
Approximate shortest paths avoiding a failed vertex : near optimal datastrutures for undireted unweighted graphs ∗Surender Baswana† Neelesh Khanna‡AbstratLet G = (V, E) be an undireted unweighted graph. A path between any two verties u, v ∈ Vis said to be t-approximate shortest path if its length is at most t times the length of the shortestpath between u and v. We address the problem of building a ompat data struture whih ane�iently answer the following query for any u, v, x ∈ V and t > 1:Report t-approximate shortest path between u and v when vertex x failsWe present data strutures for the single soure as well as all-pairs versions of this problem.The query time guaranteed by our data strutures is optimal up to a onstant fator. Moreover,the size of eah of them nearly mathes the size of the orresponding data struture with nofailures.Keywords: shortest path, distane, approximate distane, orale.

∗The results of the preliminary version of this artile appeared in the proeedings of 27th International Symposiumon Theoretial Aspets of Computer Siene (STACS) held at Nany, Frane during Marh 6-8, 2010.
†Department of Computer Siene and Engineering, IIT Kanpur, India. Email : sbaswana�se.iitk.a.in. This workwas supported by Researh I Foundation, CSE, IIT Kanpur and by Indo-German Max Plank Center for ComputerSiene (IMPECS).
‡Orale India Pvt. Ltd., Bangalore - 560029, India. Email : neelesh.khanna�gmail.om.1

1 IntrodutionThe shortest paths problem is a lassial and well studied algorithmi problem of omputer siene.Let G = (V, E) be a given direted weighted graph on n = |V | verties and m = |E| edges. Thisproblem requires proessing of G to ompute a data struture whih an report shortest path ordistane between any two verties. Two well known and thoroughly studied versions of this problemare the single soure shortest paths (SSSP) problem and the all-pairs shortest paths (APSP) problem.For any set S ⊂ V , let G\S denote the graph G after removing all verties of set S from it. Considerthe following extension of the shortest paths problem.Given a graph G = (V, E) and a small integer ℓ > 1, onstrut a ompat data struture whih, forany set S of at most ℓ verties, and any u, v ∈ V , an e�iently report the shortest path (or distane)from u to v in G\S.We may denote this path by P(u, v, S) and the orresponding distane by δ(u, v, S). The set Smay represent the set of failed verties in the graph at any moment, and the path P(u, v, S) is theshortest path from u to v avoiding these failed verties at that moment. It is required that eahsuh query gets answered in optimal time: δ(u, v, S) should be reported in O(1) time and the path
P(u, v, S) should be reported in time whih is of the order of the number of edges lying on the path.An ideal goal would be to understand the omplexity of the above problem for any arbitrary valueof ℓ. However, the �rst natural step in this diretion would be to thoroughly understand the omplexityof the ase ℓ = 1, that is, the shortest paths avoiding any single failed vertex. We fous on the singlesoure and all-pairs versions of this problem for undireted unweighted graphs. We show that we andesign extremely ompat data strutures for these versions at the expense of approximation, that is,reporting approximate shortest paths avoiding any failed vertex.MotivationThe problem of shortest paths avoiding a failed vertex is a very natural extension of the lassialshortest paths problem. This fat provides a justi�ation for a thorough study of this problem fromtheoretial perspetive. Moreover, this problem is also motivated by ertain appliations as follows.Almost all real life networks whih require e�ient solution of shortest paths are prone to fail-ure of nodes (verties) and/or links (edges). So these networks have to have some e�ient way ofreporting shortest paths avoiding the set of failed nodes (or links) at any given moment. Thoughthese networks are never immune to failures, it is also a fat that the failures are quite infrequent innormal irumstanes. Moreover, a failed node (or link) does not remain failed inde�nitely; insteadit revives and beome ative after some time due to some repair mehanism whih is usually presentin suh networks. These features an be modeled as follows. There will be at most ℓ failed nodes atany moment of time for some ℓ≪ n. However, the set of failed nodes may keep hanging as the timeprogresses: The old failed nodes may beome ative while some ative nodes may fail suh that thenumber of failed nodes at any moment is at most ℓ. A typial shortest path query in suh networkswould be the following. Given any subset S of at most ℓ failed nodes, and any u, v ∈ V , report theshortest path (or distane) from u to v in G\S. Moreover, eah suh query has to be answered asquikly as possible. In partiular, one a node fails, we should be able to quikly report the newshortest paths to any a�eted destination. This requirement seems quite natural, espeially in theommuniation networks, where any delay in reporting the new shortest path may lead to ongestiondue to the queues built up by the pakets whose shortest path has hanged.It follows from the disussion above that in addition to being a problem of independent interestfrom theoretial perspetive, the problem of shortest paths avoiding a failed vertex is motivated byertain pratial appliations as well. This problem is also losely related to the replaement pathsproblem [4, 16, 19, 21℄, the most vital node of a shortest path [20℄, and the k shortest simple pathsproblem [18, 25℄ whih have been studied quite extensively.Past work and the need of approximationConsider the problem of single soure shortest paths avoiding any single failed vertex. Let r be adesignated soure vertex. A trivial data struture for this problem is the following. For eah vertex2

x ∈ V , ompute and store the shortest paths tree at r in the graph G\{x}. The size of this datastruture will be Θ(n2). Demetresu et al. [9℄ proved a worst ase lower bound of Ω(m) on the size ofany data struture for the problem of single soure shortest paths avoiding any failed vertex. m anbe as large as Ω(n2). Hene, for the single soure version, in the worst ase, the trivial O(n2) upperbound on the size of any data struture is also asymptotially the best one an hope for.Interestingly, there are better results known for the all-pairs version of the problem of shortest pathsavoiding a failed vertex. The �rst signi�ant breakthrough on this problem was made by Demetresuet al. [9℄. They designed an O(n2 log n) spae data struture for a given direted weighted graph,namely distane sensitivity orale. This data struture is apable of reporting the distane (as wellas the shortest path) between any two verties avoiding any single failed vertex in O(1) time. Thepreproessing time of this data struture is O(mn2). Reently, Bernstein and Karger [5℄ improved thepreproessing time to O(mn log n).The quadrati lower bound on the spae omplexity of the single soure version of the problemimposes severe limitations on its solution in pratie. This inspires us to explore whether we an ahievesubquadrati or near linear size data struture at the expense of reporting approximate shortest pathfrom the soure avoiding any failed vertex. Even for the all-pairs version of the problem, the O(n2 log n)bound on the size of the data struture, though nearly optimal, is too large for many graphs whihappear in various large sale appliations [24℄. In most of these graphs it is usual to havem≪ n2, henea table of Θ(n2) size may be too large. In fat, due to the same reasons, many algorithms and datastrutures have been designed for the all-pairs approximate shortest paths problem (without failures)in undireted graphs (see [1, 2, 3, 7, 10, 24℄). The prime motivation underlying the design of thesealgorithms has been to ahieve subquadrati spae and/or sububi preproessing time. However, nodata struture has yet been designed for e�iently reporting approximate shortest paths avoiding anyfailed vertex.1.1 New results and overview of tehniquesWe present ompat data strutures for undireted unweighted graphs whih are apable of e�ientlyreporting approximate shortest path (or distane) between any two verties avoiding any failed vertex.A path between u, v ∈ V is said to be t-approximate shortest path if its length is at most t timesthat of the shortest path between the two. The fator t is usually alled the streth fator. Usingnew ideas ombined with the existing results and tehniques, we provide e�ient onstrution of suhdata strutures for both the single soure as well as all-pairs versions of this problem. The time takenby our data strutures to answer any approximate shortest path or distane query is optimal up toa onstant fator. The most impressive feature of our data strutures is their nearly optimal size. Infat, the size of eah of them almost mathes the size of the orresponding data struture with nofailures.Single soure approximate shortest paths avoiding any failed vertexFirst we onsider any undireted graph with nonnegative edge weights. For suh a graph and a sourevertex r, we present an O(m log n + n log2 n) time omputable data struture of size O(n log n). Thisdata struture an report a 3-approximate shortest path from r to any vertex v ∈ V avoiding any
x ∈ V . We then onsider undireted unweighted graphs and augment this data struture with someextra information. As a result, this new data struture an report a (1+ ǫ)-approximate shortest pathfrom the soure to any vertex avoiding any failed vertex for any given ǫ > 0. The spae oupied bythe data struture is O(n/ǫ3 + n log n).In order to ahieve ompat spae of these data strutures, we proeed as follows. Let P be any pathin the shortest paths tree rooted at the soure vertex in G. First we present a ompat data struturefor reporting approximate shortest paths from the soure when the failed vertex belongs to path P .A key feature of this data struture is that it has only a small number of speial verties for whihthe shortest paths from the soure avoiding any failed vertex will atually be stored. For reportingapproximate shortest path from the soure to any vertex v when any vertex fails, v will employ the3

data struture assoiated with one of these speial verties lying in its viinity. To failitate it, theundiretedness of the graph is used very ruially.One we have an e�ient data struture for handling failure of any vertex on a given path P , weextend it to handle failure of any arbitrary vertex using the heavy path deomposition tehnique givenSleator and Tarjan [22℄. Using this tehnique, we break the shortest path tree rooted at the soureinto vertex disjoint paths and build the data struture mentioned above for eah suh path. Thisextension is quite similar in spirit to any divide and onquer approah. In this manner we get ourdata struture for the single soure approximate shortest paths avoiding any failed vertex.An outome of independent interest from our data struture is the omputation of a subgraph of
O(n/ǫ3 +n logn) edges suh that eah shortest path from the soure to any vertex avoiding any singlefailed vertex is (1 + ǫ)-approximated in this subgraph.All-pairs approximate shortest paths orale avoiding any single failed vertexAmong the existing data strutures for all-pairs approximate shortest paths in undireted graphs[1, 2, 3, 7, 10, 24℄, the approximate distane orale of Thorup and Zwik [24℄ stands out due to itsamazing features. This data struture, in true sense, is a milestone in the area of all-pairs approximateshortest paths. Thorup and Zwik [24℄ showed that any undireted graph with nonnegative edgeweights an be preproessed in sububi time to build a data struture of size O(kn1+1/k) for any
k > 1. This data struture, despite of its subquadrati size, is apable of reporting (2k−1)-approximatedistane between any two verties in O(k) time, and hene the name orale. The orrespondingapproximate shortest path an also be reported in time whih is of the order of the number of edgeson the path. The size-streth trade o� ahieved by the orale is essentially optimal assuming the 48year old girth onjeture of Erd®s [12℄.It is a very natural question to explore if we an design all-pairs approximate distane orales whihmay handle any single vertex failure. We show that it is indeed possible for undireted unweightedgraphs. For this purpose, we use a ouple of new ideas on top of the existing approximate distaneorale of Thorup and Zwik [24℄. There are two basi strutures, namely ball and luster, whihform the building bloks of the approximate distane orale of Thorup and Zwik [24℄. We introduean ǫ-trimming of these strutures. Using the ǫ-trimming and a simple inverse relationship betweenballs and lusters, we sueed in making the approximate distane orale of Thorup and Zwik [24℄robust enough to handle any single vertex failure. Interestingly, we are able to preserve the originaltrade-o� between the spae and the streth as well. In preise words, we ahieve the following resulthere. For any ǫ > 0 and integer k > 1, we an preproess a given undireted unweighted graph tobuild a data struture of size O(k5

