12 S. Baswana and K. Choudhary

Theorem 8. Let q(m, n) be the worst case query time to report the DFS tree
and u(m, n) be the worst case time to handle an edge deletion by a decremental
algorithm for maintaining the ordered DFS tree. Then either q(m, n) or u(m, n)
must be Ω(min(m, nω−1)) unless we have an o(min(mn, nω)) time algorithm for
the static all-pairs reachability problem.

Remark 1. We can obtain exactly same conditional lower bounds as Theorems 7,
8 for any incremental algorithm for the ordered DFS tree in a digraph. The graph
G′ is the same except that we insert the edges in the order (s, vn), . . . , (s, v1),
and traverse the subtree T (vi) in the DFS tree just after the insertion of (s, vi).

6 Conclusion

We presented the first decremental algorithm for DFS tree in a DAG and also
provided conditional lower bounds for the hardness of ordered DFS tree prob-
lem in dynamic setting. Our decremental algorithm crucially uses the acyclic
condition of a DAG in order to achieve O(mn log n) time complexity. In fact we
can show that there exists a directed graph on which this algorithm may take
Ω(n4) time on expectation (see Appendix). So we would like to conclude with
the following open question whose answer will surely add significantly to our
understanding about the dynamic DFS tree problem.

– Does there exist an incremental/decremental algorithm with O(mn) update
time for DFS tree in general directed graphs ?

References

1. Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors
in dynamic trees. In ICALP, pages 73–84, 2000.

2. Surender Baswana and Shahbaz Khan. Incremental algorithm for maintaining dfs
tree for undirected graphs. In ICALP (1), pages 138–149, 2014.

3. Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. A new approach to
incremental topological ordering. In SODA, pages 1108–1115, 2009.

4. Richard Cole and Ramesh Hariharan. Dynamic lca queries on trees. SIAM J.
Comput., 34(4):894–923, 2005.

5. Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs
shortest paths. J. ACM, 51(6):968–992, 2004.

6. Paolo Giulio Franciosa, Daniele Frigioni, and Roberto Giaccio. Semi-dynamic
breadth-first search in digraphs. Theor. Comput. Sci., 250(1-2):201–217, 2001.

7. Paolo Giulio Franciosa, Giorgio Gambosi, and Umberto Nanni. On the structure
of dfs-forests on directed graphs and the dynamic maintenance of dfs on dag’s. In
ESA, pages 343–353, 1994.

8. Paolo Giulio Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental
maintenance of a depth-first-search tree in directed acyclic graphs. Inf. Process.
Lett., 61(2):113–120, 1997.

9. Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and
Robert Endre Tarjan. Incremental cycle detection, topological ordering, and strong
component maintenance. ACM Transactions on Algorithms, 8(1):3, 2012.

On Dynamic DFS Tree in Directed Graphs 13

10. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723–760, 2001.

11. Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto
Tamassia. Complexity models for incremental computation. Theor. Comput. Sci.,
130(1):203–236, 1994.

12. John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett.,
20(5):229–234, 1985.

13. John H. Reif. A topological approach to dynamic graph connectivity. Inf. Process.
Lett., 25(1):65–70, 1987.

14. Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In ESA, pages
580–591, 2004.

15. Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for di-
rected graphs. SIAM J. Comput., 37(5):1455–1471, 2008.

16. Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in
undirected graphs. SIAM J. Comput., 41(3):670–683, 2012.

17. Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci., 26(3):362–391, 1983.

18. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

19. Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.
20. Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. In STOC, pages 887–898, 2012.

A Appendix

A.1 Proof of Lemma 1

Let S be the set of vertices (including y and z) that lie on some path from y
to z. Let s be the vertex from set S that is visited first during a DFS traversal.
Note that z will be in the subtree rooted at s. So we will have -

start-time(s) ≤ start-time(z) < finish-time(z) ≤ finish-time(s) (1)

We consider two cases -

1. If s = y, then z will be descendant of y, and we will have finish-time(z) <
finish-time(y). Hence both P1 and P2 are true in this case.

