
Approximate shortest paths avoiding a failed vertex : near optimal datastru
tures for undire
ted unweighted graphs ∗Surender Baswana† Neelesh Khanna‡Abstra
tLet G = (V, E) be an undire
ted unweighted graph. A path between any two verti
es u, v ∈ Vis said to be t-approximate shortest path if its length is at most t times the length of the shortestpath between u and v. We address the problem of building a
ompa
t data stru
ture whi
h
ane�
iently answer the following query for any u, v, x ∈ V and t > 1:Report t-approximate shortest path between u and v when vertex x failsWe present data stru
tures for the single sour
e as well as all-pairs versions of this problem.The query time guaranteed by our data stru
tures is optimal up to a
onstant fa
tor. Moreover,the size of ea
h of them nearly mat
hes the size of the
orresponding data stru
ture with nofailures.Keywords: shortest path, distan
e, approximate distan
e, ora
le.

∗The results of the preliminary version of this arti
le appeared in the pro
eedings of 27th International Symposiumon Theoreti
al Aspe
ts of Computer S
ien
e (STACS) held at Nan
y, Fran
e during Mar
h 6-8, 2010.
†Department of Computer S
ien
e and Engineering, IIT Kanpur, India. Email : sbaswana�
se.iitk.a
.in. This workwas supported by Resear
h I Foundation, CSE, IIT Kanpur and by Indo-German Max Plan
k Center for ComputerS
ien
e (IMPECS).
‡Ora
le India Pvt. Ltd., Bangalore - 560029, India. Email : neelesh.khanna�gmail.
om.1

1 Introdu
tionThe shortest paths problem is a
lassi
al and well studied algorithmi
 problem of
omputer s
ien
e.Let G = (V, E) be a given dire
ted weighted graph on n = |V | verti
es and m = |E| edges. Thisproblem requires pro
essing of G to
ompute a data stru
ture whi
h
an report shortest path ordistan
e between any two verti
es. Two well known and thoroughly studied versions of this problemare the single sour
e shortest paths (SSSP) problem and the all-pairs shortest paths (APSP) problem.For any set S ⊂ V , let G\S denote the graph G after removing all verti
es of set S from it. Considerthe following extension of the shortest paths problem.Given a graph G = (V, E) and a small integer ℓ > 1,
onstru
t a
ompa
t data stru
ture whi
h, forany set S of at most ℓ verti
es, and any u, v ∈ V ,
an e�
iently report the shortest path (or distan
e)from u to v in G\S.We may denote this path by P(u, v, S) and the
orresponding distan
e by δ(u, v, S). The set Smay represent the set of failed verti
es in the graph at any moment, and the path P(u, v, S) is theshortest path from u to v avoiding these failed verti
es at that moment. It is required that ea
hsu
h query gets answered in optimal time: δ(u, v, S) should be reported in O(1) time and the path
P(u, v, S) should be reported in time whi
h is of the order of the number of edges lying on the path.An ideal goal would be to understand the
omplexity of the above problem for any arbitrary valueof ℓ. However, the �rst natural step in this dire
tion would be to thoroughly understand the
omplexityof the
ase ℓ = 1, that is, the shortest paths avoiding any single failed vertex. We fo
us on the singlesour
e and all-pairs versions of this problem for undire
ted unweighted graphs. We show that we
andesign extremely
ompa
t data stru
tures for these versions at the expense of approximation, that is,reporting approximate shortest paths avoiding any failed vertex.MotivationThe problem of shortest paths avoiding a failed vertex is a very natural extension of the
lassi
alshortest paths problem. This fa
t provides a justi�
ation for a thorough study of this problem fromtheoreti
al perspe
tive. Moreover, this problem is also motivated by
ertain appli
ations as follows.Almost all real life networks whi
h require e�
ient solution of shortest paths are prone to fail-ure of nodes (verti
es) and/or links (edges). So these networks have to have some e�
ient way ofreporting shortest paths avoiding the set of failed nodes (or links) at any given moment. Thoughthese networks are never immune to failures, it is also a fa
t that the failures are quite infrequent innormal
ir
umstan
es. Moreover, a failed node (or link) does not remain failed inde�nitely; insteadit revives and be
ome a
tive after some time due to some repair me
hanism whi
h is usually presentin su
h networks. These features
an be modeled as follows. There will be at most ℓ failed nodes atany moment of time for some ℓ≪ n. However, the set of failed nodes may keep
hanging as the timeprogresses: The old failed nodes may be
ome a
tive while some a
tive nodes may fail su
h that thenumber of failed nodes at any moment is at most ℓ. A typi
al shortest path query in su
h networkswould be the following. Given any subset S of at most ℓ failed nodes, and any u, v ∈ V , report theshortest path (or distan
e) from u to v in G\S. Moreover, ea
h su
h query has to be answered asqui
kly as possible. In parti
ular, on
e a node fails, we should be able to qui
kly report the newshortest paths to any a�e
ted destination. This requirement seems quite natural, espe
ially in the
ommuni
ation networks, where any delay in reporting the new shortest path may lead to
ongestiondue to the queues built up by the pa
kets whose shortest path has
hanged.It follows from the dis
ussion above that in addition to being a problem of independent interestfrom theoreti
al perspe
tive, the problem of shortest paths avoiding a failed vertex is motivated by
ertain pra
ti
al appli
ations as well. This problem is also
losely related to the repla
ement pathsproblem [4, 16, 19, 21℄, the most vital node of a shortest path [20℄, and the k shortest simple pathsproblem [18, 25℄ whi
h have been studied quite extensively.Past work and the need of approximationConsider the problem of single sour
e shortest paths avoiding any single failed vertex. Let r be adesignated sour
e vertex. A trivial data stru
ture for this problem is the following. For ea
h vertex2

x ∈ V ,
ompute and store the shortest paths tree at r in the graph G\{x}. The size of this datastru
ture will be Θ(n2). Demetres
u et al. [9℄ proved a worst
ase lower bound of Ω(m) on the size ofany data stru
ture for the problem of single sour
e shortest paths avoiding any failed vertex. m
anbe as large as Ω(n2). Hen
e, for the single sour
e version, in the worst
ase, the trivial O(n2) upperbound on the size of any data stru
ture is also asymptoti
ally the best one
an hope for.Interestingly, there are better results known for the all-pairs version of the problem of shortest pathsavoiding a failed vertex. The �rst signi�
ant breakthrough on this problem was made by Demetres
uet al. [9℄. They designed an O(n2 log n) spa
e data stru
ture for a given dire
ted weighted graph,namely distan
e sensitivity ora
le. This data stru
ture is
apable of reporting the distan
e (as wellas the shortest path) between any two verti
es avoiding any single failed vertex in O(1) time. Theprepro
essing time of this data stru
ture is O(mn2). Re
ently, Bernstein and Karger [5℄ improved theprepro
essing time to O(mn log n).The quadrati
 lower bound on the spa
e
omplexity of the single sour
e version of the problemimposes severe limitations on its solution in pra
ti
e. This inspires us to explore whether we
an a
hievesubquadrati
 or near linear size data stru
ture at the expense of reporting approximate shortest pathfrom the sour
e avoiding any failed vertex. Even for the all-pairs version of the problem, the O(n2 log n)bound on the size of the data stru
ture, though nearly optimal, is too large for many graphs whi
happear in various large s
ale appli
ations [24℄. In most of these graphs it is usual to havem≪ n2, hen
ea table of Θ(n2) size may be too large. In fa
t, due to the same reasons, many algorithms and datastru
tures have been designed for the all-pairs approximate shortest paths problem (without failures)in undire
ted graphs (see [1, 2, 3, 7, 10, 24℄). The prime motivation underlying the design of thesealgorithms has been to a
hieve subquadrati
 spa
e and/or sub
ubi
 prepro
essing time. However, nodata stru
ture has yet been designed for e�
iently reporting approximate shortest paths avoiding anyfailed vertex.1.1 New results and overview of te
hniquesWe present
ompa
t data stru
tures for undire
ted unweighted graphs whi
h are
apable of e�
ientlyreporting approximate shortest path (or distan
e) between any two verti
es avoiding any failed vertex.A path between u, v ∈ V is said to be t-approximate shortest path if its length is at most t timesthat of the shortest path between the two. The fa
tor t is usually
alled the stret
h fa
tor. Usingnew ideas
ombined with the existing results and te
hniques, we provide e�
ient
onstru
tion of su
hdata stru
tures for both the single sour
e as well as all-pairs versions of this problem. The time takenby our data stru
tures to answer any approximate shortest path or distan
e query is optimal up toa
onstant fa
tor. The most impressive feature of our data stru
tures is their nearly optimal size. Infa
t, the size of ea
h of them almost mat
hes the size of the
orresponding data stru
ture with nofailures.Single sour
e approximate shortest paths avoiding any failed vertexFirst we
onsider any undire
ted graph with nonnegative edge weights. For su
h a graph and a sour
evertex r, we present an O(m log n + n log2 n) time
omputable data stru
ture of size O(n log n). Thisdata stru
ture
an report a 3-approximate shortest path from r to any vertex v ∈ V avoiding any
x ∈ V . We then
onsider undire
ted unweighted graphs and augment this data stru
ture with someextra information. As a result, this new data stru
ture
an report a (1+ ǫ)-approximate shortest pathfrom the sour
e to any vertex avoiding any failed vertex for any given ǫ > 0. The spa
e o

upied bythe data stru
ture is O(n/ǫ3 + n log n).In order to a
hieve
ompa
t spa
e of these data stru
tures, we pro
eed as follows. Let P be any pathin the shortest paths tree rooted at the sour
e vertex in G. First we present a
ompa
t data stru
turefor reporting approximate shortest paths from the sour
e when the failed vertex belongs to path P .A key feature of this data stru
ture is that it has only a small number of spe
ial verti
es for whi
hthe shortest paths from the sour
e avoiding any failed vertex will a
tually be stored. For reportingapproximate shortest path from the sour
e to any vertex v when any vertex fails, v will employ the3

data stru
ture asso
iated with one of these spe
ial verti
es lying in its vi
inity. To fa
ilitate it, theundire
tedness of the graph is used very
ru
ially.On
e we have an e�
ient data stru
ture for handling failure of any vertex on a given path P , weextend it to handle failure of any arbitrary vertex using the heavy path de
omposition te
hnique givenSleator and Tarjan [22℄. Using this te
hnique, we break the shortest path tree rooted at the sour
einto vertex disjoint paths and build the data stru
ture mentioned above for ea
h su
h path. Thisextension is quite similar in spirit to any divide and
onquer approa
h. In this manner we get ourdata stru
ture for the single sour
e approximate shortest paths avoiding any failed vertex.An out
ome of independent interest from our data stru
ture is the
omputation of a subgraph of
O(n/ǫ3 +n logn) edges su
h that ea
h shortest path from the sour
e to any vertex avoiding any singlefailed vertex is (1 + ǫ)-approximated in this subgraph.All-pairs approximate shortest paths ora
le avoiding any single failed vertexAmong the existing data stru
tures for all-pairs approximate shortest paths in undire
ted graphs[1, 2, 3, 7, 10, 24℄, the approximate distan
e ora
le of Thorup and Zwi
k [24℄ stands out due to itsamazing features. This data stru
ture, in true sense, is a milestone in the area of all-pairs approximateshortest paths. Thorup and Zwi
k [24℄ showed that any undire
ted graph with nonnegative edgeweights
an be prepro
essed in sub
ubi
 time to build a data stru
ture of size O(kn1+1/k) for any
k > 1. This data stru
ture, despite of its subquadrati
 size, is
apable of reporting (2k−1)-approximatedistan
e between any two verti
es in O(k) time, and hen
e the name ora
le. The
orrespondingapproximate shortest path
an also be reported in time whi
h is of the order of the number of edgeson the path. The size-stret
h trade o� a
hieved by the ora
le is essentially optimal assuming the 48year old girth
onje
ture of Erd®s [12℄.It is a very natural question to explore if we
an design all-pairs approximate distan
e ora
les whi
hmay handle any single vertex failure. We show that it is indeed possible for undire
ted unweightedgraphs. For this purpose, we use a
ouple of new ideas on top of the existing approximate distan
eora
le of Thorup and Zwi
k [24℄. There are two basi
 stru
tures, namely ball and
luster, whi
hform the building blo
ks of the approximate distan
e ora
le of Thorup and Zwi
k [24℄. We introdu
ean ǫ-trimming of these stru
tures. Using the ǫ-trimming and a simple inverse relationship betweenballs and
lusters, we su

eed in making the approximate distan
e ora
le of Thorup and Zwi
k [24℄robust enough to handle any single vertex failure. Interestingly, we are able to preserve the originaltrade-o� between the spa
e and the stret
h as well. In pre
ise words, we a
hieve the following resulthere. For any ǫ > 0 and integer k > 1, we
an prepro
ess a given undire
ted unweighted graph tobuild a data stru
ture of size O(k5