ǫ4 n1+ 1
k log3 n). This data struture is apable of answering a queryabout the shortest path between any two verties avoiding any single failed vertex with a guaranteeof (2k − 1)(1 + ǫ) on the streth. The query time is optimal up to a onstant fator.Reently and independently, Chehik et al. [6℄ solved quite a similar problem for edge failures.They showed that for any undireted graph with nonnegative edge weights and any integer f > 0, adata struture an be built whih an report an approximate shortest path between any two vertiesgiven any set of at most f failed edges. The streth of the reported path is at most (8k − 2)(f + 1),and the size of the data struture is O(fkn1+1/k log nW) where W is the ratio of the maximum tothe minimum edge weight in the given graph. Though the starting point of their data struture isthe approximate distane orale of Thorup and Zwik [24℄, they use many new ideas whih are quitedi�erent from ours.1.2 Related workTwo well researhed problems related to the results of this paper are the replaement paths problemand the k shortest paths problem. Both these problems have primarily been studied for a single souredestination pair (s, t). Let P be the shortest path from s to t. The replaement paths problem aims toompute the shortest s-t path avoiding any edge e lying on the path P . The k shortest paths problemaims to ompute the k shortest simple paths from s to t. These two problems have a lot of similarity.For example, the seond shortest path from s to t will be one of the replaement paths. In fat, as4

shown by Yen [25℄ and Lawler [18℄, an O(T (n)) time algorithm for the replaement paths problemimplies an O(kT (n)) time algorithm for the k shortest paths problem.Many e�ient algorithms have been designed for replaement paths problem in ertain lasses ofgraph [15, 19, 21℄. However, there has not been any o(mn) time algorithm till date for this problemin general graphs. Hershberger et al. [16℄ proved a lower bound of Ω(m
√

n) for the replaement pathsproblem and the k shortest paths problem in the path omparison model given by Karger et al. [17℄.So here again, approximation seems to be a natural diretion of researh. Reently, Bernstein [4℄designed an algorithm whih an report (1 + ǫ)-approximation of every replaement path for a givensoure destination pair. The running time of the algorithm is O(m log(nC/c)/ǫ) where C and c arerespetively the maximum and minimum edge weights in the graph.As desribed earlier, a pratial motivation for the shortest paths problem avoiding vertex failure isto study the dynami shortest paths problem in real life graphs and networks. There has been extensiveresearh on the dynami shortest path problem in the following model whih is quite di�erent fromthe one we desribed. There is an initial graph followed by an on-line sequene of insertion anddeletion of edges interspersed with shortest path (or distane) queries. Eah query has to be answeredwith respet to the graph whih exists at that moment (inorporating all the updates preeding thequery). The algorithmi objetive here is to maintain a data struture whih an answer any distanequery e�iently, and an be updated after any edge insertion or deletion in an e�ient manner. Inpartiular, the omplexity of the algorithm that updates this data struture should be signi�antlysmaller than that of the best stati algorithm. Many novel algorithms have been designed in the lastten years for the dynami shortest paths problem in this model (see [8℄ and the referenes therein).On one hand, this model is important sine it aptures the worst possible hardness of any dynamigraph problem. However, on the other hand, it an also be onsidered as a very pessimisti model forthe dynami shortest paths problem in real life networks.1.3 OrganizationSetion 2 provides various notations and lemmas to be used throughout this paper. Setion 3 and 4are devoted to the data strutures for single soure approximate shortest paths avoiding any failedvertex. Setion 5 is devoted to all-pairs approximate shortest paths orale avoiding any failed vertex.Like all the previous algorithms for single vertex failure, our algorithms an be easily adapted forhandling single edge failure as well without any asymptoti inrease in the spae and time omplexity.2 PreliminariesWe use the following notations in the ontext of a given undireted graph G = (V, E) with n = |V |,
m = |E| and a weight funtion ω : E →R+. We shall use r to denote the soure vertex.
• Tr : the shortest paths tree rooted at r. Though the underlying graph is undireted, yet it helpsoneptually to view eah edge of Tr direted away from r.
• Tr(x) : the subtree of Tr rooted at x.
• P(x, y) : the shortest path between x and y.
• su(v, Q) : suessor of v on path Q. The path Q under onsideration will usually be asubpath in Tr, and hene su(v, Q) will be uniquely de�ned. [We shall omit the symbol Qfrom su(v, Q) when the path Q under onsideration is known from the ontext.℄
• δ(x, y) : the length of the shortest path between x and y. For any subset B of verties, we de�ne

δ(x, B) as miny∈B δ(x, y).
• P(x, y, z) : the shortest path between x and y avoiding vertex z.
• δ(x, y, z) : the length of the shortest path between x and y avoiding vertex z. For any subset Bof verties, we de�ne δ(x, B, z) as miny∈B δ(x, y, z).5

• Gr(x) : the subgraph indued by the verties of Tr(x)\{x} and augmented by vertex r and edgesfrom r as follows. For eah v ∈ Tr(x), v 6= x with neighbors outside Tr(x), keep an edge (r, v) ofweight = min(u,v)∈E,u/∈Tr(x)(δ(r, u) + ω(u, v)).
• P · Q : a path formed by onatenating path Q at the end of path P with an edge (u, v) ∈ E,where u is the last vertex of P and v is the �rst vertex of Q.
• E(X) : the set of edges from E with at least one endpoint in X .We now state a ouple of properties and terminologies related to P(r, v, x). These will be used in aruial manner in this paper.1. optimal subpath propertyEah subpath of P(r, v, x) is also the shortest path between its endpoints upon failure of x.2. triangle inequalityFor eah x, v, z ∈ V , δ(r, v, x) ≤ δ(r, z, x) + δ(z, v, x)3. detourPath P(r, v, x) must leave the path P(r, v) at some vertex before x, say a, and join it bak atsome vertex after x, say b. The subpath of P(r, v, x) between vertex a and b, say pa,b, willinterset P(r, v) at exatly two verties, namely a and b. This path pa,b is alled the detourassoiated with P(r, v, x).The following important observation follows immediately from the optimal subpath property.Observation 2.1 [9℄ Let x be any vertex in Tr, and let v be any vertex belonging to the subtree Tr(x).The path P(r, v, x) must be of the form A ·B, where A is a path present in Tr\Tr(x) and B is a pathpresent in the subgraph of G indued by Tr(x)\{x}.Observation 2.1 and the de�nition of Gr(x) given above leads to the following lemma immediately.Lemma 2.1 In order to ompute shortest paths from r avoiding x, it su�es to perform Dijkstra'salgorithm from vertex r in the graph Gr(x).Lemma 2.1 leads to the following result for unweighted graph when the failed vertex lies within smalldistane from the soure. A generalized version of this result was used by Demetresu et al. [9℄ ine�ient onstrution of all-pairs distane sensitivity orale.Lemma 2.2 Consider an unweighted graph G = (V, E) and a vertex r ∈ V . For any integer t, wean preproess the graph in O(mt + nt log n) time to build a data-struture of size O(nt) whih ananswer shortest-path/distane queries from r to any vertex upon failure of any single vertex withindistane t from r.Proof: Observe that for unweighted graph, the shortest path tree Tr is the same as the breadth �rstsearh (BFS) tree. Let x1, . . . , xj be the verties lying at any level ℓ ≤ t in Tr. To prove the lemma,it will su�e if we an onstrut an O(n) spae data struture whih an report P(r, v, xi) for any

v ∈ V, 1 ≤ i ≤ j. We employ Lemma 2.1 to design suh a data struture. First note that eah of thesubtrees {Tr(xi) | 1 ≤ i ≤ j} are vertex disjoint. For eah 1 ≤ i ≤ j, we build and store a shortestpath tree rooted at r in the graph Gr(xi). These shortest path trees together with Tr an report
P(r, v, xi) for any v ∈ V, 1 ≤ i ≤ j in optimal time. It an be observed that the total spae oupiedby these trees will be O(n) and their total omputation time will be O(m + n logn). •Our data strutures will also use an e�ient data struture for answering lowest ommon anestor(LCA) queries on Tr.Lemma 2.3 [14℄ A rooted tree on n verties an be preproessed in O(n) time to build a data strutureof size O(n) whih an report, for any two verties u, v, their lowest ommon anestor in O(1) time.6

For the sake of simpliity, we shall assume that P(u, v, x) exists for every u, v, x ∈ V . In otherwords, we assume that the given graph is bionneted. However, we an handle graphs whih are notneessarily bionneted, essentially by breaking the graph into maximal bionneted omponents andthen solving the problem of approximate shortest paths avoiding vertex failure for eah bionnetedomponent. We also assume that P(u, v, x) is unique. If there are multiple shortest paths between uand v in G\{x}, we may delare any one of these shortest paths as P(u, v, x).3 Single soure 3-approximate shortest paths avoiding any failedvertexIn this setion we design an O(n log n) spae data struture for any undireted graph with nonneg-ative edge weights. This data struture is apable of reporting 3-approximate shortest path from adesignated soure r to any vertex v ∈ V whenever there is any single vertex failure in the graph.First, as a warm up, we desribe a simple idea for ahieving 3-approximation of distane fromsoure r to every vertex avoiding any single failed vertex. Let x ∈ V be the failed vertex at a momentand v1, ..., vj be its hildren in Tr as shown in Figure 1. It is easy to observe that the failure of vertex
. . . .

PSfrag replaementsr

v1

vi

vj

x

zFigure 1: Storing distanes δ(r, vi, x) su�es to retrieve 3-approximation of δ(r, z, x) for any z ∈ Tr(vi)

x may alter the distane from r to verties belonging to Tr(vi), 1 ≤ i ≤ j only. Consider any vertex
vi and z ∈ Tr(vi). Note that the shortest path P(vi, z) remains intat even after removal of x, andits length is ertainly less than δ(r, z). So, in order to travel from r to z when x fails, we may �rsttravel along shortest route to vi (that is P(r, vi, x)) and then along P(vi, z). The distane traveled inthis manner won't be too large ompared to the distane assoiated with P(r, z, x). In fat, exploitingundiretedness of the graph and the triangle inequality property, we an show that δ(r, vi, x)+ δ(z, vi)is 3-approximation of δ(r, z, x) as follows.