2. Now if s 6= y, then by the definition of s, vertex s is visited before y. Now as
y cannot be descendant of s, there cannot be any ancestor-child relationship
between s and y. (Note that this is not true for general directed graphs).
Using these two facts we have -

start-time(s) < finish-time(s) < start-time(y) < finish-time(y) (2)

It follows from Inequalities 1 and 2 that start-time(z) < start-time(y)
and finish-time(z) < finish-time(y). So in this case also P1 holds true,
and as start-time(z) < start-time(y), P2 is vacuously true.

14 S. Baswana and K. Choudhary

A.2 The efficiency of the decremental algorithm for DFS tree on a
directed graph

The incremental algorithm of Franciosa et al. [7, 8] and the decremental algo-
rithm presented in this paper work only for DAG. It is natural to think how
critical is the acyclic condition of the DAG for the efficiency of these algorithms.
Indeed, it is very critical. To show this, we shall construct a directed graph G
on n vertices and prove that there exists a sequence of edge insertions for which
the incremental algorithm of Franciosa et al. [7, 8] takes Θ(n4) time. Then we
shall slightly modify the graph G and present a sequence of edge deletions for
which our decremental algorithm takes Θ(n4) time on expectation.

We begin with the following Lemma that captures the subtle differences
between a DFS tree for general directed graph and a DFS tree for DAG.

Lemma 7. Let T be any DFS tree for G and let u and x be vertices such that
finish-time(x)>finish-time(u). Then

– if G is acyclic, then there can not exist any path from u to x in G.
– if G is a general directed graph, then a path from u to x, if exists, must

contain some ancestor of u.

We shall use the following terminology for both the algorithms. Upon any
edge update, we say that a vertex x changes its position in the DFS tree if the
path from root to x in the DFS tree gets modified. A fact that holds for both
the algorithms is that whenever x changes its position, it incurs a computation
cost of deg(x).

Worst case example for the Incremental algorithm

The algorithm of Franciosa et al. [7, 8] takes O(mn) time for maintaining a DFS
tree in a DAG for any sequence of m edge insertions. Whenever an edge (u, v)
is inserted, the vertex v is appended to the end of the adjacency list of u. At
each stage, the algorithm maintains the ordered DFS tree according to these
adjacency lists. Since there is no cycle, it follows from Lemma 7 that a vertex
x changes its position in the DFS tree upon insertion of an edge (u, v) if and
only if x was not reachable from u before the insertion of (u, v) and has become
reachable from u after the insertion of (u, v). This implies that insertion of at
most one outgoing edge of u can change the position of x in the DFS tree. Hence
vertex x can charge deg(x) cost to any vertex u ∈ V only once during the algo-
rithm. This leads to O(mn) time complexity of the incremental algorithm. We
shall now provide construction of a directed graph G on 5n + 3 vertices. This
graph has two subsets of vertices U and X , each of size n. We shall present a
sequence of edge insertions such that whenever an outgoing edge is added to
u ∈ U , all vertices in X change their position in the DFS tree. Out-degree of
each vertex in X will be n− 1 and this will imply Θ(n4) update time.

On Dynamic DFS Tree in Directed Graphs 15

Description of graph G:
The graph G consists of two subgraphs H0 and H1 (see Figure 5). Subgraph H0

is a tree of height one rooted at r with a1, a2, . . . , an as its leaf nodes. Subgraph
H1 is a directed graph containing cycles and it consists of the following four
parts.

1. A subgraph H ′

0 which is a tree of height one rooted at s with b1, b2, . . . , bn

as its leaf nodes.
2. A directed chain C = (vn, vn−1, . . . , v1, v0). For j = 1 to n, (vj , s) is an edge

in H1.
3. A set X = {x1, .., xn} of n vertices. The subgraph induced on X is a complete

graph. For j = 1 to n, (v0, xj) is an edge in H1.
4. A set U = {u1, u2, . . . , un} of n vertices. For j = 1 to n, (bj, uj) and (uj, vn)

are edges in H1. (Edges in the set U × {vn} are not shown in the figure.)

r

H1

a1 a2 an−1
an

H0

s

b1 b2 bn

H ′

0

u1 u2 un−1 un

v0 v1 v2 vn

Set X

Fig. 5. Subgraphs H0, H1 of the directed graph G. Here H0 is acyclic, whereas H1 has
many cycles.