ǫ4 n1+ 1
k log3 n). This data stru
ture is
apable of answering a queryabout the shortest path between any two verti
es avoiding any single failed vertex with a guaranteeof (2k − 1)(1 + ǫ) on the stret
h. The query time is optimal up to a
onstant fa
tor.Re
ently and independently, Che
hik et al. [6℄ solved quite a similar problem for edge failures.They showed that for any undire
ted graph with nonnegative edge weights and any integer f > 0, adata stru
ture
an be built whi
h
an report an approximate shortest path between any two verti
esgiven any set of at most f failed edges. The stret
h of the reported path is at most (8k − 2)(f + 1),and the size of the data stru
ture is O(fkn1+1/k log nW) where W is the ratio of the maximum tothe minimum edge weight in the given graph. Though the starting point of their data stru
ture isthe approximate distan
e ora
le of Thorup and Zwi
k [24℄, they use many new ideas whi
h are quitedi�erent from ours.1.2 Related workTwo well resear
hed problems related to the results of this paper are the repla
ement paths problemand the k shortest paths problem. Both these problems have primarily been studied for a single sour
edestination pair (s, t). Let P be the shortest path from s to t. The repla
ement paths problem aims to
ompute the shortest s-t path avoiding any edge e lying on the path P . The k shortest paths problemaims to
ompute the k shortest simple paths from s to t. These two problems have a lot of similarity.For example, the se
ond shortest path from s to t will be one of the repla
ement paths. In fa
t, as4

shown by Yen [25℄ and Lawler [18℄, an O(T (n)) time algorithm for the repla
ement paths problemimplies an O(kT (n)) time algorithm for the k shortest paths problem.Many e�
ient algorithms have been designed for repla
ement paths problem in
ertain
lasses ofgraph [15, 19, 21℄. However, there has not been any o(mn) time algorithm till date for this problemin general graphs. Hershberger et al. [16℄ proved a lower bound of Ω(m
√

n) for the repla
ement pathsproblem and the k shortest paths problem in the path
omparison model given by Karger et al. [17℄.So here again, approximation seems to be a natural dire
tion of resear
h. Re
ently, Bernstein [4℄designed an algorithm whi
h
an report (1 + ǫ)-approximation of every repla
ement path for a givensour
e destination pair. The running time of the algorithm is O(m log(nC/c)/ǫ) where C and c arerespe
tively the maximum and minimum edge weights in the graph.As des
ribed earlier, a pra
ti
al motivation for the shortest paths problem avoiding vertex failure isto study the dynami
 shortest paths problem in real life graphs and networks. There has been extensiveresear
h on the dynami
 shortest path problem in the following model whi
h is quite di�erent fromthe one we des
ribed. There is an initial graph followed by an on-line sequen
e of insertion anddeletion of edges interspersed with shortest path (or distan
e) queries. Ea
h query has to be answeredwith respe
t to the graph whi
h exists at that moment (in
orporating all the updates pre
eding thequery). The algorithmi
 obje
tive here is to maintain a data stru
ture whi
h
an answer any distan
equery e�
iently, and
an be updated after any edge insertion or deletion in an e�
ient manner. Inparti
ular, the
omplexity of the algorithm that updates this data stru
ture should be signi�
antlysmaller than that of the best stati
 algorithm. Many novel algorithms have been designed in the lastten years for the dynami
 shortest paths problem in this model (see [8℄ and the referen
es therein).On one hand, this model is important sin
e it
aptures the worst possible hardness of any dynami
graph problem. However, on the other hand, it
an also be
onsidered as a very pessimisti
 model forthe dynami
 shortest paths problem in real life networks.1.3 OrganizationSe
tion 2 provides various notations and lemmas to be used throughout this paper. Se
tion 3 and 4are devoted to the data stru
tures for single sour
e approximate shortest paths avoiding any failedvertex. Se
tion 5 is devoted to all-pairs approximate shortest paths ora
le avoiding any failed vertex.Like all the previous algorithms for single vertex failure, our algorithms
an be easily adapted forhandling single edge failure as well without any asymptoti
 in
rease in the spa
e and time
omplexity.2 PreliminariesWe use the following notations in the
ontext of a given undire
ted graph G = (V, E) with n = |V |,
m = |E| and a weight fun
tion ω : E →R+. We shall use r to denote the sour
e vertex.
• Tr : the shortest paths tree rooted at r. Though the underlying graph is undire
ted, yet it helps
on
eptually to view ea
h edge of Tr dire
ted away from r.
• Tr(x) : the subtree of Tr rooted at x.
• P(x, y) : the shortest path between x and y.
• su

(v, Q) : su

essor of v on path Q. The path Q under
onsideration will usually be asubpath in Tr, and hen
e su

(v, Q) will be uniquely de�ned. [We shall omit the symbol Qfrom su

(v, Q) when the path Q under
onsideration is known from the
ontext.℄
• δ(x, y) : the length of the shortest path between x and y. For any subset B of verti
es, we de�ne

δ(x, B) as miny∈B δ(x, y).
• P(x, y, z) : the shortest path between x and y avoiding vertex z.
• δ(x, y, z) : the length of the shortest path between x and y avoiding vertex z. For any subset Bof verti
es, we de�ne δ(x, B, z) as miny∈B δ(x, y, z).5

• Gr(x) : the subgraph indu
ed by the verti
es of Tr(x)\{x} and augmented by vertex r and edgesfrom r as follows. For ea
h v ∈ Tr(x), v 6= x with neighbors outside Tr(x), keep an edge (r, v) ofweight = min(u,v)∈E,u/∈Tr(x)(δ(r, u) + ω(u, v)).
• P · Q : a path formed by
on
atenating path Q at the end of path P with an edge (u, v) ∈ E,where u is the last vertex of P and v is the �rst vertex of Q.
• E(X) : the set of edges from E with at least one endpoint in X .We now state a
ouple of properties and terminologies related to P(r, v, x). These will be used in a
ru
ial manner in this paper.1. optimal subpath propertyEa
h subpath of P(r, v, x) is also the shortest path between its endpoints upon failure of x.2. triangle inequalityFor ea
h x, v, z ∈ V , δ(r, v, x) ≤ δ(r, z, x) + δ(z, v, x)3. detourPath P(r, v, x) must leave the path P(r, v) at some vertex before x, say a, and join it ba
k atsome vertex after x, say b. The subpath of P(r, v, x) between vertex a and b, say pa,b, willinterse
t P(r, v) at exa
tly two verti
es, namely a and b. This path pa,b is
alled the detourasso
iated with P(r, v, x).The following important observation follows immediately from the optimal subpath property.Observation 2.1 [9℄ Let x be any vertex in Tr, and let v be any vertex belonging to the subtree Tr(x).The path P(r, v, x) must be of the form A ·B, where A is a path present in Tr\Tr(x) and B is a pathpresent in the subgraph of G indu
ed by Tr(x)\{x}.Observation 2.1 and the de�nition of Gr(x) given above leads to the following lemma immediately.Lemma 2.1 In order to
ompute shortest paths from r avoiding x, it su�
es to perform Dijkstra'salgorithm from vertex r in the graph Gr(x).Lemma 2.1 leads to the following result for unweighted graph when the failed vertex lies within smalldistan
e from the sour
e. A generalized version of this result was used by Demetres
u et al. [9℄ ine�
ient
onstru
tion of all-pairs distan
e sensitivity ora
le.Lemma 2.2 Consider an unweighted graph G = (V, E) and a vertex r ∈ V . For any integer t, we
an prepro
ess the graph in O(mt + nt log n) time to build a data-stru
ture of size O(nt) whi
h
ananswer shortest-path/distan
e queries from r to any vertex upon failure of any single vertex withindistan
e t from r.Proof: Observe that for unweighted graph, the shortest path tree Tr is the same as the breadth �rstsear
h (BFS) tree. Let x1, . . . , xj be the verti
es lying at any level ℓ ≤ t in Tr. To prove the lemma,it will su�
e if we
an
onstru
t an O(n) spa
e data stru
ture whi
h
an report P(r, v, xi) for any

v ∈ V, 1 ≤ i ≤ j. We employ Lemma 2.1 to design su
h a data stru
ture. First note that ea
h of thesubtrees {Tr(xi) | 1 ≤ i ≤ j} are vertex disjoint. For ea
h 1 ≤ i ≤ j, we build and store a shortestpath tree rooted at r in the graph Gr(xi). These shortest path trees together with Tr
an report
P(r, v, xi) for any v ∈ V, 1 ≤ i ≤ j in optimal time. It
an be observed that the total spa
e o

upiedby these trees will be O(n) and their total
omputation time will be O(m + n logn). •Our data stru
tures will also use an e�
ient data stru
ture for answering lowest
ommon an
estor(LCA) queries on Tr.Lemma 2.3 [14℄ A rooted tree on n verti
es
an be prepro
essed in O(n) time to build a data stru
tureof size O(n) whi
h
an report, for any two verti
es u, v, their lowest
ommon an
estor in O(1) time.6

For the sake of simpli
ity, we shall assume that P(u, v, x) exists for every u, v, x ∈ V . In otherwords, we assume that the given graph is bi
onne
ted. However, we
an handle graphs whi
h are notne
essarily bi
onne
ted, essentially by breaking the graph into maximal bi
onne
ted
omponents andthen solving the problem of approximate shortest paths avoiding vertex failure for ea
h bi
onne
ted
omponent. We also assume that P(u, v, x) is unique. If there are multiple shortest paths between uand v in G\{x}, we may de
lare any one of these shortest paths as P(u, v, x).3 Single sour
e 3-approximate shortest paths avoiding any failedvertexIn this se
tion we design an O(n log n) spa
e data stru
ture for any undire
ted graph with nonneg-ative edge weights. This data stru
ture is
apable of reporting 3-approximate shortest path from adesignated sour
e r to any vertex v ∈ V whenever there is any single vertex failure in the graph.First, as a warm up, we des
ribe a simple idea for a
hieving 3-approximation of distan
e fromsour
e r to every vertex avoiding any single failed vertex. Let x ∈ V be the failed vertex at a momentand v1, ..., vj be its
hildren in Tr as shown in Figure 1. It is easy to observe that the failure of vertex
. . . .

PSfrag repla
ementsr

v1

vi

vj

x

zFigure 1: Storing distan
es δ(r, vi, x) su�
es to retrieve 3-approximation of δ(r, z, x) for any z ∈ Tr(vi)

x may alter the distan
e from r to verti
es belonging to Tr(vi), 1 ≤ i ≤ j only. Consider any vertex
vi and z ∈ Tr(vi). Note that the shortest path P(vi, z) remains inta
t even after removal of x, andits length is
ertainly less than δ(r, z). So, in order to travel from r to z when x fails, we may �rsttravel along shortest route to vi (that is P(r, vi, x)) and then along P(vi, z). The distan
e traveled inthis manner won't be too large
ompared to the distan
e asso
iated with P(r, z, x). In fa
t, exploitingundire
tedness of the graph and the triangle inequality property, we
an show that δ(r, vi, x)+ δ(z, vi)is 3-approximation of δ(r, z, x) as follows.