δ(r, vi, x) + δ(z, vi) ≤ δ(r, z, x) + δ(z, vi, x) + δ(z, vi)

≤ δ(r, z, x) + 2δ(z, vi)

≤ δ(r, z, x) + 2δ(r, z) ≤ 3δ(r, z, x)Remark 3.1: The approximation fator may be muh smaller than 3 in ase δ(vi, z)≪ δ(r, z). Weshall employ this observation arefully in the next setion to design a data struture for unweightedgraphs whih an report (1+ ǫ)-approximate shortest paths from soure r avoiding any failed vertex.Therefore, based on the above disussion, storing δ(r, vi, x) for all i ≤ j su�es to retrieve 3-approximate distane from r to any vertex in the graph whenever vertex x fails. Proessing eah
x ∈ Tr in this manner leads to a data struture of O(n) spae whih an report 3-approximatedistane from r avoiding any single failed vertex. However, to extrat the orresponding approximateshortest path e�iently would require storing the paths P(r, vi, x) for eah vi. Sine eah of thesepaths might be quite long and di�erent from all other paths, this approah may lead to Θ(n2) spaein the worst ase. So the hallenging task is to design a data struture whih oupies nearly O(n)spae, and yet allows e�ient retrieval of 3-approximate shortest paths from r whenever any singlevertex fails. To ahieve this objetive we �rst solve a simpler subproblem where the failing vertexbelongs to a given path Q ∈ Tr. Later we use divide and onquer strategy to solve our main problem.7

3.1 Subproblem: Handling failure of a vertex lying on a given path in TrGiven the shortest path tree Tr, let Q be any path in Tr from some vertex q to some vertex t.Without loss of generality assume that t is a leaf node in Tr. Otherwise, we an always extend Q tosome leaf node. We shall design a data struture whih an e�iently report a 3-approximate shortestpath from r to any v ∈ V when some vertex from Q fails. This data struture is inspired by thealgorithm of Nardelli et al. [20℄ for omputing the most vital vertex on a shortest path. Consider any
x ∈ Q, x 6= t. We may partition the tree Tr\{x} into the following 3 parts as shown in Figure 2.PSfrag replaementsr

xsu(x)
Ox

Ux

Dx

Q

q

tFigure 2: Partitioning of the shortest path tree Tr at x ∈ Q1. Ux : the tree Tr after removing the subtree Tr(x)2. Dx : the subtree of Tr rooted at succ(x)3. Ox : the portion of Tr left after removing Ux, x, and Dx.It an be observed that whenever a vertex x ∈ Q fails, the shortest path and distane from souremay hange only for the verties of set Dx and Ox. Based on this observation, the data struture willatually onsist of the following two data strutures.1. Hd(Q) : the data struture to report 3-approximate shortest path from r to any v ∈ Dx whenany vertex x ∈ Q fails.2. Ho(Q) : the data struture to report 3-approximate shortest path from r to any v ∈ Ox whenany vertex x ∈ Q fails.Now we desribe the above two data strutures and their preproessing algorithms. Let Q = 〈q(=
x0), x1, ..., xk(= t)〉 be the given path. In the following disussion, we shall use Ui, Di, Oi as suintnotations for Uxi

, Dxi
, Oxi

respetively.3.1.1 Desription and preproessing of the data struture Hd(Q)The data struture Hd will report 3-approximate shortest path to any v ∈ Di when xi fails for any
i < k. To ahieve this objetive, it will store distane δ(r, xi+1, xi) and the orresponding path
P(r, xi+1, xi) for eah i < k. However, it will store these paths impliitly so that the overall spaeoupied by Hd will be O(|Tr(x0)|). Replying to a query for P(r, v, xi), for any v ∈ Di, it will report
P(r, xi+1, xi) ·P(xi+1, v). It follows from the disussion in the beginning of this setion that this pathwill be a streth-3 approximation of P(r, v, xi). To ahieve e�ient omputation and ompat storageof P(r, xi+1, xi) for all 0 ≤ i < k, we exploit the following lemma.Lemma 3.2 The shortest path P(r, xi+1, xi) is of the form P1 · P2 where P1 is a shortest path from
r in the subgraph indued by Ui ∪Oi, and P2 is a path present in Tr(xi+1).Proof: Let z be the �rst vertex of the path P(r, xi+1, xi) whih belongs to Di. De�ne P1 as theportion of P(r, xi+1, xi) preeding z, and P2 as the portion starting from z. All the verties of P1belong to Ui ∪ Oi. So P1 is ertainly a shortest path from r in the subgraph indued by Ui ∪ Oi. It8

follows from the optimal subpath property and undiretedness of the graph that P2 = P(xi+1, z, xi).However, P(xi+1, z, xi) is the same as P(xi+1, z), and the latter is already present in Tr(xi+1). •It follows from Lemma 3.2 that in order to ompute P(r, xi+1, xi), �rst we need to ompute short-est paths from r in the subgraph indued by Ui ∪ Oi. Note that the shortest paths from r to allverties of Ui in this subgraph are the same as in the original graph, and are already present in Tr.So we just need to ompute shortest paths from r to verties of Oi in this subgraph. We do it byexeuting Dijkstra's algorithm from r in the subgraph indued by verties Oi ∪ {r} and the followingadditional edges. For eah o ∈ Oi with at least one neighbor in Ui, we add an edge (r, o) with weight= min(u,o)∈E,u∈Ui
(δ(r, u) + ω(u, o)). Let τ i

r denote the shortest path tree omputed in this manner,and let δi(r, v) denote the distane from r to any v ∈ Ui ∪ Oi in the subgraph indued by Ui ∪ Oi.It follows from Lemma 3.2 that the �rst vertex on P(r, xi+1, xi) whih belongs to Di is the vertex zwhih minimizes δi(r, y) + ω(y, z) + δ(xi+1, z) over all (y, z) ∈ E with y ∈ Ui ∪ Oi, z ∈ Di. Let usdenote this vertex by zi, and let yi ∈ Ui∪Oi be the vertex whih preedes zi on the path P(r, xi+1, xi).It an be observed that the entire shortest path P(r, xi+1, xi) an be reported using Tr, τ i
r, and theedge (yi, zi) in time of the order of number of edges on P(r, xi+1, xi).Data struture Hd(Q). Based on the above disussion, the data struture Hd will store only theedge (yi, zi) and the tree τ i

r for eah i < k. Due to mutual disjointness of Oi's, it follows that thespae required by Hd will be of the order of ∑

i<k |τ i
r| = O(|Tr(q)|).E�ient omputation of Hd(Q). The time required to build τ i

r 's for all i < k will be of the orderof ∑

v∈Tr(q)(deg(v) + log n) due to mutual disjointness of Oi's. The only extra omputational task isthe omputation of edges (yi, zi) for all i < k whih we an perform e�iently as follows.The key idea used is that (Ui, Di, Oi) has a lot of overlap with (Ui+1, Oi+1, Di+1). This overlapan be exploited to ompute all the edges {(yi, zi)|0 < i < k} e�iently in an inremental fashion asfollows. We keep a heap data struture storing verties. At the time of omputation of (yi, zi), theheap onsists of verties of set Di and the key of eah vertex z ∈ Di is de�ned as
key(z) = min

(y,z)∈E,y∈Ui∪Oi

(δi(r, y) + ω(y, z) + δ(r, z))With eah key(z), we also store the orresponding edge (y, z) whih minimizes the value of key(z) asde�ned above. It an be seen that zi orresponds to the vertex in the heap with the smallest key. Sothe omputation of zi (and hene the edge (yi, zi) as well) just requires a find_min operation on theheap. Now observe that Di+1 = Di\(Oi+1 ∪ {xi+1}). Therefore, for omputing zi+1 we just need toupdate the heap as follows.
• delete eah vertex of set Oi+1 ∪ {xi+1} from the heap.
• For eah edge (y, z) ∈ E with y ∈ Oi+1, z ∈ Di+1, perform derease_key on z as follows.

key(z)← min(key(z), δi+1(r, y) + ω(y, z) + δ(r, z))

• For eah edge (y, z) ∈ E with y ∈ Oi ∪{xi}, z ∈ Di+1, perform derease_key on z as follows.
key(z)← min(key(z), δ(r, y) + ω(y, z) + δ(r, z))Performing find_min operation on the heap will now report (yi+1, zi+1). In this manner, we omputethe entire set {(yi, zi)|0 ≤ i < k} by performing ertain heap operations. In partiular, there willbe O(k) find_min operations and O(|Tr(q)|) delete_key operations. To bound the number ofderease_key operations, note that eah of these operations is assoiated with an edge whoseat least one endpoint is in Tr(q). Moreover, it follows from the desription given above that therewill be at most two derease_key operations assoiated with eah suh edge. Hene, the totalnumber of derease_key operations will be at most 2

∑

v∈Tr(q) deg(v). Using Fibonai heap [13℄,all these heap operations an be performed in ∑

v∈Tr(q)(deg(v) + log n) time. We an thus onludethe following lemma. 9

Lemma 3.3 A shortest path Q = P(q, t) present in Tr an be preproessed to build a data stru-ture Hd(Q) of O(|Tr(q)|) size. In ase of failure of any x ∈ Q, this data struture an report 3-approximation of δ(r, v, x) as well as P(r, v, x) for any v ∈ Dx. The query time is optimal up to aonstant fator and the preproessing time of Hd(Q) is of the order of ∑

v∈Tr(q)(deg(v) + log n).3.1.2 Desription and preproessing of the data struture Ho(Q)The data struture Ho(Q) will report 3-approximate shortest paths to verties of Oi upon failure of
xi for any i < k. The preproessing of Ho will employ the data struture Hd desribed above. Reallthat Hd an report 3-approximate shortest paths to verties of Di upon failure of xi for any i. Herewe shall prove an interesting generi result whih states that if we have a data struture to retrieve
α-approximate shortest paths from r to verties of Di upon failure of xi, then we an use it to have adata struture to retrieve α-approximate shortest paths to verties of Oi as well. To prove this result,onsider the subgraph indued by Oi ∪ {r} and some extra edges whih are de�ned as follows.
• For eah o ∈ Oi having neighbors from Ui, add an edge (r, o) and assign it weight equal to

min(u,o)∈E,u∈Ui
(δ(r, u) + ω(u, o)).

• For eah o ∈ Oi having neighbors from Di, add an edge (r, o) and assign it weight equal to
min(u,o)∈E,u∈Di

(δ̂(r, u, xi) + ω(u, o)), where δ̂(r, u, xi) is the α-approximate distane to u uponfailure of xi. (In the present situation we have α = 3.)In ase of multiple edges introdued from r to o as a result of the above steps, keep the edge with theleast weight only. Let us denote this graph by G(r, Oi).Lemma 3.4 The shortest paths tree from r in the graph G(r, Oi) will store α-approximate shortestpaths from r to all v ∈ Oi avoiding xi.Proof: Consider the shortest path P(r, o, xi) for any o ∈ Oi. If this path does not pass through anyvertex of Di, then it follows from the onstrution of G(r, Oi) that a path of length exatly equal to
δ(r, o, xi) is present in the subgraph G(r, Oi) also. Now onsider the ase when the path P(r, o, xi)passes through one or more verties of Di. Let (u, v) be the last edge on the path P(r, o, xi) suhthat u ∈ Di and v ∈ Oi. Consider the pre�x of the shortest path P(r, o, xi) ending at v. It followsfrom optimal subpath property that this pre�x is also a shortest path from r to v avoiding xi, andits length is δ(r, u, xi) + ω(u, v). Now note that the edge (r, v) in the graph G(r, Oi) has weight
δ̂(r, u, xi) + ω(u, v) whih is bounded by αδ(r, u, xi) + ω(u, v). Hene the pre�x of the path P(r, o, xi)up to v is strethed by at most α in G(r, Oi). Now the su�x of the path P(r, o, xi) following v onsistsof verties of set Oi only, and so it is present entirely in the graph G(r, Oi). Hene, the shortest pathfrom r to o in G(r, Oi) is an α-approximation of P(r, o, xi). •The data struture Ho(Q). Based on the above disussion, this data struture stores the shortestpath tree built for the graph G(r, Oi) for eah i < k. It an be seen that this data struture inonjuntion with tree Tr and Hd(Q) an report a 3-approximate shortest path from r to any o ∈ Oiupon failure of xi for any i < k.Preproessing of Ho(Q). It will take O(|E(Oi)| + |Oi| log |Oi|) time to build the shortest pathtree on G(r, Oi) using Dijkstra's algorithm. One again, note that the sets Oi's are mutually disjoint.Therefore, the total spae required by Ho(Q) is O(|Tr(q)|). Furthermore, the total time spent inbuilding these shortest path trees for eah i < k will be O(