We assume the following conditions for the order in which vertices appear in
the adjacency lists in G.

C1 : Adj(r) = (a1, a2, . . . , an), i.e. aj appears before aj+1 in adjacency list of r.
C2 : Adj(s) = (b1, b2, . . . , bn), i.e. bj appears before bj+1 in adjacency list of s.
C3 : For j = 1 to n, s is the first vertex in the adjacency list of vj .

Note that the assumption stated above is indeed a valid assumption. This
is because in the algorithm of Franciosa et al. [7, 8], whenever an edge (a, b)
is inserted, the vertex b is appended at the end of the adjacency list of a. So
we can impose any order on the adjacency lists of G and while constructing G
incrementally, add the outgoing edges to each vertex according to that order only.

Sequence of Edge insertions:

16 S. Baswana and K. Choudhary

The edges are inserted in n rounds : Rn to R1 (so here the first round is Rn
and the last round is R1). In the round Rj we proceed as follows. First we in-
sert the edge (aj , vj) between the subgraphs H0 and H1. Next we add the edges
U × {vj−1} in the order - (un, vj−1), (un−1, vj−1), ..., (u1, vj−1). Thus there are
(n + 1) edges insertions in each round and there are total n rounds.

Analysis

Consider the round Rj. We will show that each edge insertion in this round will
lead to a change in the position of all vertices of set X .

rr

a1a1 ajaj an an

ss

b1b1 bn bn

u1u1 un un

v0

v0

vjvj

vj−1

vj−1

vj+1 vj+1vn vn

Set X

Set X

(i)

(ii)

Fig. 6. DFS tree obtained after addition of (i) edge (aj , vj) (ii) edge (un, vj−1).

Note that before the beginning of round Rj all the vertices in set U already
have edges to the vertices vj , vj+1, . . . , vn. So from each ui ∈ U there exists a
path to set X , but all such paths pass through vertex vj .

Consider the insertion of edge (aj , vj) in round Rj. So till now the edges
inserted between the subgraphs H0 and H1 are (aj , vj), . . . , (an, vn). Since aj

is first vertex in adj(r) which has an edge to subgraph H1, the subgraph H1

after insertion of edge (aj , vj) in round Rj would be hanging from vertex vj .
The DFS traversal after reaching vertex vj will first visit s due to condition
C3. The DFS tree after insertion of edge (aj , vj) is shown in Figure 6(i). After
reaching s, vertex b1 will be visited followed by u1. Note that vertices v0, . . . , vn

are reachable from u1, but the paths to v0, . . . , vj−1 are blocked by ancestor vj .
Hence only vj+1, . . . , vn will hang from u1. The vertex vj−1 thus hangs from vj

only. Consider the entire subtree consisting of the path (vj−1, . . . , v0) with X
hanging from v0. When we insert the edge (un, vj−1), this entire subtree will
hang from un as shown in Figure 6(ii). When we insert the edge (un−1, vj−1),
this entire subtree will hang from un−1. In this way, the vertices of this subtree
will change their position in the DFS tree total n + 1 times in round Rj. This

On Dynamic DFS Tree in Directed Graphs 17

shows that whenever an outgoing edge is added to u ∈ U , all vertices in X
change their position in the DFS tree. Therefore, based on the discussion above,
the incremental algorithm of Franciosa et al. [7, 8] for DFS tree will incur Θ(n4)
time on graph G.

Theorem 9. There exists a graph on Θ(n) vertices and a sequence of Θ(n2)
edge insertions such that the algorithm of Franciosa et al. [7, 8] for maintaining
a DFS tree takes Θ(n4) time.