δ(r, vi, x) + δ(z, vi) ≤ δ(r, z, x) + δ(z, vi, x) + δ(z, vi)

≤ δ(r, z, x) + 2δ(z, vi)

≤ δ(r, z, x) + 2δ(r, z) ≤ 3δ(r, z, x)Remark 3.1: The approximation fa
tor may be mu
h smaller than 3 in
ase δ(vi, z)≪ δ(r, z). Weshall employ this observation
arefully in the next se
tion to design a data stru
ture for unweightedgraphs whi
h
an report (1+ ǫ)-approximate shortest paths from sour
e r avoiding any failed vertex.Therefore, based on the above dis
ussion, storing δ(r, vi, x) for all i ≤ j su�
es to retrieve 3-approximate distan
e from r to any vertex in the graph whenever vertex x fails. Pro
essing ea
h
x ∈ Tr in this manner leads to a data stru
ture of O(n) spa
e whi
h
an report 3-approximatedistan
e from r avoiding any single failed vertex. However, to extra
t the
orresponding approximateshortest path e�
iently would require storing the paths P(r, vi, x) for ea
h vi. Sin
e ea
h of thesepaths might be quite long and di�erent from all other paths, this approa
h may lead to Θ(n2) spa
ein the worst
ase. So the
hallenging task is to design a data stru
ture whi
h o

upies nearly O(n)spa
e, and yet allows e�
ient retrieval of 3-approximate shortest paths from r whenever any singlevertex fails. To a
hieve this obje
tive we �rst solve a simpler subproblem where the failing vertexbelongs to a given path Q ∈ Tr. Later we use divide and
onquer strategy to solve our main problem.7

3.1 Subproblem: Handling failure of a vertex lying on a given path in TrGiven the shortest path tree Tr, let Q be any path in Tr from some vertex q to some vertex t.Without loss of generality assume that t is a leaf node in Tr. Otherwise, we
an always extend Q tosome leaf node. We shall design a data stru
ture whi
h
an e�
iently report a 3-approximate shortestpath from r to any v ∈ V when some vertex from Q fails. This data stru
ture is inspired by thealgorithm of Nardelli et al. [20℄ for
omputing the most vital vertex on a shortest path. Consider any
x ∈ Q, x 6= t. We may partition the tree Tr\{x} into the following 3 parts as shown in Figure 2.PSfrag repla
ementsr

xsu

(x)
Ox

Ux

Dx

Q

q

tFigure 2: Partitioning of the shortest path tree Tr at x ∈ Q1. Ux : the tree Tr after removing the subtree Tr(x)2. Dx : the subtree of Tr rooted at succ(x)3. Ox : the portion of Tr left after removing Ux, x, and Dx.It
an be observed that whenever a vertex x ∈ Q fails, the shortest path and distan
e from sour
emay
hange only for the verti
es of set Dx and Ox. Based on this observation, the data stru
ture willa
tually
onsist of the following two data stru
tures.1. Hd(Q) : the data stru
ture to report 3-approximate shortest path from r to any v ∈ Dx whenany vertex x ∈ Q fails.2. Ho(Q) : the data stru
ture to report 3-approximate shortest path from r to any v ∈ Ox whenany vertex x ∈ Q fails.Now we des
ribe the above two data stru
tures and their prepro
essing algorithms. Let Q = 〈q(=
x0), x1, ..., xk(= t)〉 be the given path. In the following dis
ussion, we shall use Ui, Di, Oi as su

in
tnotations for Uxi

, Dxi
, Oxi

respe
tively.3.1.1 Des
ription and prepro
essing of the data stru
ture Hd(Q)The data stru
ture Hd will report 3-approximate shortest path to any v ∈ Di when xi fails for any
i < k. To a
hieve this obje
tive, it will store distan
e δ(r, xi+1, xi) and the
orresponding path
P(r, xi+1, xi) for ea
h i < k. However, it will store these paths impli
itly so that the overall spa
eo

upied by Hd will be O(|Tr(x0)|). Replying to a query for P(r, v, xi), for any v ∈ Di, it will report
P(r, xi+1, xi) ·P(xi+1, v). It follows from the dis
ussion in the beginning of this se
tion that this pathwill be a stret
h-3 approximation of P(r, v, xi). To a
hieve e�
ient
omputation and
ompa
t storageof P(r, xi+1, xi) for all 0 ≤ i < k, we exploit the following lemma.Lemma 3.2 The shortest path P(r, xi+1, xi) is of the form P1 · P2 where P1 is a shortest path from
r in the subgraph indu
ed by Ui ∪Oi, and P2 is a path present in Tr(xi+1).Proof: Let z be the �rst vertex of the path P(r, xi+1, xi) whi
h belongs to Di. De�ne P1 as theportion of P(r, xi+1, xi) pre
eding z, and P2 as the portion starting from z. All the verti
es of P1belong to Ui ∪ Oi. So P1 is
ertainly a shortest path from r in the subgraph indu
ed by Ui ∪ Oi. It8

follows from the optimal subpath property and undire
tedness of the graph that P2 = P(xi+1, z, xi).However, P(xi+1, z, xi) is the same as P(xi+1, z), and the latter is already present in Tr(xi+1). •It follows from Lemma 3.2 that in order to
ompute P(r, xi+1, xi), �rst we need to
ompute short-est paths from r in the subgraph indu
ed by Ui ∪ Oi. Note that the shortest paths from r to allverti
es of Ui in this subgraph are the same as in the original graph, and are already present in Tr.So we just need to
ompute shortest paths from r to verti
es of Oi in this subgraph. We do it byexe
uting Dijkstra's algorithm from r in the subgraph indu
ed by verti
es Oi ∪ {r} and the followingadditional edges. For ea
h o ∈ Oi with at least one neighbor in Ui, we add an edge (r, o) with weight= min(u,o)∈E,u∈Ui
(δ(r, u) + ω(u, o)). Let τ i

r denote the shortest path tree
omputed in this manner,and let δi(r, v) denote the distan
e from r to any v ∈ Ui ∪ Oi in the subgraph indu
ed by Ui ∪ Oi.It follows from Lemma 3.2 that the �rst vertex on P(r, xi+1, xi) whi
h belongs to Di is the vertex zwhi
h minimizes δi(r, y) + ω(y, z) + δ(xi+1, z) over all (y, z) ∈ E with y ∈ Ui ∪ Oi, z ∈ Di. Let usdenote this vertex by zi, and let yi ∈ Ui∪Oi be the vertex whi
h pre
edes zi on the path P(r, xi+1, xi).It
an be observed that the entire shortest path P(r, xi+1, xi)
an be reported using Tr, τ i
r, and theedge (yi, zi) in time of the order of number of edges on P(r, xi+1, xi).Data stru
ture Hd(Q). Based on the above dis
ussion, the data stru
ture Hd will store only theedge (yi, zi) and the tree τ i

r for ea
h i < k. Due to mutual disjointness of Oi's, it follows that thespa
e required by Hd will be of the order of ∑

i<k |τ i
r| = O(|Tr(q)|).E�
ient
omputation of Hd(Q). The time required to build τ i

r 's for all i < k will be of the orderof ∑

v∈Tr(q)(deg(v) + log n) due to mutual disjointness of Oi's. The only extra
omputational task isthe
omputation of edges (yi, zi) for all i < k whi
h we
an perform e�
iently as follows.The key idea used is that (Ui, Di, Oi) has a lot of overlap with (Ui+1, Oi+1, Di+1). This overlap
an be exploited to
ompute all the edges {(yi, zi)|0 < i < k} e�
iently in an in
remental fashion asfollows. We keep a heap data stru
ture storing verti
es. At the time of
omputation of (yi, zi), theheap
onsists of verti
es of set Di and the key of ea
h vertex z ∈ Di is de�ned as
key(z) = min

(y,z)∈E,y∈Ui∪Oi

(δi(r, y) + ω(y, z) + δ(r, z))With ea
h key(z), we also store the
orresponding edge (y, z) whi
h minimizes the value of key(z) asde�ned above. It
an be seen that zi
orresponds to the vertex in the heap with the smallest key. Sothe
omputation of zi (and hen
e the edge (yi, zi) as well) just requires a find_min operation on theheap. Now observe that Di+1 = Di\(Oi+1 ∪ {xi+1}). Therefore, for
omputing zi+1 we just need toupdate the heap as follows.
• delete ea
h vertex of set Oi+1 ∪ {xi+1} from the heap.
• For ea
h edge (y, z) ∈ E with y ∈ Oi+1, z ∈ Di+1, perform de
rease_key on z as follows.

key(z)← min(key(z), δi+1(r, y) + ω(y, z) + δ(r, z))

• For ea
h edge (y, z) ∈ E with y ∈ Oi ∪{xi}, z ∈ Di+1, perform de
rease_key on z as follows.
key(z)← min(key(z), δ(r, y) + ω(y, z) + δ(r, z))Performing find_min operation on the heap will now report (yi+1, zi+1). In this manner, we
omputethe entire set {(yi, zi)|0 ≤ i < k} by performing
ertain heap operations. In parti
ular, there willbe O(k) find_min operations and O(|Tr(q)|) delete_key operations. To bound the number ofde
rease_key operations, note that ea
h of these operations is asso
iated with an edge whoseat least one endpoint is in Tr(q). Moreover, it follows from the des
ription given above that therewill be at most two de
rease_key operations asso
iated with ea
h su
h edge. Hen
e, the totalnumber of de
rease_key operations will be at most 2

∑

v∈Tr(q) deg(v). Using Fibona

i heap [13℄,all these heap operations
an be performed in ∑

v∈Tr(q)(deg(v) + log n) time. We
an thus
on
ludethe following lemma. 9

Lemma 3.3 A shortest path Q = P(q, t) present in Tr
an be prepro
essed to build a data stru
-ture Hd(Q) of O(|Tr(q)|) size. In
ase of failure of any x ∈ Q, this data stru
ture
an report 3-approximation of δ(r, v, x) as well as P(r, v, x) for any v ∈ Dx. The query time is optimal up to a
onstant fa
tor and the prepro
essing time of Hd(Q) is of the order of ∑

v∈Tr(q)(deg(v) + log n).3.1.2 Des
ription and prepro
essing of the data stru
ture Ho(Q)The data stru
ture Ho(Q) will report 3-approximate shortest paths to verti
es of Oi upon failure of
xi for any i < k. The prepro
essing of Ho will employ the data stru
ture Hd des
ribed above. Re
allthat Hd
an report 3-approximate shortest paths to verti
es of Di upon failure of xi for any i. Herewe shall prove an interesting generi
 result whi
h states that if we have a data stru
ture to retrieve
α-approximate shortest paths from r to verti
es of Di upon failure of xi, then we
an use it to have adata stru
ture to retrieve α-approximate shortest paths to verti
es of Oi as well. To prove this result,
onsider the subgraph indu
ed by Oi ∪ {r} and some extra edges whi
h are de�ned as follows.
• For ea
h o ∈ Oi having neighbors from Ui, add an edge (r, o) and assign it weight equal to

min(u,o)∈E,u∈Ui
(δ(r, u) + ω(u, o)).