∑

v∈Tr(q)(deg(v) + log n)).Lemma 3.4 and the above disussion imply the following observation whih we shall use later forimproving the streth fator when the graph is unweighted.Observation 3.1 Given tree Tr and a path Q = P(q, t) present in Tr, if there is a data struturewhih an report (1+ǫ)-approximate shortest paths from r to verties of Dx upon failure of any x ∈ Q,then we an build a data struture Ho(Q) whih an report (1 + ǫ)-approximate shortest paths to allverties of Ox upon failure of any x ∈ Q. 10

Query answering: We now show that the data strutures Hd(Q) and Ho(Q) together an be usedfor reporting 3-approximate shortest path from soure r to any vertex v whenever any vertex xi ∈ Qfails. If LCA(v, xi) 6= xi, the shortest path from r to v is una�eted by the failure of xi, so wejust report P(r, v). Otherwise, we determine if v ∈ Di or v ∈ Oi. It an be seen that v ∈ Di if
LCA(v, xi+1) = xi+1, and v ∈ Oi otherwise. If v ∈ Di we use Hd(Q), else we use Ho(Q) to report theapproximate shortest path between r and v avoiding xi.Theorem 3.1 An undireted weighted graph G = (V, E), a soure r ∈ V , and a shortest path Q =
P(q, t) in Tr an be proessed to build a data struture whih an report 3-approximate shortest pathfrom r to any v ∈ V upon failure of any single vertex from Q. The size of this data struture is
O(|Tr(q)|) and its preproessing time is of the order of ∑

v∈Tr(q)(deg(v) + log n)).3.2 Data struture for handling failure of any vertex in TrNow we shall desribe a data strutureH for reporting approximate shortest path from r to any vertex
v ∈ V avoiding any failed vertex x ∈ Tr. We take the following approah. Partition the tree intovertex disjoint paths, and for eah of these paths build data struture desribed in the previous setion(see Theorem 3.1). However, any arbitrary partitioning of Tr will not lead to e�ient onstrutionand ompat size of the �nal data struture. Therefore, we employ a partitioning sheme devised bySleator and Tarjan [22℄. The following lemma lies at the heart of this sheme.Lemma 3.5 [22℄ There exists an O(n) time algorithm to ompute a path Q in Tr whose removalsplits Tr into a set of disjoint subtrees Tr(v1), ..., Tr(vj) suh that for eah i ≤ j:
• |Tr(vi)| < n/2 and Q ∩ Tr(vi) = ∅.
• Tr(vi) is onneted to Q through some edge for eah i ≤ j.Proof: We provide a simple traversal algorithm whih omputes the path Q and a set T of subtreessatisfying all the properties mentioned above. Initially T = ∅. Let there be ℓ hildren x1, ..., xℓ of theroot r. Let Tr(xj) be the largest subtree among Tr(x1), ..., Tr(xℓ). Add every subtree Tr(xi), i 6= jto T , and traverse the edge (r, xj). Now from xj , we traverse the edge to that desendant throughwhih hangs the largest subtree, and add the remaining subtrees to T . Keep on traversing Tr in thismanner and stop when we reah a leaf vertex. This de�nes the path Q. It an be seen that eah sub-tree in the set T is onneted to Q through some edge and has size < n/2. This ompletes the proof. •Proedure Partition(T) employs Lemma 3.5 to ompute a partition of any rooted tree T into aset P of vertex disjoint paths. It is easy to exeute this proedure in O(n log n) time. See Figure 3Proedure Partition(T)if |T | = 1 then return {T };elseompute the path Q originating from root in T as desribed by Lemma 3.5;P ← {Q};let v1, ..., vj be the roots of the subtrees of T diretly onneted to the path Q through anedge;foreah 1 ≤ i ≤ j do P ← P ∪ Partition(Tr(vi)) ;return P ;for a better illustration of this proedure. Eah maximal sequene of solid edges represents a path inP . Eah dashed edge represents an edge whih joins two di�erent paths in P . Moreover, if (x, y) is adashed edge then it follows from Lemma 3.5 that |Tr(y)| < 1

2 |Tr(x)|. Thus while traversing from rootto any leaf of Tr, we shall enounter at most log n dashed edges. This leads to the following lemma.Lemma 3.6 For any vertex v, the path to the root in Tr intersets at most log n paths in P .Data struture H. The data struture H will onsist of two data strutures Hd and Ho whih areomputed as follows. 11

PSfrag replaementsrr

Figure 3: Partitioning of Tr into disjoint paths as omputed by Partition(Tr)1. P ← Partition(Tr).2. For eah vertex, store pointer to the path in P to whih it belongs.3. Hd ← {Hd(Q) | Q ∈ P } ; Ho ← {Ho(Q) | Q ∈ P }.For reporting 3-approximation of P(r, v, x) for any v, x ∈ V , �rst we determine the path Q ∈ P towhih x belong and then query the data struture Hd(Q) or Ho(Q) aordingly as desribed earlier.Analysis of the spae and preproessing time of the data struture.Consider any path Q = P(q, t) in the partition P . Theorem 3.1 implies that eah vertex v ∈ Tr(q)ontributes O(1) amount to the size and O(deg(v)+log n) amount to the preproessing time of H(Q).Furthermore, it follows from Lemma 3.6 that any vertex v will make this ontribution to at most
log n suh paths in P . Thus the data struture will have O(n log n) spae and O(m log n + n log2 n)preproessing time. Hene we an onlude with the following theorem.Theorem 3.2 An undireted weighted graph G = (V, E) and a vertex r ∈ V an be proessed in
O(m log n + n log2 n) time to build a data struture H of size O(n log n). This data struture anreport a 3-approximate shortest path from r to any vertex v ∈ V avoiding any failed vertex x ∈ V intime whih is optimal up to a onstant fator.4 Single soure (1+ǫ)-approximate shortest paths avoiding anyfailed vertexThe data struture desribed above an report 3-approximate shortest paths from a given �xed vertex
r whenever some vertex in the graph fails. Note that this data struture is atually a olletion of basidata strutures Ho(Q) and Hd(Q) de�ned for various paths in the partition P of Tr. Here, the readeris reommended to reall the dependeny of Ho(Q) on Hd(Q) whih led to Observation 3.1. Not onlythe onstrution of Ho(Q) requires Hd(Q), but the streth fator assoiated with Ho(Q) is also de�nedby the streth fator assoiated with Hd(Q). We shall use this fat in a ruial manner. We shallshow that for unweighted graphs, it is possible to augment the olletion Hd = {Hd(Q) | Q ∈ P }with supplementary data strutures to build a data struture H+

d whih guarantees a streth fator of
(1 + ǫ) for arbitrarily small ǫ. Now, it is an immediate impliation of Observation 3.1 that if we nowonstrut Ho = {Ho(Q) | Q ∈ P } using H+

d , the streth fator assoiated with Ho will also be 1 + ǫ.In this way, H+
d and Ho together will onstitute a data struture for reporting (1 + ǫ)-approximateshortest paths from r avoiding any failed vertex in the graph. With this overview of our approah,we now provide the key ideas to augment Hd in order to ahieve improved streth.Let us �rst revisit the strategy underlying Hd whih guarantees an approximation fator of 3.Consider failure of any vertex x. Let Q ∈ P be the path to whih x belongs. For reporting approximatedistane between r and v ∈ Dx when x fails, the data struture Hd employs Hd(Q). The approximatedistane reported is δ(r, su(x), x) + δ(su(x), v) whih is bounded by δ(r, v, x) + 2δ(su(x), v).(Here su(x) = su(x, Q) is the suessor of x on path Q.) Hene the streth is

δ(r, v, x) + 2δ(su(x), v)

δ(r, v, x)
(1)12

Though the above streth is bounded by 3 in the worst ase, it is bounded by (1 + ǫ) for any ǫ > 0 ifthe following ondition holds.
C : su(x) is lose to v, that is, δ(su(x), v) ≤ ǫ

2δ(r, v).Whenever the ondition C does not hold, we shall ensure that there will be some anestor w of vlying on P(x, v), alled a speial vertex, satisfying the following two properties.1. δ(w, v)≪ δ(r, v), that is w is muh loser to v than r.2. Vertex w stores approximate shortest path to r avoiding x (with the approximation fatorarbitrarily lose to 1).These two properties will ensure that whenever ondition C does not hold, vertex v may query itsspeial vertex w �rst to retrieve the approximate shortest path from r to w avoiding x. This path isonatenated with the path P(w, v) whih remains intat when x fails. The resulting path will turnout to be (1+ ǫ)-approximation of P(r, v, x) for any desired ǫ > 0. The data struture H+
d will be justthe union of Hd and the supplementary data strutures assoiated with eah speial vertex.We shall �rst desribe the onstrution of the set of speial verties in Tr. Note that Tr is identialto the breadth �rst searh (BFS) tree rooted at r. We shall use level(v) to denote the level (ordistane from r) of vertex v in Tr. After de�ning the set of speial verties, we shall desribe the datastruture stored for eah speial vertex. However, before all this, we would like to address a minortehnial point. We shall employ Lemma 2.2 to handle the failure of any vertex whih lies up to level

ℓ0 = Θ(logn) in Tr. This will require O(m log n + n log2 n) time and O(n log n) spae. So, heneforthwe shall fous on the failure of only those verties in Tr whih lie at level > ℓ0.4.1 Construting the set of speial vertiesLet h be the height of BFS tree rooted at r. Let us introdue a variable ǫ′ < 1 whose value will bede�ned later in terms of ǫ. Without loss of generality assume that ℓ0 = ⌊(1 + ǫ′)i0⌋ for some i0. Wenow desribe the onstrution of the set of speial verties.Let L be the set of positive integers de�ned as L = {i | ℓ0 ≤ ⌊(1 + ǫ′)
i⌋ < h}. For a given i ∈ L,let us de�ne a subset Si as

Si = {u ∈ V | level(u) = ⌊(1 + ǫ′)
i⌋ and |Tr(u)| ≥ ǫ′level(u)}The set of speial verties is S = ∪i∈LSi. We introdue two terminologies in the ontext of thesespeial verties.