Worst case example for the Decremental algorithm

We first provide an intuition for the limitation of our algorithm. The main reason
for O(mn log n) time complexity of our decremental algorithm was the following.
For a pair of vertices u and x, for any sequence of deletion of the outgoing edges
of u, vertex x will be change its position in the DFS tree only expected O(log n)
number of times. For the graph Gf that we will construct below, it will be shown
that this condition no longer holds.

Let Gf be the final graph obtained after all edge insertions in the graph consid-
ered in previous subsection. Now suppose Gf is the input graph for the decre-
mental setting, and the sequence of edge deletions are the same as sequence of
edge insertions, but in the reverse order. If all the conditions C1, C2, and C3 are
met for the adjacency lists of graph Gf , then on deletion of each edge, the set X
would be changing its relative position in the DFS tree. This can be easily seen
since the sequence of DFS trees obtained during edge insertions would now be
just reversed in the deletions case.

But the adjacency lists for decremental case are randomly uniformly per-
muted. So none of the three conditions can be guaranteed. We reformulate these
conditions as follows.

C1,j : The vertex from the set {aj, aj+1, . . . , an} that is visited first during the
DFS traversal starting from r is aj .

C2,j : The vertex from the set {bj, bj+1, . . . , bn} that is visited first during the
DFS traversal starting from s is bj.

C3,j : s is the first vertex in the Adjacency list of vj .

Suppose we take a uniformly random permutation σ of vertices and sort the
Adjacency list of each vertex according to it. Then condition C3,j will hold for
n/2 values of j on expectation. In order to take care of conditions C1,j and C2,j ,
we modify the subgraphs H0 and H ′

0 as shown in Figure 7. It can be observed
that, in the modified graph H0, with probability half just before deletion of
(aj , vj), the subgraph H1 is hanging from vertex vj .

Sequence of Edge deletions
The edges are deleted in n rounds : R1 to Rn. In the round Rj we proceed as
follows. First we delete the edges from set U × {vj−1} in the order - (u1, vj−1),
(u2, vj−1), ..., (un, vj−1). Next we delete the edge (aj , vj).

18 S. Baswana and K. Choudhary

r = w0r = w0

a1a1

a2a2

a3a3

a4a4

a5a5

a6a6

w1

w2

w3

w4

w5

w6

(i) (ii)

Fig. 7. (i) Directed acyclic graph H0 for the decremental case. (ii) A DFS tree obtained
for graph H0 when adjacency lists are uniformly randomly permuted.

Analysis
For the purpose of analysis, we define a subset of rounds R and a subset of
vertices U ′ ⊆ U .

– R = {Rj | Conditions C1,j and C3,j hold}.
– U ′ = {ui | Condition C2,i holds}.

Consider a round Rj ∈ R. We will have that the subgraph H1 hangs from vertex
vj , and the DFS traversal after reaching vj first visits vertex s. Consider the stage
when the edges in {u1, . . . , ui−1} × {vj−1} have already been deleted. The next
edge to be deleted is (ui, vj−1). If the condition C2,i holds, then the vertices
vj−1, . . . , v0 and set X will hang from ui just before the deletion of (ui, vj−1).
So during round Rj, the deletion of an outgoing edge from each u ∈ U ′ results
in the change in position of all vertices in set X .

Thus the vertices in set X change their position at least |R|·|U ′| times. Recall
that the subgraph induced by X is a complete graph. Hence the running time of
the decremental algorithm is of the order of n2 · |R| · |U ′|. It can be observed that
the expected size of R is n/4, and the expected size of U ′ is n/2. The random
variables |R| and |U ′| are independent. Therefore, the expected running time of
the decremental algorithm on Gf will be Θ(n4).

Theorem 10. There exists a graph on Θ(n) vertices, Θ(n2) edges, and a se-
quence of edge deletions such that our decremental algorithm for maintaining a
DFS tree takes Θ(n4) time on expectation.