• For ea
h o ∈ Oi having neighbors from Di, add an edge (r, o) and assign it weight equal to
min(u,o)∈E,u∈Di

(δ̂(r, u, xi) + ω(u, o)), where δ̂(r, u, xi) is the α-approximate distan
e to u uponfailure of xi. (In the present situation we have α = 3.)In
ase of multiple edges introdu
ed from r to o as a result of the above steps, keep the edge with theleast weight only. Let us denote this graph by G(r, Oi).Lemma 3.4 The shortest paths tree from r in the graph G(r, Oi) will store α-approximate shortestpaths from r to all v ∈ Oi avoiding xi.Proof: Consider the shortest path P(r, o, xi) for any o ∈ Oi. If this path does not pass through anyvertex of Di, then it follows from the
onstru
tion of G(r, Oi) that a path of length exa
tly equal to
δ(r, o, xi) is present in the subgraph G(r, Oi) also. Now
onsider the
ase when the path P(r, o, xi)passes through one or more verti
es of Di. Let (u, v) be the last edge on the path P(r, o, xi) su
hthat u ∈ Di and v ∈ Oi. Consider the pre�x of the shortest path P(r, o, xi) ending at v. It followsfrom optimal subpath property that this pre�x is also a shortest path from r to v avoiding xi, andits length is δ(r, u, xi) + ω(u, v). Now note that the edge (r, v) in the graph G(r, Oi) has weight
δ̂(r, u, xi) + ω(u, v) whi
h is bounded by αδ(r, u, xi) + ω(u, v). Hen
e the pre�x of the path P(r, o, xi)up to v is stret
hed by at most α in G(r, Oi). Now the su�x of the path P(r, o, xi) following v
onsistsof verti
es of set Oi only, and so it is present entirely in the graph G(r, Oi). Hen
e, the shortest pathfrom r to o in G(r, Oi) is an α-approximation of P(r, o, xi). •The data stru
ture Ho(Q). Based on the above dis
ussion, this data stru
ture stores the shortestpath tree built for the graph G(r, Oi) for ea
h i < k. It
an be seen that this data stru
ture in
onjun
tion with tree Tr and Hd(Q)
an report a 3-approximate shortest path from r to any o ∈ Oiupon failure of xi for any i < k.Prepro
essing of Ho(Q). It will take O(|E(Oi)| + |Oi| log |Oi|) time to build the shortest pathtree on G(r, Oi) using Dijkstra's algorithm. On
e again, note that the sets Oi's are mutually disjoint.Therefore, the total spa
e required by Ho(Q) is O(|Tr(q)|). Furthermore, the total time spent inbuilding these shortest path trees for ea
h i < k will be O(

∑

v∈Tr(q)(deg(v) + log n)).Lemma 3.4 and the above dis
ussion imply the following observation whi
h we shall use later forimproving the stret
h fa
tor when the graph is unweighted.Observation 3.1 Given tree Tr and a path Q = P(q, t) present in Tr, if there is a data stru
turewhi
h
an report (1+ǫ)-approximate shortest paths from r to verti
es of Dx upon failure of any x ∈ Q,then we
an build a data stru
ture Ho(Q) whi
h
an report (1 + ǫ)-approximate shortest paths to allverti
es of Ox upon failure of any x ∈ Q. 10

Query answering: We now show that the data stru
tures Hd(Q) and Ho(Q) together
an be usedfor reporting 3-approximate shortest path from sour
e r to any vertex v whenever any vertex xi ∈ Qfails. If LCA(v, xi) 6= xi, the shortest path from r to v is una�e
ted by the failure of xi, so wejust report P(r, v). Otherwise, we determine if v ∈ Di or v ∈ Oi. It
an be seen that v ∈ Di if
LCA(v, xi+1) = xi+1, and v ∈ Oi otherwise. If v ∈ Di we use Hd(Q), else we use Ho(Q) to report theapproximate shortest path between r and v avoiding xi.Theorem 3.1 An undire
ted weighted graph G = (V, E), a sour
e r ∈ V , and a shortest path Q =
P(q, t) in Tr
an be pro
essed to build a data stru
ture whi
h
an report 3-approximate shortest pathfrom r to any v ∈ V upon failure of any single vertex from Q. The size of this data stru
ture is
O(|Tr(q)|) and its prepro
essing time is of the order of ∑

v∈Tr(q)(deg(v) + log n)).3.2 Data stru
ture for handling failure of any vertex in TrNow we shall des
ribe a data stru
tureH for reporting approximate shortest path from r to any vertex
v ∈ V avoiding any failed vertex x ∈ Tr. We take the following approa
h. Partition the tree intovertex disjoint paths, and for ea
h of these paths build data stru
ture des
ribed in the previous se
tion(see Theorem 3.1). However, any arbitrary partitioning of Tr will not lead to e�
ient
onstru
tionand
ompa
t size of the �nal data stru
ture. Therefore, we employ a partitioning s
heme devised bySleator and Tarjan [22℄. The following lemma lies at the heart of this s
heme.Lemma 3.5 [22℄ There exists an O(n) time algorithm to
ompute a path Q in Tr whose removalsplits Tr into a set of disjoint subtrees Tr(v1), ..., Tr(vj) su
h that for ea
h i ≤ j:
• |Tr(vi)| < n/2 and Q ∩ Tr(vi) = ∅.
• Tr(vi) is
onne
ted to Q through some edge for ea
h i ≤ j.Proof: We provide a simple traversal algorithm whi
h
omputes the path Q and a set T of subtreessatisfying all the properties mentioned above. Initially T = ∅. Let there be ℓ
hildren x1, ..., xℓ of theroot r. Let Tr(xj) be the largest subtree among Tr(x1), ..., Tr(xℓ). Add every subtree Tr(xi), i 6= jto T , and traverse the edge (r, xj). Now from xj , we traverse the edge to that des
endant throughwhi
h hangs the largest subtree, and add the remaining subtrees to T . Keep on traversing Tr in thismanner and stop when we rea
h a leaf vertex. This de�nes the path Q. It
an be seen that ea
h sub-tree in the set T is
onne
ted to Q through some edge and has size < n/2. This
ompletes the proof. •Pro
edure Partition(T) employs Lemma 3.5 to
ompute a partition of any rooted tree T into aset P of vertex disjoint paths. It is easy to exe
ute this pro
edure in O(n log n) time. See Figure 3Pro
edure Partition(T)if |T | = 1 then return {T };else
ompute the path Q originating from root in T as des
ribed by Lemma 3.5;P ← {Q};let v1, ..., vj be the roots of the subtrees of T dire
tly
onne
ted to the path Q through anedge;forea
h 1 ≤ i ≤ j do P ← P ∪ Partition(Tr(vi)) ;return P ;for a better illustration of this pro
edure. Ea
h maximal sequen
e of solid edges represents a path inP . Ea
h dashed edge represents an edge whi
h joins two di�erent paths in P . Moreover, if (x, y) is adashed edge then it follows from Lemma 3.5 that |Tr(y)| < 1

2 |Tr(x)|. Thus while traversing from rootto any leaf of Tr, we shall en
ounter at most log n dashed edges. This leads to the following lemma.Lemma 3.6 For any vertex v, the path to the root in Tr interse
ts at most log n paths in P .Data stru
ture H. The data stru
ture H will
onsist of two data stru
tures Hd and Ho whi
h are
omputed as follows. 11

PSfrag repla
ementsrr

Figure 3: Partitioning of Tr into disjoint paths as
omputed by Partition(Tr)1. P ← Partition(Tr).2. For ea
h vertex, store pointer to the path in P to whi
h it belongs.3. Hd ← {Hd(Q) | Q ∈ P } ; Ho ← {Ho(Q) | Q ∈ P }.For reporting 3-approximation of P(r, v, x) for any v, x ∈ V , �rst we determine the path Q ∈ P towhi
h x belong and then query the data stru
ture Hd(Q) or Ho(Q) a

ordingly as des
ribed earlier.Analysis of the spa
e and prepro
essing time of the data stru
ture.Consider any path Q = P(q, t) in the partition P . Theorem 3.1 implies that ea
h vertex v ∈ Tr(q)
ontributes O(1) amount to the size and O(deg(v)+log n) amount to the prepro
essing time of H(Q).Furthermore, it follows from Lemma 3.6 that any vertex v will make this
ontribution to at most
log n su
h paths in P . Thus the data stru
ture will have O(n log n) spa
e and O(m log n + n log2 n)prepro
essing time. Hen
e we
an
on
lude with the following theorem.Theorem 3.2 An undire
ted weighted graph G = (V, E) and a vertex r ∈ V
an be pro
essed in
O(m log n + n log2 n) time to build a data stru
ture H of size O(n log n). This data stru
ture
anreport a 3-approximate shortest path from r to any vertex v ∈ V avoiding any failed vertex x ∈ V intime whi
h is optimal up to a
onstant fa
tor.4 Single sour
e (1+ǫ)-approximate shortest paths avoiding anyfailed vertexThe data stru
ture des
ribed above
an report 3-approximate shortest paths from a given �xed vertex
r whenever some vertex in the graph fails. Note that this data stru
ture is a
tually a
olle
tion of basi
data stru
tures Ho(Q) and Hd(Q) de�ned for various paths in the partition P of Tr. Here, the readeris re
ommended to re
all the dependen
y of Ho(Q) on Hd(Q) whi
h led to Observation 3.1. Not onlythe
onstru
tion of Ho(Q) requires Hd(Q), but the stret
h fa
tor asso
iated with Ho(Q) is also de�nedby the stret
h fa
tor asso
iated with Hd(Q). We shall use this fa
t in a
ru
ial manner. We shallshow that for unweighted graphs, it is possible to augment the
olle
tion Hd = {Hd(Q) | Q ∈ P }with supplementary data stru
tures to build a data stru
ture H+

d whi
h guarantees a stret
h fa
tor of
(1 + ǫ) for arbitrarily small ǫ. Now, it is an immediate impli
ation of Observation 3.1 that if we now
onstru
t Ho = {Ho(Q) | Q ∈ P } using H+

d , the stret
h fa
tor asso
iated with Ho will also be 1 + ǫ.In this way, H+
d and Ho together will
onstitute a data stru
ture for reporting (1 + ǫ)-approximateshortest paths from r avoiding any failed vertex in the graph. With this overview of our approa
h,we now provide the key ideas to augment Hd in order to a
hieve improved stret
h.Let us �rst revisit the strategy underlying Hd whi
h guarantees an approximation fa
tor of 3.Consider failure of any vertex x. Let Q ∈ P be the path to whi
h x belongs. For reporting approximatedistan
e between r and v ∈ Dx when x fails, the data stru
ture Hd employs Hd(Q). The approximatedistan
e reported is δ(r, su

(x), x) + δ(su

(x), v) whi
h is bounded by δ(r, v, x) + 2δ(su

(x), v).(Here su

(x) = su

(x, Q) is the su

essor of x on path Q.) Hen
e the stret
h is

δ(r, v, x) + 2δ(su

(x), v)

δ(r, v, x)
(1)12

Though the above stret
h is bounded by 3 in the worst
ase, it is bounded by (1 + ǫ) for any ǫ > 0 ifthe following
ondition holds.
C : su

(x) is
lose to v, that is, δ(su

(x), v) ≤ ǫ

2δ(r, v).Whenever the
ondition C does not hold, we shall ensure that there will be some an
estor w of vlying on P(x, v),
alled a spe
ial vertex, satisfying the following two properties.1. δ(w, v)≪ δ(r, v), that is w is mu
h
loser to v than r.2. Vertex w stores approximate shortest path to r avoiding x (with the approximation fa
torarbitrarily
lose to 1).These two properties will ensure that whenever
ondition C does not hold, vertex v may query itsspe
ial vertex w �rst to retrieve the approximate shortest path from r to w avoiding x. This path is
on
atenated with the path P(w, v) whi
h remains inta
t when x fails. The resulting path will turnout to be (1+ ǫ)-approximation of P(r, v, x) for any desired ǫ > 0. The data stru
ture H+
d will be justthe union of Hd and the supplementary data stru
tures asso
iated with ea
h spe
ial vertex.We shall �rst des
ribe the
onstru
tion of the set of spe
ial verti
es in Tr. Note that Tr is identi
alto the breadth �rst sear
h (BFS) tree rooted at r. We shall use level(v) to denote the level (ordistan
e from r) of vertex v in Tr. After de�ning the set of spe
ial verti
es, we shall des
ribe the datastru
ture stored for ea
h spe
ial vertex. However, before all this, we would like to address a minorte
hni
al point. We shall employ Lemma 2.2 to handle the failure of any vertex whi
h lies up to level

ℓ0 = Θ(logn) in Tr. This will require O(m log n + n log2 n) time and O(n log n) spa
e. So, hen
eforthwe shall fo
us on the failure of only those verti
es in Tr whi
h lie at level > ℓ0.4.1 Constru
ting the set of spe
ial verti
esLet h be the height of BFS tree rooted at r. Let us introdu
e a variable ǫ′ < 1 whose value will bede�ned later in terms of ǫ. Without loss of generality assume that ℓ0 = ⌊(1 + ǫ′)i0⌋ for some i0. Wenow des
ribe the
onstru
tion of the set of spe
ial verti
es.Let L be the set of positive integers de�ned as L = {i | ℓ0 ≤ ⌊(1 + ǫ′)
i⌋ < h}. For a given i ∈ L,let us de�ne a subset Si as

Si = {u ∈ V | level(u) = ⌊(1 + ǫ′)
i⌋ and |Tr(u)| ≥ ǫ′level(u)}The set of spe
ial verti
es is S = ∪i∈LSi. We introdu
e two terminologies in the
ontext of thesespe
ial verti
es.