• For any vertex v ∈ V , S(v) denotes the nearest anestor of v whih belongs to set S. (In ase
v ∈ S, then S(v) = v.)
• For a vertex u ∈ S, V (u) denotes the set of verties v ∈ V with S(v) = u. In essene, thevertex u will serve as the speial vertex for eah vertex from V (u). Upon failure of any vertex

x ∈ P(r, u), eah vertex of set V (u) may aess the data struture stored at u for retrieval ofapproximate shortest path/distane from the soure.Observation 4.1 If a speial vertex u lies at level ℓ, then there are at least ǫ′ℓ verties in V (u).Figure 4 provides a desription of the speial verties and the set V (u) in tree Tr. The followinglemma states that eah vertex v is muh loser to S(v) than the soure vertex.Lemma 4.1 Let v ∈ V \S, then δ(v, S(v)) ≤
(

2ǫ′

1+ǫ′

)level(v).Proof: Let ℓ be the level of v in Tr. Then, there must be an i ∈ L suh that ⌊(1 + ǫ′)
i⌋ <

ℓ ≤ ⌊(1 + ǫ′)
i+1⌋. Let a be the anestor of v at level ⌊(1 + ǫ′)i⌋. If S(v) = a, then it anbe observed that δ(v, S(v)) = ℓ − ⌊(1 + ǫ′)

i⌋ ≤ ℓ − ℓ
1+ǫ′ = ǫ′ℓ

1+ǫ′ . Else, let b be the anestorof v at level ⌊(1 + ǫ′)
i−1⌋. Clearly |Tr(b)| ≥ ǫ′⌊(1 + ǫ′)

i−1⌋. Thus b ∈ S and S(v) = b. Now
δ(v, S(v)) ≤ ℓ− ⌊(1 + ǫ′)

i−1⌋ ≤ ℓ(1− 1
(1+ǫ′)2

) ≤ 2ǫ′ℓ
1+ǫ′ . •13

PSfrag replaementsr

ℓ0 = ⌊(1 + ǫ′)i0⌋
⌊(1 + ǫ′)i0+1⌋
⌊(1 + ǫ′)i0+2⌋

⌊(i + ǫ′)i⌋
⌊(1 + ǫ′)i+1⌋

u

V (u)Figure 4: Splitting the tree Tr into geometrially inreasing levels to onstitute the speial verties.4.2 The data struture for a speial vertexWe shall proess the speial verties in a top down fashion in Tr while onstruting the data strutureassoiated with them. Consider a speial vertex v with level(v) = ⌊(1+ ǫ′)i⌋ and i > i0. (Reall thatfor speial verties at level ℓ0 = ⌊(1 + ǫ′)i0⌋, we already store exat shortest path to r upon failure ofany vertex). We shall now desribe a ompat data struture to be stored at v whih will failitateretrieval of (1 + 2ǫ′)-approximate shortest path from r to v upon failure of any vertex x ∈ P(r, v).The vertex v will store the orresponding path in a �eld path(v, x).Let v′ be the speial vertex whih is present at level ⌊(1 + ǫ′)i−1⌋ and is anestor of v. The datastruture stored at v will be de�ned in terms of various ases of the failing vertex x ∈ P(r, v) asfollows.If x ∈ P(v′, v), then onsider the path P(r, su(x), x) · P(su(x), v) whih is already availablein Hd. It follows from Equation 1 that this path is (1+2ǫ′)-approximation of P(r, v, x). So path(v, x)may store this path impliitly by keeping a pointer to P(r, su(x), x) stored in Hd. Hene we requireonly O(1) extra storage in this ase.Let us now onsider the nontrivial ase when x ∈ P(r, v′) and x 6= v′. Let pa,b be the detourassoiated with P(r, v, x). This detour an be of any of the following two types as shown in Figure 5.
• I : b is present on P(r, v′).
• II : b is not present on P(r, v′). PSfrag replaements

ℓ0ℓ0

xx

aa

b

b
v′v′

vv

rr

⌊(1 + ǫ)i⌋⌊(1 + ǫ)i⌋

pa,bpa,b

(i) (ii)Figure 5: pa,b is the detour of P(r, v, x). (i) detour of type I, (ii) detour of type IILet us onsider the ase when the detour pa,b is of type I. In this ase, let w be the farthest anestorof v suh that w ∈ S and the level of w is greater or equal to the level of b. Note that pa,b is alsothe detour of P(r, w, x), and so w would already have handled it in its data struture (this is beausewe proess the speial verties in a top down fashion while building their data strutures). Hene14

path(w, x) would be storing (1 + 2ǫ′)-approximation of P(r, w, x). The struture of detour of type Ian be exploited to make the following ruial observation.Observation 4.2 If path(w, x) is 1 + 2ǫ′-approximation of P(r, w, x), then path(w, x) · P(w, v) willbe (1 + 2ǫ′)-approximation of P(r, v, x).Using Observation 4.2, path(v, x) just stores a pointer to path(w, x) to handle this ase (of detourI). Let us now onsider the ase when the detour pa,b is of type II. Unfortunately, Observation 4.2 nolonger holds in this ase. So for vertex v, we annot rely on its anestors to take are of detour oftype II. However, we an employ the following observation assoiated with the detours of type II.Observation 4.3 Let α1, α2, · · · , αt be the verties on P(r, v′) (in inreasing level order) suh thatthe detour of P(r, v, αi) is of Type II for all i. Then δ(r, v, α1) ≥ δ(r, v, α2) ≥ · · · ≥ δ(r, v, αt).It follows from Observation 4.3 that if δ(r, v, αi) ≤ (1 + ǫ′)δ(r, v, αj) for any i < j, then P(r, v, αi)may as well serve as (1 + ǫ′)-approximate shortest path from r to v avoiding αj . In this situation, weneed not store the path P(r, v, αj) if we are already storing P(r, v, αi). Using this observation, speialvertex v will have to expliitly store only O(log1+ǫ′ n) paths for all detours of type II. Moreover, wedo not need to store expliitly those paths whose length is muh larger than level(v). Spei�ally,if δ(r, v, x) ≥ 1
ǫ′ level(v), then it follows from Equation 1 that δ(r, su(x), x) + δ(su(x), v) is

(1+2ǫ′)-approximation of δ(r, v, x). Hene the data struture Hd itself takes are of suh a ase. Thisensures that eah path whih v has to store expliitly will have O(1
ǫ′ level(v)) length.Based on the detailed desription of various ases as given above, Algorithm 2 presents the onstru-tion of the data struture assoiated with a speial vertex v. The following lemma is a onsequeneAlgorithm 2: Computation of the data struture for a speial vertex v

ℓ← level(v); d←∞; P ← NULL;foreah (vertex x ∈ P(r, v) in the inreasing order of level) doif (δ(r, v, x) ≥ ℓ
ǫ′) or (level(x) ≥ ℓ

(1+ǫ′)) thenpath(v, x) keeps a pointer to P(r, su(x), x) whih is stored in Hd;elseLet pa,b be the detour of P(r, v, x);if pa,b is of type I thenLet w ∈ S be the farthest anestor of v with level(w) ≥ level(b) ;path(v, x) stores pointer to path(w, x);elseif d ≤ (1 + ǫ′)δ(r, v, x) thenpath(v, x) stores a pointer to P ;elsepath(v, x) expliitly stores the entire path P(r, v, x);
d← δ(r, v, x); P ← P(r, v, x);of the disussion above.Lemma 4.2 Let u be a speial vertex and x ∈ P(r, u) be suh that u ∈ Dx. Then path(u, x) is an

(1 + 2ǫ′)-approximation of P(r, u, x).4.3 Reporting (1 + ǫ)-approximate shortest paths from r using H+
dConsider failure of any vertex x ∈ V . Let v be any vertex in Dx and v /∈ S. Let u be the speialvertex to whih v is assigned, that is, u = S(v). We an report approximate shortest path from r to

v avoiding x as follows.If x lies on P(u, v), we resort to the data struture Hd and report the path P(r, su(x), x) ·
P(su(x), v). Its length is bounded by δ(r, v, x)+2δ(su(x), v). Now observe that δ(su(x), v) ≤15

δ(u, v), and it follows from Lemma 4.1 that δ(u, v) is at most 2ǫ′δ(r, v). Hene in this ase, thereported path will have length at most (1 + 4ǫ′)δ(r, v, x).If x does not lie on P(u, v), then we employ the data struture assoiated with speial vertex u.We report path(u, x) · P(u, v) as approximate path from r to v avoiding x. Length of this path anbe bounded using Lemma 4.2 as follows.
(1 + 2ǫ′)δ(r, u, x) + δ(u, v) ≤ (1 + 2ǫ′)δ(r, v, x) + 2(1 + ǫ′)δ(u, v)

≤ (1 + 2ǫ′)δ(r, v, x) + 4ǫ′δ(r, v) {using Lemma 4.1 }
≤ 1 + 6ǫ′)δ(r, v, x)Thus setting ǫ′ = ǫ/6 implies the following lemma.Lemma 4.3 For any failed vertex x and any vertex v ∈ Dx, the data struture H+

d an report (1+ ǫ)-approximate shortest path from r to v avoiding x.4.4 Analysis of the data struture for (1 + ǫ)-approximate shortest paths4.4.1 Spae analysisReall that the data struture for singe soure 3-approximate shortest paths avoiding any failed vertexrequires O(n log n) spae. The only extra spae in the data struture for (1 + ǫ)-approximate shortestpaths is due to the data strutures assoiated with the set of speial verties. We an bound this extraspae as follows. We need to analyze the spae oupied by the data strutures assoiated with all thespeial verties. Let v be any speial vertex. For eah failed vertex x ∈ P(r, v), if δ(r, v, x) > level(v)
ǫor the detour assoiated with P(r, v, x) is of type I, path(v, x) requires only O(1) spae. Thus thetotal spae required for suh verties in the data struture of v is learly O(level(v)). So let usonsider the remaining verties on P(r, v). Let y be one suh vertex. The detour assoiated with thepath P(r, v, y) must be of type II and δ(r, v, y) = O(level(v)

ǫ) must hold. It follows from Algorithm2 that we shall store only O(log1+ǫ
level(v)

ǫ) suh paths expliitly. Furthermore, the sequene oflengths of these paths is a geometrially dereasing sequene with ommon ratio (1 + ǫ). Hene thespae required for storing all suh paths in the data struture assoiated with v is O(level(v)/ǫ2). Sothe overall spae required by the data struture assoiated with v is O(level(v)/ǫ2). Now it followsfrom Observation 4.1 that there are Ω(ǫlevel(v)) desendants of v in Tr whih are uniquely assignedto v. So all speial verties ontribute a total of O(n/ǫ3) spae to the data struture. Hene we haveproved the following Lemma.Lemma 4.4 The data struture for single soure (1 + ǫ)-approximate shortest paths avoiding anyfailed vertex oupies O(n
ǫ3 + n log n) spae.4.4.2 Preproessing timeLet us address the preproessing time for omputing the data struture assoiated with speial verties.For eah speial vertex v, we employ Algorithm 2 to ompute the data struture assoiated with it.The entire running time of Algorithm 2 for a speial vertex v is dominated by the omputation of

P(r, v, x) and δ(r, v, x) for eah x ∈ P(r, v). We provide below a two-step algorithm to ompute
P(r, v, x) and δ(r, v, x) for eah speial vertex v ∈ S and x ∈ P(r, v).
• For eah speial vertex v lying at level ≥√

n/ǫ in Tr, we employ O(m) time algorithm of Nardelliet al. [20℄ to ompute δ(r, v, x) and P(r, v, x) for all x ∈ P(r, v). It follows from Observation4.1 that there are at least ǫlevel(v) desendants from Tr whih are uniquely assigned to v.Therefore, the number of speial verties at level ≥ √

n/ǫ is not more than O(
√

n/ǫ). So thetotal running time of this step is O(m
√

n/ǫ).
• We exeute the algorithm mentioned in Lemma 2.2 for handling failure of any vertex lying upto level <

√

n/ǫ in Tr. This would support e�ient retrieval of δ(r, v, x) and P(r, v, x) for eahspeial vertex v up to level <
√

n/ǫ. The total running time of this step is O(m
√

n/ǫ).16

Thus the total preproessing time of the data strutures assoiated with all the speial verties is
O(m