• For any vertex v ∈ V , S(v) denotes the nearest an
estor of v whi
h belongs to set S. (In
ase
v ∈ S, then S(v) = v.)
• For a vertex u ∈ S, V (u) denotes the set of verti
es v ∈ V with S(v) = u. In essen
e, thevertex u will serve as the spe
ial vertex for ea
h vertex from V (u). Upon failure of any vertex

x ∈ P(r, u), ea
h vertex of set V (u) may a

ess the data stru
ture stored at u for retrieval ofapproximate shortest path/distan
e from the sour
e.Observation 4.1 If a spe
ial vertex u lies at level ℓ, then there are at least ǫ′ℓ verti
es in V (u).Figure 4 provides a des
ription of the spe
ial verti
es and the set V (u) in tree Tr. The followinglemma states that ea
h vertex v is mu
h
loser to S(v) than the sour
e vertex.Lemma 4.1 Let v ∈ V \S, then δ(v, S(v)) ≤
(

2ǫ′

1+ǫ′

)level(v).Proof: Let ℓ be the level of v in Tr. Then, there must be an i ∈ L su
h that ⌊(1 + ǫ′)
i⌋ <

ℓ ≤ ⌊(1 + ǫ′)
i+1⌋. Let a be the an
estor of v at level ⌊(1 + ǫ′)i⌋. If S(v) = a, then it
anbe observed that δ(v, S(v)) = ℓ − ⌊(1 + ǫ′)

i⌋ ≤ ℓ − ℓ
1+ǫ′ = ǫ′ℓ

1+ǫ′ . Else, let b be the an
estorof v at level ⌊(1 + ǫ′)
i−1⌋. Clearly |Tr(b)| ≥ ǫ′⌊(1 + ǫ′)

i−1⌋. Thus b ∈ S and S(v) = b. Now
δ(v, S(v)) ≤ ℓ− ⌊(1 + ǫ′)

i−1⌋ ≤ ℓ(1− 1
(1+ǫ′)2

) ≤ 2ǫ′ℓ
1+ǫ′ . •13

PSfrag repla
ementsr

ℓ0 = ⌊(1 + ǫ′)i0⌋
⌊(1 + ǫ′)i0+1⌋
⌊(1 + ǫ′)i0+2⌋

⌊(i + ǫ′)i⌋
⌊(1 + ǫ′)i+1⌋

u

V (u)Figure 4: Splitting the tree Tr into geometri
ally in
reasing levels to
onstitute the spe
ial verti
es.4.2 The data stru
ture for a spe
ial vertexWe shall pro
ess the spe
ial verti
es in a top down fashion in Tr while
onstru
ting the data stru
tureasso
iated with them. Consider a spe
ial vertex v with level(v) = ⌊(1+ ǫ′)i⌋ and i > i0. (Re
all thatfor spe
ial verti
es at level ℓ0 = ⌊(1 + ǫ′)i0⌋, we already store exa
t shortest path to r upon failure ofany vertex). We shall now des
ribe a
ompa
t data stru
ture to be stored at v whi
h will fa
ilitateretrieval of (1 + 2ǫ′)-approximate shortest path from r to v upon failure of any vertex x ∈ P(r, v).The vertex v will store the
orresponding path in a �eld path(v, x).Let v′ be the spe
ial vertex whi
h is present at level ⌊(1 + ǫ′)i−1⌋ and is an
estor of v. The datastru
ture stored at v will be de�ned in terms of various
ases of the failing vertex x ∈ P(r, v) asfollows.If x ∈ P(v′, v), then
onsider the path P(r, su

(x), x) · P(su

(x), v) whi
h is already availablein Hd. It follows from Equation 1 that this path is (1+2ǫ′)-approximation of P(r, v, x). So path(v, x)may store this path impli
itly by keeping a pointer to P(r, su

(x), x) stored in Hd. Hen
e we requireonly O(1) extra storage in this
ase.Let us now
onsider the nontrivial
ase when x ∈ P(r, v′) and x 6= v′. Let pa,b be the detourasso
iated with P(r, v, x). This detour
an be of any of the following two types as shown in Figure 5.
• I : b is present on P(r, v′).
• II : b is not present on P(r, v′). PSfrag repla
ements

ℓ0ℓ0

xx

aa

b

b
v′v′

vv

rr

⌊(1 + ǫ)i⌋⌊(1 + ǫ)i⌋

pa,bpa,b

(i) (ii)Figure 5: pa,b is the detour of P(r, v, x). (i) detour of type I, (ii) detour of type IILet us
onsider the
ase when the detour pa,b is of type I. In this
ase, let w be the farthest an
estorof v su
h that w ∈ S and the level of w is greater or equal to the level of b. Note that pa,b is alsothe detour of P(r, w, x), and so w would already have handled it in its data stru
ture (this is be
ausewe pro
ess the spe
ial verti
es in a top down fashion while building their data stru
tures). Hen
e14

path(w, x) would be storing (1 + 2ǫ′)-approximation of P(r, w, x). The stru
ture of detour of type I
an be exploited to make the following
ru
ial observation.Observation 4.2 If path(w, x) is 1 + 2ǫ′-approximation of P(r, w, x), then path(w, x) · P(w, v) willbe (1 + 2ǫ′)-approximation of P(r, v, x).Using Observation 4.2, path(v, x) just stores a pointer to path(w, x) to handle this
ase (of detourI). Let us now
onsider the
ase when the detour pa,b is of type II. Unfortunately, Observation 4.2 nolonger holds in this
ase. So for vertex v, we
annot rely on its an
estors to take
are of detour oftype II. However, we
an employ the following observation asso
iated with the detours of type II.Observation 4.3 Let α1, α2, · · · , αt be the verti
es on P(r, v′) (in in
reasing level order) su
h thatthe detour of P(r, v, αi) is of Type II for all i. Then δ(r, v, α1) ≥ δ(r, v, α2) ≥ · · · ≥ δ(r, v, αt).It follows from Observation 4.3 that if δ(r, v, αi) ≤ (1 + ǫ′)δ(r, v, αj) for any i < j, then P(r, v, αi)may as well serve as (1 + ǫ′)-approximate shortest path from r to v avoiding αj . In this situation, weneed not store the path P(r, v, αj) if we are already storing P(r, v, αi). Using this observation, spe
ialvertex v will have to expli
itly store only O(log1+ǫ′ n) paths for all detours of type II. Moreover, wedo not need to store expli
itly those paths whose length is mu
h larger than level(v). Spe
i�
ally,if δ(r, v, x) ≥ 1
ǫ′ level(v), then it follows from Equation 1 that δ(r, su

(x), x) + δ(su

(x), v) is

(1+2ǫ′)-approximation of δ(r, v, x). Hen
e the data stru
ture Hd itself takes
are of su
h a
ase. Thisensures that ea
h path whi
h v has to store expli
itly will have O(1
ǫ′ level(v)) length.Based on the detailed des
ription of various
ases as given above, Algorithm 2 presents the
onstru
-tion of the data stru
ture asso
iated with a spe
ial vertex v. The following lemma is a
onsequen
eAlgorithm 2: Computation of the data stru
ture for a spe
ial vertex v

ℓ← level(v); d←∞; P ← NULL;forea
h (vertex x ∈ P(r, v) in the in
reasing order of level) doif (δ(r, v, x) ≥ ℓ
ǫ′) or (level(x) ≥ ℓ

(1+ǫ′)) thenpath(v, x) keeps a pointer to P(r, su

(x), x) whi
h is stored in Hd;elseLet pa,b be the detour of P(r, v, x);if pa,b is of type I thenLet w ∈ S be the farthest an
estor of v with level(w) ≥ level(b) ;path(v, x) stores pointer to path(w, x);elseif d ≤ (1 + ǫ′)δ(r, v, x) thenpath(v, x) stores a pointer to P ;elsepath(v, x) expli
itly stores the entire path P(r, v, x);
d← δ(r, v, x); P ← P(r, v, x);of the dis
ussion above.Lemma 4.2 Let u be a spe
ial vertex and x ∈ P(r, u) be su
h that u ∈ Dx. Then path(u, x) is an

(1 + 2ǫ′)-approximation of P(r, u, x).4.3 Reporting (1 + ǫ)-approximate shortest paths from r using H+
dConsider failure of any vertex x ∈ V . Let v be any vertex in Dx and v /∈ S. Let u be the spe
ialvertex to whi
h v is assigned, that is, u = S(v). We
an report approximate shortest path from r to

v avoiding x as follows.If x lies on P(u, v), we resort to the data stru
ture Hd and report the path P(r, su

(x), x) ·
P(su

(x), v). Its length is bounded by δ(r, v, x)+2δ(su

(x), v). Now observe that δ(su

(x), v) ≤15

δ(u, v), and it follows from Lemma 4.1 that δ(u, v) is at most 2ǫ′δ(r, v). Hen
e in this
ase, thereported path will have length at most (1 + 4ǫ′)δ(r, v, x).If x does not lie on P(u, v), then we employ the data stru
ture asso
iated with spe
ial vertex u.We report path(u, x) · P(u, v) as approximate path from r to v avoiding x. Length of this path
anbe bounded using Lemma 4.2 as follows.
(1 + 2ǫ′)δ(r, u, x) + δ(u, v) ≤ (1 + 2ǫ′)δ(r, v, x) + 2(1 + ǫ′)δ(u, v)

≤ (1 + 2ǫ′)δ(r, v, x) + 4ǫ′δ(r, v) {using Lemma 4.1 }
≤ 1 + 6ǫ′)δ(r, v, x)Thus setting ǫ′ = ǫ/6 implies the following lemma.Lemma 4.3 For any failed vertex x and any vertex v ∈ Dx, the data stru
ture H+

d
an report (1+ ǫ)-approximate shortest path from r to v avoiding x.4.4 Analysis of the data stru
ture for (1 + ǫ)-approximate shortest paths4.4.1 Spa
e analysisRe
all that the data stru
ture for singe sour
e 3-approximate shortest paths avoiding any failed vertexrequires O(n log n) spa
e. The only extra spa
e in the data stru
ture for (1 + ǫ)-approximate shortestpaths is due to the data stru
tures asso
iated with the set of spe
ial verti
es. We
an bound this extraspa
e as follows. We need to analyze the spa
e o

upied by the data stru
tures asso
iated with all thespe
ial verti
es. Let v be any spe
ial vertex. For ea
h failed vertex x ∈ P(r, v), if δ(r, v, x) > level(v)
ǫor the detour asso
iated with P(r, v, x) is of type I, path(v, x) requires only O(1) spa
e. Thus thetotal spa
e required for su
h verti
es in the data stru
ture of v is
learly O(level(v)). So let us
onsider the remaining verti
es on P(r, v). Let y be one su
h vertex. The detour asso
iated with thepath P(r, v, y) must be of type II and δ(r, v, y) = O(level(v)