√

n/ǫ). This bound along with Lemmas 4.3 and 4.4 lead to the following Theorem.Theorem 4.1 Given an undireted unweighted graph G = (V, E), soure r ∈ V , and any ǫ > 0,we an build a data struture of size O(n/ǫ3 + n logn) in O(m
√

n/ǫ) time whih an report (1 + ǫ)-approximate shortest path from r to any v ∈ V avoiding any single failed vertex x ∈ V in time whihis optimal up to a onstant fator.4.5 A misellaneous appliationWe would like to mention one appliation where our data struture for single soure (1+ǫ)-approximateshortest paths avoiding any failed vertex proves to be useful.4.5.1 Nearest marked vertex problem under single vertex failureSuppose there is a set S ⊂ V of, so alled, marked verties in a given graph. Consider the problemof building a data struture whih, for any v, x ∈ V , an report the vertex from S nearest to vwhen x has failed. We an use Theorem 4.1 to design a ompat data struture for the approximateversion of this problem. For any v, x ∈ V , this data struture will report a vertex w ∈ S suh that
δ(v, w, x) ≤ (1 + ǫ)δ(v, S, x) in O(1) time.1. Add a dummy vertex r to the graph and join it to every vertex of set S. Let G′ be the newgraph thus formed.2. With soure vertex r and graph G′, build the data struture for (1 + ǫ)-approximate shortestpaths avoiding any failed vertex as mentioned in Theorem 4.1. We an easily augment this datastruture suitably so that it takes onstant time to report the neighbor of r on the (1 + ǫ)-approximate shortest path between r and v upon failure of any vertex x.We an thus state the following theorem.Theorem 4.2 For any unweighted graph G = (V, E) and a set S ⊆ V of marked verties, thereexists a data struture of size O(n/ǫ3 +n logn) whih an solve the approximate version of the nearestmarked vertex problem under single vertex failure. The preproessing time of the data struture is
O(m

√

n/ǫ) and the query time guaranteed is O(1).5 All-pairs (2k − 1)(1 + ǫ)-approximate shortest paths oraleavoiding a failed vertexWe start with an overview of the approximate distane orale of Thorup and Zwik [24℄. We thenprovide a brief desription of our ideas whih extend this orale to handle any single vertex failure.5.1 Overview of the approximate distane orale of Thorup and Zwik [24℄The most impressive features of the (2k−1)-approximate distane orale of Thorup and Zwik [24℄ are
O(k) query time and O(kn1+1/k) size. Note that the size is subquadrati for any k > 1. To ahievesuh a ompat size, the orale stores distanes from eah vertex to only a small set of verties thatensures the following key property. For every pair of verties u, v ∈ V , there is some vertex w whihis near to both u and v, and its distane to eah of them is known. This property allows the orale toreport δ(u, w) + δ(v, w) as an approximation for the distane δ(u, v).The building blok of the approximate distane orale of Thorup and Zwik [24℄ is a novel struturealled Ball whih is de�ned as follows.De�nition 5.1 Given a graph G = (V, E), a vertex v ∈ V , and two subsets of verties X and Y , theset Ball(v, X, Y) onsists of all those verties of set X whih lie within distane δ(v, Y) from v. Inpreise words,

Ball(v, X, Y) = {x ∈ X |δ(v, x) < δ(v, Y)}17

It is easy to observe that Ball(v, X, Y) = ∅ for any v ∈ Y and Ball(v, X, ∅) = X . The followinglemma shows that randomization (in onstrution of Y) an be used to ahieve a small size of a ball.Its proof requires an elementary appliation of Cherno� bound.Lemma 5.1 [24℄ For a given subset X ⊆ V , let Y ⊂ X be formed by seleting eah vertex from Xindependently with probability p > 0. Then the size of Ball(v, X, Y) is O(1/p) in expetation and
O(log n/p) with high probability, that is, with probability exeeding 1− 1

nc for any positive onstant c.We now provide an overview of the (2k − 1)-approximate distane orale of Thorup and Zwik [24℄.It builds a k + 1 level hierarhy Ak = {A0, A1, ..., Ak−1} of subsets of verties de�ned as follows.
A0 = V , Ak = ∅, and Ai for any 0 < i < k is formed by seleting eah vertex of Ai−1 independentlywith probability n−1/k. The orale stores the following information for eah vertex v ∈ V and i < k.
• distane to eah vertex of the set Ball(v, Ai, Ai+1) (this information is kept in a hash table).
• the vertex from Ai nearest to v (to be denoted as pi(v)).For a better illustration, see Figure 6 for the distane information stored at a vertex v ∈ V in aseof 3-approximate distane orale, that is, k = 2.

PSfrag replaementsv

p1(v)Ball(v, V, A1)

∈ A1Figure 6: 3-approximate distane orale : v stores distanes to all the verties pointed by arrows.It follows from Lemma 5.1 that the spae oupied by the entire data struture will be O(kn1+1/k log n)with high probability. The data struture supports the following basi operation in O(1) time.Report distane between v and w if w ∈ Ball(v, Ai, Ai+1) for any given v ∈ V and w ∈ Ai\Ai+1.In order to report approximate distane between any pair of verties u and v, the orale performsa series of suh basi operations. At the end of O(k) suh operations, it sueeds in �nding a vertex
w ∈ Ai\Ai+1 for some i < k whih has the following properties. w is present in Ball(u, Ai, Ai+1) aswell as Ball(v, Ai, Ai+1), and either δ(u, w) ≤ iδ(u, v) or δ(v, w) ≤ iδ(u, v). The orale �nally reports
δ(u, w)+δ(v, w) as approximate distane between u and v. Using triangle inequality and the fat that
i < k, the distane reported is at most (2k − 1)δ(u, v).We would also like to mention about one more novel struture de�ned by Thorup and Zwik [24℄.This struture, alled luster, is basially inverse of a ball. For any sets X ⊆ V , Y ⊆ X and anyvertex w ∈ X , luster C(w, X, Y) is de�ned as

C(w, X, Y) = {v ∈ V |δ(v, w) < δ(v, Y)}The following equality is an immediate onsequene of the fat that balls and lusters are inverses ofeah others.
∑

v∈V

|Ball(v, X, Y)| =
∑

w∈X

|C(w, X, Y)| (2)
18

5.2 Overview of all-pairs approximate distane orale avoiding any failedvertexThe basi strutures and notations introdued by Thorup and Zwik [24℄ for the approximate distaneorale get extended in the ase of single vertex failure quite naturally as follows.
• Balls and lusters in ase of vertex failure are de�ned as:

Ballx(v, A, B) = {w ∈ A|δ(v, w, x) < δ(v, B, x)}

Cx(w, A, B) = {v ∈ V |δ(v, w, x) < δ(v, B, x)}

• px
i (v) : the vertex from Ai whih is nearest to v in G\{x}.Lemma 5.1 also gets extended easily as follows.Lemma 5.2 [24℄ For a given subset X ⊆ V , let Y ⊂ X be formed by seleting eah vertex from

X independently with probability p > 0. Then, with high probability, the size of Ballx(v, X, Y) is
O(log n/p) for eah x, v ∈ V .Along the lines of the approximate distane orale of Thorup and Zwik [24℄, the basi operationwhih the orale avoiding any failed vertex should support is the following :

o : Report (exat or approximate) shortest path between v and w if w ∈ Ballx(v, Ai, Ai+1) for anygiven v, x ∈ V and w ∈ Ai\Ai+1.However, it an be observed that we will have to support this operation impliitly. This is beausestoring Ballx(v, Ai, Ai+1) expliitly for all v, x, i an not be ahieved in subquadrati spae. Toahieve this goal, our starting point is the simple observation that lusters and balls are inverses ofeah other. As a result we realize that w ∈ Ballx(v, Ai, Ai+1) if and only if v ∈ Cx(w, Ai, Ai+1).Now we make use of the following insightful observation about the subgraph Gi(w) indued by theverties of set ∪x∈V Cx(w, Ai, Ai+1): This subgraph preserves the path P(w, v, x) for eah x, v ∈ Vif w ∈ Ballx(v, Ai, Ai+1). So we may build the data struture for single soure approximate shortestpaths avoiding vertex failure on graph Gi(w) with w as the soure. Keeping this data struture foreah w ∈ Ai provides an impliit way for supporting the operation o. Using Theorem 4.1 and ignoringthe logarithmi fators, it an be seen that the spae required at a level i will be of the order of
∑

w∈Ai
| ∪x Cx(w, Ai, Ai+1)|. However, it is not lear whether we an get an upper bound of theorder of n1+1/k on this quantity. Here, as a new tool, we introdue the notion of ǫ-trimmed balls andlusters.De�nition 5.2 Given a vertex x, any subsets A, B of verties, and ǫ > 0

Ballx(v, A, B, ǫ) =

{

w ∈ A|δ(v, w, x) <
δ(v, B, x)

1 + ǫ

}

Cx(w, A, B, ǫ) =

{

v ∈ V |δ(v, w, x) <
δ(v, B, x)

1 + ǫ

}Instead of dealing with the usual balls (and lusters), we deal with ǫ-trimmed balls (and lusters).The key role played by ǫ-trimmed balls is that there exists a small set S of O(log n
ǫ) verties suh that

∪x∈V Ballx(v, Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v, Ai, Ai+1) (3)This equation and Lemma 5.2 provide a bound of O(n1/k log2 n
ǫ) on the size of ∪x∈V Ballx(v, Ai, Ai+1, ǫ)with high probability. One again, we make use of the inverse relationship between lusters and balls.Note that Equation 2 gets extended seamlessly to ǫ-trimmed balls and lusters under single vertexfailure as well. That is,

∑

w∈Ai

| ∪x Cx(w, Ai, Ai+1, ǫ)| =
∑

v∈V

| ∪x Ballx(v, Ai, Ai+1, ǫ)| (4)19

This leads to an upper bound of O(n1+1/k log2 n
ǫ) on ∑

w∈Ai
| ∪x Cx(w, Ai, Ai+1, ǫ)| with high proba-bility. In this way the overall spae required by the data struture turns out to be greater than thatof the (2k − 1)-approximate distane orale of Thorup and Zwik [24℄ by polynomial in 1/ǫ and log nonly.Having given an overview we now proeed to provide the omplete details of the all-pairs approxi-mate distane orale avoiding any failed vertex. The following subsetion desribes the key role playedby ǫ-trimmed balls and the subgraph Gi(w).5.3 ǫ-trimmed balls and the subgraph Gi(w)We �rst state and prove an important lemma.Lemma 5.3 In a given graph G = (V, E), let v be any vertex and let u = pi+1(v). Let x1 and

x2 be any two verties on the path P(v, u) from v to u with x1 preeding x2 and δ(v, Ai+1, x1) ≤
(1 + ǫ)δ(v, Ai+1, x2). Then

Ballx1(v, Ai, Ai+1, ǫ) ⊆ Ball(v, Ai, Ai+1) ∪Ballx2(v, Ai, Ai+1)Proof: To prove the lemma it su�es to prove the following equivalent statement. Let w be anyvertex in Ai. If w does not belong to Ball(v, Ai, Ai+1) ∪Ballx2(v, Ai, Ai+1), then w does not belongto Ballx1(v, Ai, Ai+1, ǫ) as well. We prove this statement by analyzing the following two ases.Case 1 : The vertex x2 is present in P(v, w, x1).Sine w /∈ Ball(v, Ai, Ai+1), therefore, δ(v, w) ≥ δ(v, u). Hene, using triangle inequality, it followsthat δ(v, x2)+ δ(x2, w) ≥ δ(v, w) ≥ δ(v, u) = δ(v, x2)+ δ(x2, u). Hene δ(x2, w) ≥ δ(x2, u). Moreover,sine x1 preedes x2 on the path P(v, u), so x1 does not appear on P(x2, u), and so δ(x2, u, x1) =
δ(x2, u). Hene

δ(x2, w, x1) ≥ δ(x2, u, x1) (5)Now it is given that x2 ∈ P(v, w, x1), so using optimal subpath property it follows that
δ(v, w, x1) = δ(v, x2, x1) + δ(x2, w, x1)

≥ δ(v, x2, x1) + δ(x2, u, x1) {using Equation 5}
≥ δ(v, u, x1) ≥ δ(v, Ai+1, x1)Hene it follows that w does not even belong to Ballx1(v, Ai, Ai+1). So, w won't belong toBallx1(v, Ai, Ai+1, ǫ)as well sine the latter is a subset of the former.Case 2 : The vertex x2 is not present in P(v, w, x1).In this ase, we proeed as follows.

δ(v, w, x1) = δ(v, w, {x1, x2}) ≥ δ(v, w, x2)

≥ δ(v, Ai+1, x2) {sine w /∈ Ballx2(v, Ai, Ai+1)}
≥ δ(v, Ai+1, x1)

1 + ǫHene it follows that w /∈ Ballx1(v, Ai, Ai+1, ǫ). •Nowwe shall use Lemma 5.3 to establish an upper bound on the size of set ∪x∈V Ballx(v, Ai, Ai+1, ǫ).Let u = pi+1(v) and let the shortest path P(u, v) be 〈v(= x0), x1, ..., xℓ(= u)〉. It is easy to observethat ∪x∈V Ballx(v, Ai, Ai+1, ǫ) = ∪1≤j≤ℓBallxj(v, Ai, Ai+1, ǫ). We shall show that there is a sequene
α of O(log n

ǫ) monotonially inreasing integers from the interval [1, ℓ] suh that for eah i, we have
∪α(i−1)<j≤α(i)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(i)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)Now we desribe an algorithm to onstrut the sequene α. For eah vertex x ∈ P(v, u) (inludingvertex u), we de�ne value(x) as δ(v, Ai+1, x). Let h be the maximum value of any node on the path

P(v, u). 20

We de�ne h1 = h. We de�ne α(1) to be the largest integer in the interval [1, ℓ] suh that
value(xα(1)) ≥ h1/(1 + ǫ). It an be seen that for all 1 ≤ j ≤ α(1), δ(v, Ai+1, xj) ≤ (1 +
ǫ)δ(v, Ai+1, xα(1)). Therefore, it follows from Lemma 5.3 that for eah vertex x ∈ {x1, ..., xα(1)},
Ballx(v, Ai, Ai+1, ǫ) ⊆ Ballxα(1)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1). Hene

∪0<j≤α(1)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(1)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)We de�ne h2 = max{value(xj)|α(1) < j ≤ ℓ}. It follows from the onstrution that h2 < h/(1+ǫ),We de�ne α(2) to be the largest integer in the interval [α(1) + 1, ..., ℓ] suh that value(xα(2)) ≥
h2/(1+ ǫ). It an be seen that for all α(1) < j ≤ α(2), δ(v, Ai+1, xj) ≤ (1+ ǫ)δ(v, Ai+1, xα(2)). There-fore, it follows from Lemma 5.3 that for eah vertex x ∈ {xα(1)+1, ..., xα(2)}, Ballx(v, Ai, Ai+1, ǫ) ⊆
Ballxα(2)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1). Hene

∪α(1)<j≤α(2)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(2)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)We de�ne h3 = max{value(xj)|α(2) < j ≤ ℓ}. It follows from the onstrution that h3 <
h2/(1 + ǫ) < h/(1 + ǫ)2, We de�ne α(3) to be the largest integer in the interval [α(2) + 1, ..., ℓ] suhthat value(xα(3)) ≥ h3/(1 + ǫ). In this manner, we ontinue sanning the path P(v, u) from v to u toompute the elements of sequene α. The last element to be added to this sequene will be ℓ. Notethat 〈hi〉 is a geometrially dereasing sequene with ommon ratio (1+ǫ). So the number of elementsin the sequene will be of the order of log1+ǫ h = O(log h

ǫ). Our desired set S is de�ned as {xj |j ∈ α}.Note that u ∈ S and also observe that Ball(v, Ai, Ai+1) ⊆ Ballu(v, Ai, Ai+1) sine u ∈ Ai+1. We anthus onlude that there is a set S of O(log n
ǫ) verties suh that

∪x∈V Ballx(v, Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v, Ai, Ai+1)Using Lemma 5.2 and the above equation, we an onlude the following Theorem.Theorem 5.1 Let G = (V, E) be an unweighted graph and Ak be the hierarhy of verties as de�nedearlier. For any vertex v, integer i < k − 1, and onstant ǫ > 0, with very high probability
| ∪x∈V Ballx(v, Ai, Ai+1, ǫ)| = O

(

n1/k log2 n

ǫ

)Now reall Equation 4 whih states that balls and lusters are inverses of eah others, even undervertex failure. This equation and Theorem 5.1 imply the following orollary.Corollary 5.1 Let G = (V, E) be an undireted unweighted graph and Ak be the hierarhy of vertiesas de�ned earlier. For any integer i < k − 1, and onstant ǫ > 0, with high probability
∑

w∈Ai

| ∪x∈V Cx(w, Ai, Ai+1, ǫ)| = O

(

n1+1/k log2 n

ǫ

)Now we desribe the key role played by the graph Gi(w). Reall that Gi(w) is the subgraph of theoriginal graph indued by verties of the set ∪x∈V Cx(w, Ai, Ai+1, ǫ). The following lemma highlightsan important fat about Gi(w).Lemma 5.4 If w ∈ Ballx(v, Ai, Ai+1, ǫ), then the shortest path P(w, v, x) is present in the subgraph
Gi(w)\{x}.Proof: Let y be any vertex on the shortest path P(w, v, x). We shall �rst prove that w belongs to
Ballx(y, Ai, Ai+1, ǫ). The proof is based on ontradition. Let w /∈ Ballx(y, Ai, Ai+1, ǫ). So theremust be a vertex z ∈ Ai+1 suh that

δ(y, z, x) ≤ (1 + ǫ)δ(y, w, x)21

Sine the vertex y belongs to the shortest path between w and v in G\{x}, therefore, the followinginequality an be onluded.
δ(v, z, x) ≤ (1 + ǫ)δ(v, w, x)However, it implies that w /∈ Ballx(v, Ai, Ai+1, ǫ), a ontradition.So for eah vertex y on the shortest path P(w, v, x), w belongs to Ballx(y, Ai, Ai+1, ǫ). Hene

y ∈ Cx(w, Ai, Ai+1, ǫ), and so the entire path P(w, v, x) is present in Gi(w). Moreover, sine
x /∈ P(w, v, x), the shortest path P(w, v, x) is present in Gi(w)\{x}. •So if w ∈ Ballx(v, Ai, Ai+1, ǫ), then (1 + ǫ)-approximate distane between v and w avoiding xan be reported using the data struture for single soure (1 + ǫ)-approximate shortest paths from wavoiding any failed vertex in the graph Gi(w) (see Theorem 4.1).5.4 The data struturesThe (2k−1)(1+ ǫ)-approximate distane orale avoiding any failed vertex will keep the following datastrutures for eah i < k.
• Let Ni be the data struture for the nearest marked vertex problem with S = Ai as desribed inTheorem 4.2. Reall that for any v, x ∈ V , this data struture reports a vertex w ∈ Ai suh that

δ(v, w, x) ≤ (1+ ǫ)δ(v, Ai, x). Heneforth, we shall use px
i (v, ǫ) to denote this vertex as reportedby Ni.

• For eah w ∈ Ai, let Di(w) be the data struture for (1 + ǫ)-approximate shortest paths from wavoiding any failed vertex in the graph Gi(w).It follows from Theorem 4.2 that the total spae required by all Ni's will be O(nk(log n + 1
ǫ3)) =

O(nk log n
ǫ3). It follows from Theorem 4.1 that the spae required by Di(w) will be of the orderof | ∪x Cx(w, Ai, Ai+1)| · log n

ǫ3 . Therefore, using Corollary 5.1, the total spae required by Di(w)for all w ∈ Ai will be O(1
ǫ4 n1+1/k log3 n) with high probability. So the total spae oupied by theapproximate distane orale avoiding any failed vertex will be O(k

ǫ4 n1+1/k log3 n) with high probability.We may rebuild the orale if the size exeeds this bound by a fator of 2. This will require only O(1)rebuildings in expetation. Hene we an state the following lemma.Lemma 5.5 The total spae oupied by the approximate distane orale avoiding any failed vertexis O(k
ǫ4 n1+1/k log3 n).Now we desribe the algorithm to retrieve approximate distane between any two verties u and

v upon failure of any vertex x. First we de�ne a notation δ̂(u, w, x) for any w ∈ Ai as follows. If
w = px

i (u, ǫ), then δ̂(u, w, x) represents the approximate distane between u and w upon failure of xas reported by Ni. Otherwise, δ̂(u, w, x) denotes the approximate distane between u and w uponfailure of x as reported by Di(w). We now state the following simple observations.Observation 5.1 For any vertex u ∈ V and a vertex w ∈ Ai, if w = px
i (u, ǫ) then δ̂(u, w, x) ≤

(1 + ǫ)δ(u, Ai, x)Observation 5.2 If w ∈ Ballx(v, Ai, Ai+1, ǫ), then δ̂(v, w, x) ≤ (1 + ǫ)δ(v, w, x).We desribe our query answering proedure in Algorithm 3. In this algorithm we assume that
δ̂(v, y, x) =∞ if v /∈ Gi(y) and δ̂(u, z, x) =∞ if u /∈ Gi(z).Let us now analyze the query answering algorithm to bound the streth d(u,v,x)

δ(u,v,x) . To retrieveapproximate distane between u and v upon failure of vertex x, the aim is to �nd a vertex w whih islose to both u and v, and its approximate distane to both u and v is known. The query answeringalgorithm on�nes the searh for suh verties to the set {px
i (u, ǫ)|i < k} ∪ {px

i (v, ǫ)|i < k}. Thefollowing lemma plays the key role in the analysis.22

Algorithm 3: Retrieving approximate distane between u and v upon failure of vertex x

d(u, v, x)←−∞;
i← 0;foreah i < k doCompute y ← px

i (u, ǫ) and z ← px
i (v, ǫ) using Ni;

d(u, v, x)← min
(

d(u, v, x), δ̂(u, y, x) + δ̂(v, y, x), δ̂(u, z, x) + δ̂(v, z, x)
)

;return d(u, v, x);Lemma 5.6 Let G = (V, E) be an undireted unweighted graph, with u, v ∈ V and j being anypositive integer < k. If for eah i < j, neither px
i (u, ǫ) ∈ Ballx(v, Ai, Ai+1, ǫ) nor px

i (v, ǫ) ∈
Ballx(u, Ai, Ai+1, ǫ), then

δ(u, px
j (u, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x) as well as δ(v, px

j (v, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x)Proof: We provide a proof by indution on j.Base Case : j = 1Note that px
0(u, ǫ) = u and px

0(v, ǫ) = v. If u /∈ Ballx(v, A0, A1, ǫ), then it must be that δ(v, A1, x) ≤
(1 + ǫ)δ(u, v, x). Hene, by de�nition of px

1(v, ǫ),
δ(v, px

1(v, ǫ), x) ≤ (1 + ǫ)2δ(u, v, x)Along similar lines, we an prove that δ(u, px
1(u, ǫ), x) ≤ (1 + ǫ)2δ(u, v, x). Hene the assertion holdsfor the base ase.Indution step :Suppose the assertion holds for j = t− 1. We shall prove the assertion for j = t. So we are given thatfor eah i < t, neither px

i (u, ǫ) ∈ Ballx(v, Ai, Ai+1, ǫ) nor px
i (v, ǫ) ∈ Ballx(u, Ai, Ai+1, ǫ). Firstly, itfollows from the indution hypothesis that