ǫ) must hold. It follows from Algorithm2 that we shall store only O(log1+ǫ
level(v)

ǫ) su
h paths expli
itly. Furthermore, the sequen
e oflengths of these paths is a geometri
ally de
reasing sequen
e with
ommon ratio (1 + ǫ). Hen
e thespa
e required for storing all su
h paths in the data stru
ture asso
iated with v is O(level(v)/ǫ2). Sothe overall spa
e required by the data stru
ture asso
iated with v is O(level(v)/ǫ2). Now it followsfrom Observation 4.1 that there are Ω(ǫlevel(v)) des
endants of v in Tr whi
h are uniquely assignedto v. So all spe
ial verti
es
ontribute a total of O(n/ǫ3) spa
e to the data stru
ture. Hen
e we haveproved the following Lemma.Lemma 4.4 The data stru
ture for single sour
e (1 + ǫ)-approximate shortest paths avoiding anyfailed vertex o

upies O(n
ǫ3 + n log n) spa
e.4.4.2 Prepro
essing timeLet us address the prepro
essing time for
omputing the data stru
ture asso
iated with spe
ial verti
es.For ea
h spe
ial vertex v, we employ Algorithm 2 to
ompute the data stru
ture asso
iated with it.The entire running time of Algorithm 2 for a spe
ial vertex v is dominated by the
omputation of

P(r, v, x) and δ(r, v, x) for ea
h x ∈ P(r, v). We provide below a two-step algorithm to
ompute
P(r, v, x) and δ(r, v, x) for ea
h spe
ial vertex v ∈ S and x ∈ P(r, v).
• For ea
h spe
ial vertex v lying at level ≥√

n/ǫ in Tr, we employ O(m) time algorithm of Nardelliet al. [20℄ to
ompute δ(r, v, x) and P(r, v, x) for all x ∈ P(r, v). It follows from Observation4.1 that there are at least ǫlevel(v) des
endants from Tr whi
h are uniquely assigned to v.Therefore, the number of spe
ial verti
es at level ≥ √

n/ǫ is not more than O(
√

n/ǫ). So thetotal running time of this step is O(m
√

n/ǫ).
• We exe
ute the algorithm mentioned in Lemma 2.2 for handling failure of any vertex lying upto level <

√

n/ǫ in Tr. This would support e�
ient retrieval of δ(r, v, x) and P(r, v, x) for ea
hspe
ial vertex v up to level <
√

n/ǫ. The total running time of this step is O(m
√

n/ǫ).16

Thus the total prepro
essing time of the data stru
tures asso
iated with all the spe
ial verti
es is
O(m

√

n/ǫ). This bound along with Lemmas 4.3 and 4.4 lead to the following Theorem.Theorem 4.1 Given an undire
ted unweighted graph G = (V, E), sour
e r ∈ V , and any ǫ > 0,we
an build a data stru
ture of size O(n/ǫ3 + n logn) in O(m
√

n/ǫ) time whi
h
an report (1 + ǫ)-approximate shortest path from r to any v ∈ V avoiding any single failed vertex x ∈ V in time whi
his optimal up to a
onstant fa
tor.4.5 A mis
ellaneous appli
ationWe would like to mention one appli
ation where our data stru
ture for single sour
e (1+ǫ)-approximateshortest paths avoiding any failed vertex proves to be useful.4.5.1 Nearest marked vertex problem under single vertex failureSuppose there is a set S ⊂ V of, so
alled, marked verti
es in a given graph. Consider the problemof building a data stru
ture whi
h, for any v, x ∈ V ,
an report the vertex from S nearest to vwhen x has failed. We
an use Theorem 4.1 to design a
ompa
t data stru
ture for the approximateversion of this problem. For any v, x ∈ V , this data stru
ture will report a vertex w ∈ S su
h that
δ(v, w, x) ≤ (1 + ǫ)δ(v, S, x) in O(1) time.1. Add a dummy vertex r to the graph and join it to every vertex of set S. Let G′ be the newgraph thus formed.2. With sour
e vertex r and graph G′, build the data stru
ture for (1 + ǫ)-approximate shortestpaths avoiding any failed vertex as mentioned in Theorem 4.1. We
an easily augment this datastru
ture suitably so that it takes
onstant time to report the neighbor of r on the (1 + ǫ)-approximate shortest path between r and v upon failure of any vertex x.We
an thus state the following theorem.Theorem 4.2 For any unweighted graph G = (V, E) and a set S ⊆ V of marked verti
es, thereexists a data stru
ture of size O(n/ǫ3 +n logn) whi
h
an solve the approximate version of the nearestmarked vertex problem under single vertex failure. The prepro
essing time of the data stru
ture is
O(m

√

n/ǫ) and the query time guaranteed is O(1).5 All-pairs (2k − 1)(1 + ǫ)-approximate shortest paths ora
leavoiding a failed vertexWe start with an overview of the approximate distan
e ora
le of Thorup and Zwi
k [24℄. We thenprovide a brief des
ription of our ideas whi
h extend this ora
le to handle any single vertex failure.5.1 Overview of the approximate distan
e ora
le of Thorup and Zwi
k [24℄The most impressive features of the (2k−1)-approximate distan
e ora
le of Thorup and Zwi
k [24℄ are
O(k) query time and O(kn1+1/k) size. Note that the size is subquadrati
 for any k > 1. To a
hievesu
h a
ompa
t size, the ora
le stores distan
es from ea
h vertex to only a small set of verti
es thatensures the following key property. For every pair of verti
es u, v ∈ V , there is some vertex w whi
his near to both u and v, and its distan
e to ea
h of them is known. This property allows the ora
le toreport δ(u, w) + δ(v, w) as an approximation for the distan
e δ(u, v).The building blo
k of the approximate distan
e ora
le of Thorup and Zwi
k [24℄ is a novel stru
ture
alled Ball whi
h is de�ned as follows.De�nition 5.1 Given a graph G = (V, E), a vertex v ∈ V , and two subsets of verti
es X and Y , theset Ball(v, X, Y)
onsists of all those verti
es of set X whi
h lie within distan
e δ(v, Y) from v. Inpre
ise words,

Ball(v, X, Y) = {x ∈ X |δ(v, x) < δ(v, Y)}17

It is easy to observe that Ball(v, X, Y) = ∅ for any v ∈ Y and Ball(v, X, ∅) = X . The followinglemma shows that randomization (in
onstru
tion of Y)
an be used to a
hieve a small size of a ball.Its proof requires an elementary appli
ation of Cherno� bound.Lemma 5.1 [24℄ For a given subset X ⊆ V , let Y ⊂ X be formed by sele
ting ea
h vertex from Xindependently with probability p > 0. Then the size of Ball(v, X, Y) is O(1/p) in expe
tation and
O(log n/p) with high probability, that is, with probability ex
eeding 1− 1

nc for any positive
onstant c.We now provide an overview of the (2k − 1)-approximate distan
e ora
le of Thorup and Zwi
k [24℄.It builds a k + 1 level hierar
hy Ak = {A0, A1, ..., Ak−1} of subsets of verti
es de�ned as follows.
A0 = V , Ak = ∅, and Ai for any 0 < i < k is formed by sele
ting ea
h vertex of Ai−1 independentlywith probability n−1/k. The ora
le stores the following information for ea
h vertex v ∈ V and i < k.
• distan
e to ea
h vertex of the set Ball(v, Ai, Ai+1) (this information is kept in a hash table).
• the vertex from Ai nearest to v (to be denoted as pi(v)).For a better illustration, see Figure 6 for the distan
e information stored at a vertex v ∈ V in
aseof 3-approximate distan
e ora
le, that is, k = 2.

PSfrag repla
ementsv

p1(v)Ball(v, V, A1)

∈ A1Figure 6: 3-approximate distan
e ora
le : v stores distan
es to all the verti
es pointed by arrows.It follows from Lemma 5.1 that the spa
e o

upied by the entire data stru
ture will be O(kn1+1/k log n)with high probability. The data stru
ture supports the following basi
 operation in O(1) time.Report distan
e between v and w if w ∈ Ball(v, Ai, Ai+1) for any given v ∈ V and w ∈ Ai\Ai+1.In order to report approximate distan
e between any pair of verti
es u and v, the ora
le performsa series of su
h basi
 operations. At the end of O(k) su
h operations, it su

eeds in �nding a vertex
w ∈ Ai\Ai+1 for some i < k whi
h has the following properties. w is present in Ball(u, Ai, Ai+1) aswell as Ball(v, Ai, Ai+1), and either δ(u, w) ≤ iδ(u, v) or δ(v, w) ≤ iδ(u, v). The ora
le �nally reports
δ(u, w)+δ(v, w) as approximate distan
e between u and v. Using triangle inequality and the fa
t that
i < k, the distan
e reported is at most (2k − 1)δ(u, v).We would also like to mention about one more novel stru
ture de�ned by Thorup and Zwi
k [24℄.This stru
ture,
alled
luster, is basi
ally inverse of a ball. For any sets X ⊆ V , Y ⊆ X and anyvertex w ∈ X ,
luster C(w, X, Y) is de�ned as

C(w, X, Y) = {v ∈ V |δ(v, w) < δ(v, Y)}The following equality is an immediate
onsequen
e of the fa
t that balls and
lusters are inverses ofea
h others.
∑

v∈V

|Ball(v, X, Y)| =
∑

w∈X

|C(w, X, Y)| (2)
18

5.2 Overview of all-pairs approximate distan
e ora
le avoiding any failedvertexThe basi
 stru
tures and notations introdu
ed by Thorup and Zwi
k [24℄ for the approximate distan
eora
le get extended in the
ase of single vertex failure quite naturally as follows.
• Balls and
lusters in
ase of vertex failure are de�ned as:

Ballx(v, A, B) = {w ∈ A|δ(v, w, x) < δ(v, B, x)}

Cx(w, A, B) = {v ∈ V |δ(v, w, x) < δ(v, B, x)}

• px
i (v) : the vertex from Ai whi
h is nearest to v in G\{x}.Lemma 5.1 also gets extended easily as follows.Lemma 5.2 [24℄ For a given subset X ⊆ V , let Y ⊂ X be formed by sele
ting ea
h vertex from

X independently with probability p > 0. Then, with high probability, the size of Ballx(v, X, Y) is
O(log n/p) for ea
h x, v ∈ V .Along the lines of the approximate distan
e ora
le of Thorup and Zwi
k [24℄, the basi
 operationwhi
h the ora
le avoiding any failed vertex should support is the following :

o : Report (exa
t or approximate) shortest path between v and w if w ∈ Ballx(v, Ai, Ai+1) for anygiven v, x ∈ V and w ∈ Ai\Ai+1.However, it
an be observed that we will have to support this operation impli
itly. This is be
ausestoring Ballx(v, Ai, Ai+1) expli
itly for all v, x, i
an not be a
hieved in subquadrati
 spa
e. Toa
hieve this goal, our starting point is the simple observation that
lusters and balls are inverses ofea
h other. As a result we realize that w ∈ Ballx(v, Ai, Ai+1) if and only if v ∈ Cx(w, Ai, Ai+1).Now we make use of the following insightful observation about the subgraph Gi(w) indu
ed by theverti
es of set ∪x∈V Cx(w, Ai, Ai+1): This subgraph preserves the path P(w, v, x) for ea
h x, v ∈ Vif w ∈ Ballx(v, Ai, Ai+1). So we may build the data stru
ture for single sour
e approximate shortestpaths avoiding vertex failure on graph Gi(w) with w as the sour
e. Keeping this data stru
ture forea
h w ∈ Ai provides an impli
it way for supporting the operation o. Using Theorem 4.1 and ignoringthe logarithmi
 fa
tors, it
an be seen that the spa
e required at a level i will be of the order of
∑

w∈Ai
| ∪x Cx(w, Ai, Ai+1)|. However, it is not
lear whether we
an get an upper bound of theorder of n1+1/k on this quantity. Here, as a new tool, we introdu
e the notion of ǫ-trimmed balls and
lusters.De�nition 5.2 Given a vertex x, any subsets A, B of verti
es, and ǫ > 0