δ(u, px
t−1(u, ǫ), x) ≤ (1 + ǫ)2(t−1)(t− 1)δ(u, v, x) (6)

δ(v, px
t−1(v, ǫ), x) ≤ (1 + ǫ)2(t−1)(t− 1)δ(u, v, x) (7)Now onsider the vertex px

t−1(u, ǫ). Note that px
t−1(u, ǫ) belongs to At−1. Sine it is given that

px
t−1(u, ǫ) /∈ Ballx(v, At−1, At, ǫ), therefore

δ(v, At, x) ≤ (1 + ǫ)δ(v, px
t−1(u, ǫ), x)Hene

δ(v, px
t (v, ǫ), x) ≤ (1 + ǫ)2δ(v, px

t−1(u, ǫ), x)Now using triangle inequality
δ(v, px

t−1(u, ǫ), x) ≤ δ(u, px
t−1(u, ǫ), x) + δ(u, v, x)Combining the above two inequalities, we get

δ(v, px
t (v, ǫ), x) ≤ (1 + ǫ)2

(

δ(u, px
t−1(u, ǫ), x) + δ(u, v, x)

)

≤ (1 + ǫ)2
(

(1 + ǫ)2(t−1)(t− 1)δ(u, v, x) + δ(u, v, x)
) {using Equation 6}

≤ (1 + ǫ)2ttδ(u, v, x)Along similar lines we an prove that δ(u, px
t (u, ǫ), x) ≤ (1 + ǫ)2ttδ(u, v, x). This onludes the prooffor j = t. Hene by priniple of mathematial indution, the assertion holds for all j. •We �nally prove a bound on d(u, v, x) using Lemma 5.6.23

Lemma 5.7 Let d(v, u, x) be the approximate distane between u and v avoiding x as output by ourquery answering algorithm. Then, d(u, v, x) ≤ (1 + ǫ)2k−1(2k − 1)δ(u, v, x).Proof: Let j be the smallest positive integer for whih either px
j (u, ǫ) ∈ Ballx(v, Aj , Aj+1, ǫ) or

px
j (v, ǫ) ∈ Ballx(u, Aj , Aj+1, ǫ) holds true. Sine Ballx(v, Ak−1, Ak, ǫ) = Ak−1, so px

k−1(u, ǫ) ∈
Ballx(v, Ak−1, Ak, ǫ) as well as px

k−1(v, ǫ) ∈ Ballx(u, Ak−1, Ak, ǫ). Hene j ≤ k − 1 always. Nowwithout loss of generality, let px
j (u, ǫ) ∈ Ballx(v, Aj , Aj+1, ǫ). So, it follows from Lemma 5.6 that
δ(u, px

j (u, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x) (8)Using triangle inequality, it follows that
δ(v, px

j (u, ǫ), x) ≤ (1 + ǫ)2j(j + 1)δ(u, v, x) (9)Furthermore, it follows from Observations 5.1 and 5.2 respetively that
δ̂(u, px

j (u, ǫ), x) ≤ (1 + ǫ)δ(u, px
j (u, ǫ), x) and δ̂(v, px

j (u, ǫ), x) ≤ (1 + ǫ)δ(v, px
j (u, ǫ), x)Therefore, at the end of jth iteration, d(u, v, x) an be bounded as follows.

d(u, v, x) ≤ δ̂(u, px
j (u, ǫ), x) + δ̂(v, px

j (u, ǫ), x)

≤ (1 + ǫ)
(

δ(u, px
j (u, ǫ), x) + δ(v, px

j (u, ǫ), x)
)

≤ (1 + ǫ)2j+1(2j + 1)δ(u, v, x) {using Equations 8 and 9}
≤ (1 + ǫ)2k−1(2k − 1)δ(u, v, x) {sine j ≤ k − 1}This ompletes the proof.

•For bounding (1 + ǫ)2k−1 below (1 + ǫ′) for a given ǫ′, we may selet su�iently small value of ǫ (let
ǫ = O(ǫ′/k)). So ombining Lemma 5.5 and Lemma 5.7, we an thus onlude with the followingtheorem.Theorem 5.2 Given an integer k > 1 and a fration ǫ > 0, an unweighted graph G = (V, E) an beproessed to onstrut a data struture whih an answer (2k − 1)(1 + ǫ)-approximate distane querybetween any two nodes u ∈ V and v ∈ V upon failure of any vertex x ∈ V in O(k) time. The totalsize of the data struture is O(k5

ǫ4 n1+1/k log3 n).We would like to state that the data struture mentioned in Theorem 5.2 an be preproessed in
O(kmn1+1/k) time. The preproessing algorithm is quite straightforward and employs the O(kmn1/k)time algorithm of approximate distane orales of Thorup and Zwik [24℄.6 ConlusionsIn this paper, we presented ompat data strutures for approximate shortest paths avoiding anyfailed vertex in undireted unweighted graphs. The size of these data strutures is nearly optimaland the query time guaranteed is optimal up to a onstant fator. We presented almost linear (in
n) size data strutures for single soure approximate shortest paths avoiding any failed vertex. Wealso presented an all-pairs approximate shortest paths orale avoiding any failed vertex in undiretedunweighted graphs. This orale is obtained by suitable adaptation of the approximate distane oraleof Thorup and Zwik [24℄ using lever insights and new ideas. Interestingly, the size streth trade-o�of the orale remains nearly preserved though the orale is now tolerant to any single vertex failure.We would like to onlude with the following open problems for future researh.
• Single soure (1 + ǫ)-approximate shortest paths in a weighted graph:Can we design a data struture for undireted weighted graphs whih oupies O(n polylog n)spae and an report (1 + ǫ)-approximate shortest paths from a designated soure avoiding anyfailed vertex for any ǫ > 0 ? 24

• Data strutures for distributed environment:The data struture for the single soure approximate shortest paths avoiding any failed vertex,as presented in this artile, is for entralized environment only. Note that there are plenty ofdistributed settings in networks, where one is interested in traveling from a soure node to anygiven destination, avoiding a reported failure (see [23℄). It would be interesting and useful toadapt our entralized data struture in the distributed environment.
• All-pairs approximate distane orale for weighted graphs:Our data struture for the single soure 3-approximate shortest paths avoiding any failed vertexin weighted graphs (Theorem 3.2) an be used to build all-pairs approximate distane oralesapable of tolerating any single vertex failure for weighted graphs. Though the spae oupiedwill be O(n1+1/k polylog n), the streth would be exponential in k. Therefore, it would be aninteresting problem in the domain of weighted graphs to design all-pairs approximate distaneorales apable of tolerating any single vertex failure whih oupy O(n1+1/k polylog n) spaeand still guarantee O(k) streth.
• Multiple vertex failures:Can we design approximate shortest paths orales whih may handle failure of two or moreverties ? For the all-pairs exat distanes, Duan and Pettie [11℄ presented a distane sensitivityorale whih oupies O(n2 log3 n) size and an handle failures of any two verties at a time.AknowledgmentsPart of the work was done while the authors were at Max-Plank Institute for Computer Siene,Saarbrueken, Germany for the period May-July, 2009. The authors are also grateful to anonymousreferees for providing useful omments whih led to improving the readability of the paper.Referenes[1℄ D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortestpaths (without matrix multipliation). SIAM Journal on Computing, 28(4):1167�1181, 1999.[2℄ S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in undi-reted graphs. SIAM Journal on Computing, 39(7):2865�2896, 2010.[3℄ S. Baswana and S. Sen. Approximate distane orales for unweighted graphs in expeted O(n2)time. ACM Transations on Algorithms, 2(4):557�577, 2006.[4℄ A. Bernstein. A nearly optimal algorithm for approximating replaement paths and k shortestsimple paths in general graphs. In Proeedings of the 21st Annual ACM-SIAM Symposium onDisrete Algorithms, pages 742�755, 2010.[5℄ A. Bernstein and D. Karger. A nearly optimal orale for avoiding failed verties and edges. InProeedings of the 41st Annual ACM Symposium on Theory of Computing, pages 101�110, 2009.[6℄ S. Chehik, M. Langberg, D. Peleg, and L. Roditty. f-sensitivity distane orales and routingshemes. In Proeedings of the 18th Annual European Symposium on Algorithms, pages 84�96,2010.[7℄ E. Cohen and U. Zwik. All-pairs small-streth paths. Journal of Algorithms, 38(2):335�353,2001.[8℄ C. Demetresu and G. F. Italiano. A new approah to dynami all pairs shortest paths. Journalof the ACM, 51(6):968�992, 2004.[9℄ C. Demetresu, M. Thorup, R. A. Chowdhury, and V. Ramahandran. Orales for distanesavoiding a failed node or link. SIAM Journal on Computing, 37(5):1299�1318, 2008.25

[10℄ D. Dor, S. Halperin, and U. Zwik. All-pairs almost shortest paths. SIAM Journal on Computing,29(5):1740�1759, 2000.[11℄ R. Duan and S. Pettie. Dual-failure distane and onnetivity orales. In Proeedings of the 19thAnnual ACM-SIAM Symposium on Disrete Algorithms, pages 506�515, 2009.[12℄ P. Erd®s. Extremal problems in graph theory. In Theory of Graphs and its Appliations (Pro.Sympos. Smolenie,1963), pages 29�36, Publ. House Czehoslovak Aad. Si., Prague, 1964.[13℄ M. Fredman and R. Tarjan. Fibonai heaps and their uses in improved network optimizationproblem. Journal of the ACM, 34:596�615, 1987.[14℄ D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest ommon anestors. SIAM J.Comput., 13(2):338�355, 1984.[15℄ J. Hershberger and S. Suri. Vikrey pries and shortest paths: What is an edge worth? InProeedings of the 42nd IEEE Symposium on Foundations of Computer Siene, pages 252�259,2001.[16℄ J. Hershberger, S. Suri, and A. Bhosle. On the di�ulty of some shortest path problems. ACMTransations on Algorithms, 3:123�139, 2007.[17℄ D. R. Karger, D. Koller, and S. J. Philips. Finding the hidden path: time bounds for all-pairsshortest paths. SIAM Journal on Computing, 22:1199�1217, 1993.[18℄ E. Lawler. A proedure for omputing the k best solutions to disrete optimization problems andits appliation to the k shortest paths problem. Management Siene, 18:401�405, 1971/72.[19℄ K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital ars in the shortest path problem.Operation Researh Letters, 4:223�227, 1989.[20℄ E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path.Theoretial Computer Siene, 296(1):167�177, 2003.[21℄ L. Roditty and U. Zwik. Replaement paths and k simple shortest paths in unweighted diretedgraphs. In Proeedings of the 32nd International Colloquium on Automata, Languages, andProgramming, pages 249�260, 2005.[22℄ D. D. Sleator and R. E. Tarjan. A data struture for dynami trees. Journal of Computer andSystem Sienes, 26:362�391, 1983.[23℄ M. Thorup. Fortifying OSPF/IS-IS against link-failure. manusript, 2001.[24℄ M. Thorup and U. Zwik. Approximate distane orales. Journal of the ACM, 52(1):1�24, 2005.[25℄ J. Yen. Finding the k shortest loopless paths in a network. Management Siene, 17:712�716,1970/71.

26