Ballx(v, A, B, ǫ) =

{

w ∈ A|δ(v, w, x) <
δ(v, B, x)

1 + ǫ

}

Cx(w, A, B, ǫ) =

{

v ∈ V |δ(v, w, x) <
δ(v, B, x)

1 + ǫ

}Instead of dealing with the usual balls (and
lusters), we deal with ǫ-trimmed balls (and
lusters).The key role played by ǫ-trimmed balls is that there exists a small set S of O(log n
ǫ) verti
es su
h that

∪x∈V Ballx(v, Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v, Ai, Ai+1) (3)This equation and Lemma 5.2 provide a bound of O(n1/k log2 n
ǫ) on the size of ∪x∈V Ballx(v, Ai, Ai+1, ǫ)with high probability. On
e again, we make use of the inverse relationship between
lusters and balls.Note that Equation 2 gets extended seamlessly to ǫ-trimmed balls and
lusters under single vertexfailure as well. That is,

∑

w∈Ai

| ∪x Cx(w, Ai, Ai+1, ǫ)| =
∑

v∈V

| ∪x Ballx(v, Ai, Ai+1, ǫ)| (4)19

This leads to an upper bound of O(n1+1/k log2 n
ǫ) on ∑

w∈Ai
| ∪x Cx(w, Ai, Ai+1, ǫ)| with high proba-bility. In this way the overall spa
e required by the data stru
ture turns out to be greater than thatof the (2k − 1)-approximate distan
e ora
le of Thorup and Zwi
k [24℄ by polynomial in 1/ǫ and log nonly.Having given an overview we now pro
eed to provide the
omplete details of the all-pairs approxi-mate distan
e ora
le avoiding any failed vertex. The following subse
tion des
ribes the key role playedby ǫ-trimmed balls and the subgraph Gi(w).5.3 ǫ-trimmed balls and the subgraph Gi(w)We �rst state and prove an important lemma.Lemma 5.3 In a given graph G = (V, E), let v be any vertex and let u = pi+1(v). Let x1 and

x2 be any two verti
es on the path P(v, u) from v to u with x1 pre
eding x2 and δ(v, Ai+1, x1) ≤
(1 + ǫ)δ(v, Ai+1, x2). Then

Ballx1(v, Ai, Ai+1, ǫ) ⊆ Ball(v, Ai, Ai+1) ∪Ballx2(v, Ai, Ai+1)Proof: To prove the lemma it su�
es to prove the following equivalent statement. Let w be anyvertex in Ai. If w does not belong to Ball(v, Ai, Ai+1) ∪Ballx2(v, Ai, Ai+1), then w does not belongto Ballx1(v, Ai, Ai+1, ǫ) as well. We prove this statement by analyzing the following two
ases.Case 1 : The vertex x2 is present in P(v, w, x1).Sin
e w /∈ Ball(v, Ai, Ai+1), therefore, δ(v, w) ≥ δ(v, u). Hen
e, using triangle inequality, it followsthat δ(v, x2)+ δ(x2, w) ≥ δ(v, w) ≥ δ(v, u) = δ(v, x2)+ δ(x2, u). Hen
e δ(x2, w) ≥ δ(x2, u). Moreover,sin
e x1 pre
edes x2 on the path P(v, u), so x1 does not appear on P(x2, u), and so δ(x2, u, x1) =
δ(x2, u). Hen
e

δ(x2, w, x1) ≥ δ(x2, u, x1) (5)Now it is given that x2 ∈ P(v, w, x1), so using optimal subpath property it follows that
δ(v, w, x1) = δ(v, x2, x1) + δ(x2, w, x1)

≥ δ(v, x2, x1) + δ(x2, u, x1) {using Equation 5}
≥ δ(v, u, x1) ≥ δ(v, Ai+1, x1)Hen
e it follows that w does not even belong to Ballx1(v, Ai, Ai+1). So, w won't belong toBallx1(v, Ai, Ai+1, ǫ)as well sin
e the latter is a subset of the former.Case 2 : The vertex x2 is not present in P(v, w, x1).In this
ase, we pro
eed as follows.

δ(v, w, x1) = δ(v, w, {x1, x2}) ≥ δ(v, w, x2)

≥ δ(v, Ai+1, x2) {sin
e w /∈ Ballx2(v, Ai, Ai+1)}
≥ δ(v, Ai+1, x1)

1 + ǫHen
e it follows that w /∈ Ballx1(v, Ai, Ai+1, ǫ). •Nowwe shall use Lemma 5.3 to establish an upper bound on the size of set ∪x∈V Ballx(v, Ai, Ai+1, ǫ).Let u = pi+1(v) and let the shortest path P(u, v) be 〈v(= x0), x1, ..., xℓ(= u)〉. It is easy to observethat ∪x∈V Ballx(v, Ai, Ai+1, ǫ) = ∪1≤j≤ℓBallxj(v, Ai, Ai+1, ǫ). We shall show that there is a sequen
e
α of O(log n

ǫ) monotoni
ally in
reasing integers from the interval [1, ℓ] su
h that for ea
h i, we have
∪α(i−1)<j≤α(i)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(i)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)Now we des
ribe an algorithm to
onstru
t the sequen
e α. For ea
h vertex x ∈ P(v, u) (in
ludingvertex u), we de�ne value(x) as δ(v, Ai+1, x). Let h be the maximum value of any node on the path

P(v, u). 20

We de�ne h1 = h. We de�ne α(1) to be the largest integer in the interval [1, ℓ] su
h that
value(xα(1)) ≥ h1/(1 + ǫ). It
an be seen that for all 1 ≤ j ≤ α(1), δ(v, Ai+1, xj) ≤ (1 +
ǫ)δ(v, Ai+1, xα(1)). Therefore, it follows from Lemma 5.3 that for ea
h vertex x ∈ {x1, ..., xα(1)},
Ballx(v, Ai, Ai+1, ǫ) ⊆ Ballxα(1)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1). Hen
e

∪0<j≤α(1)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(1)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)We de�ne h2 = max{value(xj)|α(1) < j ≤ ℓ}. It follows from the
onstru
tion that h2 < h/(1+ǫ),We de�ne α(2) to be the largest integer in the interval [α(1) + 1, ..., ℓ] su
h that value(xα(2)) ≥
h2/(1+ ǫ). It
an be seen that for all α(1) < j ≤ α(2), δ(v, Ai+1, xj) ≤ (1+ ǫ)δ(v, Ai+1, xα(2)). There-fore, it follows from Lemma 5.3 that for ea
h vertex x ∈ {xα(1)+1, ..., xα(2)}, Ballx(v, Ai, Ai+1, ǫ) ⊆
Ballxα(2)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1). Hen
e

∪α(1)<j≤α(2)Ballxj(v, Ai, Ai+1, ǫ) ⊆ Ballxα(2)(v, Ai, Ai+1) ∪Ball(v, Ai, Ai+1)We de�ne h3 = max{value(xj)|α(2) < j ≤ ℓ}. It follows from the
onstru
tion that h3 <
h2/(1 + ǫ) < h/(1 + ǫ)2, We de�ne α(3) to be the largest integer in the interval [α(2) + 1, ..., ℓ] su
hthat value(xα(3)) ≥ h3/(1 + ǫ). In this manner, we
ontinue s
anning the path P(v, u) from v to u to
ompute the elements of sequen
e α. The last element to be added to this sequen
e will be ℓ. Notethat 〈hi〉 is a geometri
ally de
reasing sequen
e with
ommon ratio (1+ǫ). So the number of elementsin the sequen
e will be of the order of log1+ǫ h = O(log h

ǫ). Our desired set S is de�ned as {xj |j ∈ α}.Note that u ∈ S and also observe that Ball(v, Ai, Ai+1) ⊆ Ballu(v, Ai, Ai+1) sin
e u ∈ Ai+1. We
anthus
on
lude that there is a set S of O(log n
ǫ) verti
es su
h that

∪x∈V Ballx(v, Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v, Ai, Ai+1)Using Lemma 5.2 and the above equation, we
an
on
lude the following Theorem.Theorem 5.1 Let G = (V, E) be an unweighted graph and Ak be the hierar
hy of verti
es as de�nedearlier. For any vertex v, integer i < k − 1, and
onstant ǫ > 0, with very high probability
| ∪x∈V Ballx(v, Ai, Ai+1, ǫ)| = O

(

n1/k log2 n

ǫ

)Now re
all Equation 4 whi
h states that balls and
lusters are inverses of ea
h others, even undervertex failure. This equation and Theorem 5.1 imply the following
orollary.Corollary 5.1 Let G = (V, E) be an undire
ted unweighted graph and Ak be the hierar
hy of verti
esas de�ned earlier. For any integer i < k − 1, and
onstant ǫ > 0, with high probability
∑

w∈Ai

| ∪x∈V Cx(w, Ai, Ai+1, ǫ)| = O

(

n1+1/k log2 n

ǫ

)Now we des
ribe the key role played by the graph Gi(w). Re
all that Gi(w) is the subgraph of theoriginal graph indu
ed by verti
es of the set ∪x∈V Cx(w, Ai, Ai+1, ǫ). The following lemma highlightsan important fa
t about Gi(w).Lemma 5.4 If w ∈ Ballx(v, Ai, Ai+1, ǫ), then the shortest path P(w, v, x) is present in the subgraph
Gi(w)\{x}.Proof: Let y be any vertex on the shortest path P(w, v, x). We shall �rst prove that w belongs to
Ballx(y, Ai, Ai+1, ǫ). The proof is based on
ontradi
tion. Let w /∈ Ballx(y, Ai, Ai+1, ǫ). So theremust be a vertex z ∈ Ai+1 su
h that

δ(y, z, x) ≤ (1 + ǫ)δ(y, w, x)21

Sin
e the vertex y belongs to the shortest path between w and v in G\{x}, therefore, the followinginequality
an be
on
luded.
δ(v, z, x) ≤ (1 + ǫ)δ(v, w, x)However, it implies that w /∈ Ballx(v, Ai, Ai+1, ǫ), a
ontradi
tion.So for ea
h vertex y on the shortest path P(w, v, x), w belongs to Ballx(y, Ai, Ai+1, ǫ). Hen
e

y ∈ Cx(w, Ai, Ai+1, ǫ), and so the entire path P(w, v, x) is present in Gi(w). Moreover, sin
e
x /∈ P(w, v, x), the shortest path P(w, v, x) is present in Gi(w)\{x}. •So if w ∈ Ballx(v, Ai, Ai+1, ǫ), then (1 + ǫ)-approximate distan
e between v and w avoiding x
an be reported using the data stru
ture for single sour
e (1 + ǫ)-approximate shortest paths from wavoiding any failed vertex in the graph Gi(w) (see Theorem 4.1).5.4 The data stru
turesThe (2k−1)(1+ ǫ)-approximate distan
e ora
le avoiding any failed vertex will keep the following datastru
tures for ea
h i < k.
• Let Ni be the data stru
ture for the nearest marked vertex problem with S = Ai as des
ribed inTheorem 4.2. Re
all that for any v, x ∈ V , this data stru
ture reports a vertex w ∈ Ai su
h that

δ(v, w, x) ≤ (1+ ǫ)δ(v, Ai, x). Hen
eforth, we shall use px
i (v, ǫ) to denote this vertex as reportedby Ni.

• For ea
h w ∈ Ai, let Di(w) be the data stru
ture for (1 + ǫ)-approximate shortest paths from wavoiding any failed vertex in the graph Gi(w).It follows from Theorem 4.2 that the total spa
e required by all Ni's will be O(nk(log n + 1
ǫ3)) =

O(nk log n
ǫ3). It follows from Theorem 4.1 that the spa
e required by Di(w) will be of the orderof | ∪x Cx(w, Ai, Ai+1)| · log n

ǫ3 . Therefore, using Corollary 5.1, the total spa
e required by Di(w)for all w ∈ Ai will be O(1
ǫ4 n1+1/k log3 n) with high probability. So the total spa
e o

upied by theapproximate distan
e ora
le avoiding any failed vertex will be O(k

ǫ4 n1+1/k log3 n) with high probability.We may rebuild the ora
le if the size ex
eeds this bound by a fa
tor of 2. This will require only O(1)rebuildings in expe
tation. Hen
e we
an state the following lemma.Lemma 5.5 The total spa
e o

upied by the approximate distan
e ora
le avoiding any failed vertexis O(k
ǫ4 n1+1/k log3 n).Now we des
ribe the algorithm to retrieve approximate distan
e between any two verti
es u and

v upon failure of any vertex x. First we de�ne a notation δ̂(u, w, x) for any w ∈ Ai as follows. If
w = px

i (u, ǫ), then δ̂(u, w, x) represents the approximate distan
e between u and w upon failure of xas reported by Ni. Otherwise, δ̂(u, w, x) denotes the approximate distan
e between u and w uponfailure of x as reported by Di(w). We now state the following simple observations.Observation 5.1 For any vertex u ∈ V and a vertex w ∈ Ai, if w = px
i (u, ǫ) then δ̂(u, w, x) ≤

(1 + ǫ)δ(u, Ai, x)Observation 5.2 If w ∈ Ballx(v, Ai, Ai+1, ǫ), then δ̂(v, w, x) ≤ (1 + ǫ)δ(v, w, x).We des
ribe our query answering pro
edure in Algorithm 3. In this algorithm we assume that
δ̂(v, y, x) =∞ if v /∈ Gi(y) and δ̂(u, z, x) =∞ if u /∈ Gi(z).Let us now analyze the query answering algorithm to bound the stret
h d(u,v,x)

δ(u,v,x) . To retrieveapproximate distan
e between u and v upon failure of vertex x, the aim is to �nd a vertex w whi
h is
lose to both u and v, and its approximate distan
e to both u and v is known. The query answeringalgorithm
on�nes the sear
h for su
h verti
es to the set {px
i (u, ǫ)|i < k} ∪ {px

i (v, ǫ)|i < k}. Thefollowing lemma plays the key role in the analysis.22

Algorithm 3: Retrieving approximate distan
e between u and v upon failure of vertex x

d(u, v, x)←−∞;
i← 0;forea
h i < k doCompute y ← px

i (u, ǫ) and z ← px
i (v, ǫ) using Ni;

d(u, v, x)← min
(

d(u, v, x), δ̂(u, y, x) + δ̂(v, y, x), δ̂(u, z, x) + δ̂(v, z, x)
)

;return d(u, v, x);Lemma 5.6 Let G = (V, E) be an undire
ted unweighted graph, with u, v ∈ V and j being anypositive integer < k. If for ea
h i < j, neither px
i (u, ǫ) ∈ Ballx(v, Ai, Ai+1, ǫ) nor px

i (v, ǫ) ∈
Ballx(u, Ai, Ai+1, ǫ), then

δ(u, px
j (u, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x) as well as δ(v, px

j (v, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x)Proof: We provide a proof by indu
tion on j.Base Case : j = 1Note that px
0(u, ǫ) = u and px

0(v, ǫ) = v. If u /∈ Ballx(v, A0, A1, ǫ), then it must be that δ(v, A1, x) ≤
(1 + ǫ)δ(u, v, x). Hen
e, by de�nition of px

1(v, ǫ),
δ(v, px

1(v, ǫ), x) ≤ (1 + ǫ)2δ(u, v, x)Along similar lines, we
an prove that δ(u, px
1(u, ǫ), x) ≤ (1 + ǫ)2δ(u, v, x). Hen
e the assertion holdsfor the base
ase.Indu
tion step :Suppose the assertion holds for j = t− 1. We shall prove the assertion for j = t. So we are given thatfor ea
h i < t, neither px

i (u, ǫ) ∈ Ballx(v, Ai, Ai+1, ǫ) nor px
i (v, ǫ) ∈ Ballx(u, Ai, Ai+1, ǫ). Firstly, itfollows from the indu
tion hypothesis that

δ(u, px
t−1(u, ǫ), x) ≤ (1 + ǫ)2(t−1)(t− 1)δ(u, v, x) (6)

δ(v, px
t−1(v, ǫ), x) ≤ (1 + ǫ)2(t−1)(t− 1)δ(u, v, x) (7)Now
onsider the vertex px

t−1(u, ǫ). Note that px
t−1(u, ǫ) belongs to At−1. Sin
e it is given that

px
t−1(u, ǫ) /∈ Ballx(v, At−1, At, ǫ), therefore

δ(v, At, x) ≤ (1 + ǫ)δ(v, px
t−1(u, ǫ), x)Hen
e

δ(v, px
t (v, ǫ), x) ≤ (1 + ǫ)2δ(v, px

t−1(u, ǫ), x)Now using triangle inequality
δ(v, px

t−1(u, ǫ), x) ≤ δ(u, px
t−1(u, ǫ), x) + δ(u, v, x)Combining the above two inequalities, we get

δ(v, px
t (v, ǫ), x) ≤ (1 + ǫ)2

(

δ(u, px
t−1(u, ǫ), x) + δ(u, v, x)

)

≤ (1 + ǫ)2
(

(1 + ǫ)2(t−1)(t− 1)δ(u, v, x) + δ(u, v, x)
) {using Equation 6}

≤ (1 + ǫ)2ttδ(u, v, x)Along similar lines we
an prove that δ(u, px
t (u, ǫ), x) ≤ (1 + ǫ)2ttδ(u, v, x). This
on
ludes the prooffor j = t. Hen
e by prin
iple of mathemati
al indu
tion, the assertion holds for all j. •We �nally prove a bound on d(u, v, x) using Lemma 5.6.23

Lemma 5.7 Let d(v, u, x) be the approximate distan
e between u and v avoiding x as output by ourquery answering algorithm. Then, d(u, v, x) ≤ (1 + ǫ)2k−1(2k − 1)δ(u, v, x).Proof: Let j be the smallest positive integer for whi
h either px
j (u, ǫ) ∈ Ballx(v, Aj , Aj+1, ǫ) or

px
j (v, ǫ) ∈ Ballx(u, Aj , Aj+1, ǫ) holds true. Sin
e Ballx(v, Ak−1, Ak, ǫ) = Ak−1, so px

k−1(u, ǫ) ∈
Ballx(v, Ak−1, Ak, ǫ) as well as px

k−1(v, ǫ) ∈ Ballx(u, Ak−1, Ak, ǫ). Hen
e j ≤ k − 1 always. Nowwithout loss of generality, let px
j (u, ǫ) ∈ Ballx(v, Aj , Aj+1, ǫ). So, it follows from Lemma 5.6 that
δ(u, px

j (u, ǫ), x) ≤ (1 + ǫ)2jjδ(u, v, x) (8)Using triangle inequality, it follows that
δ(v, px

j (u, ǫ), x) ≤ (1 + ǫ)2j(j + 1)δ(u, v, x) (9)Furthermore, it follows from Observations 5.1 and 5.2 respe
tively that
δ̂(u, px

j (u, ǫ), x) ≤ (1 + ǫ)δ(u, px
j (u, ǫ), x) and δ̂(v, px

j (u, ǫ), x) ≤ (1 + ǫ)δ(v, px
j (u, ǫ), x)Therefore, at the end of jth iteration, d(u, v, x)
an be bounded as follows.

d(u, v, x) ≤ δ̂(u, px
j (u, ǫ), x) + δ̂(v, px

j (u, ǫ), x)

≤ (1 + ǫ)
(

δ(u, px
j (u, ǫ), x) + δ(v, px

j (u, ǫ), x)
)

≤ (1 + ǫ)2j+1(2j + 1)δ(u, v, x) {using Equations 8 and 9}
≤ (1 + ǫ)2k−1(2k − 1)δ(u, v, x) {sin
e j ≤ k − 1}This
ompletes the proof.

•For bounding (1 + ǫ)2k−1 below (1 + ǫ′) for a given ǫ′, we may sele
t su�
iently small value of ǫ (let
ǫ = O(ǫ′/k)). So
ombining Lemma 5.5 and Lemma 5.7, we
an thus
on
lude with the followingtheorem.Theorem 5.2 Given an integer k > 1 and a fra
tion ǫ > 0, an unweighted graph G = (V, E)
an bepro
essed to
onstru
t a data stru
ture whi
h
an answer (2k − 1)(1 + ǫ)-approximate distan
e querybetween any two nodes u ∈ V and v ∈ V upon failure of any vertex x ∈ V in O(k) time. The totalsize of the data stru
ture is O(k5

ǫ4 n1+1/k log3 n).We would like to state that the data stru
ture mentioned in Theorem 5.2
an be prepro
essed in
O(kmn1+1/k) time. The prepro
essing algorithm is quite straightforward and employs the O(kmn1/k)time algorithm of approximate distan
e ora
les of Thorup and Zwi
k [24℄.6 Con
lusionsIn this paper, we presented
ompa
t data stru
tures for approximate shortest paths avoiding anyfailed vertex in undire
ted unweighted graphs. The size of these data stru
tures is nearly optimaland the query time guaranteed is optimal up to a
onstant fa
tor. We presented almost linear (in
n) size data stru
tures for single sour
e approximate shortest paths avoiding any failed vertex. Wealso presented an all-pairs approximate shortest paths ora
le avoiding any failed vertex in undire
tedunweighted graphs. This ora
le is obtained by suitable adaptation of the approximate distan
e ora
leof Thorup and Zwi
k [24℄ using
lever insights and new ideas. Interestingly, the size stret
h trade-o�of the ora
le remains nearly preserved though the ora
le is now tolerant to any single vertex failure.We would like to
on
lude with the following open problems for future resear
h.
• Single sour
e (1 + ǫ)-approximate shortest paths in a weighted graph:Can we design a data stru
ture for undire
ted weighted graphs whi
h o

upies O(n polylog n)spa
e and
an report (1 + ǫ)-approximate shortest paths from a designated sour
e avoiding anyfailed vertex for any ǫ > 0 ? 24

• Data stru
tures for distributed environment:The data stru
ture for the single sour
e approximate shortest paths avoiding any failed vertex,as presented in this arti
le, is for
entralized environment only. Note that there are plenty ofdistributed settings in networks, where one is interested in traveling from a sour
e node to anygiven destination, avoiding a reported failure (see [23℄). It would be interesting and useful toadapt our
entralized data stru
ture in the distributed environment.
• All-pairs approximate distan
e ora
le for weighted graphs:Our data stru
ture for the single sour
e 3-approximate shortest paths avoiding any failed vertexin weighted graphs (Theorem 3.2)
an be used to build all-pairs approximate distan
e ora
les
apable of tolerating any single vertex failure for weighted graphs. Though the spa
e o

upiedwill be O(n1+1/k polylog n), the stret
h would be exponential in k. Therefore, it would be aninteresting problem in the domain of weighted graphs to design all-pairs approximate distan
eora
les
apable of tolerating any single vertex failure whi
h o

upy O(n1+1/k polylog n) spa
eand still guarantee O(k) stret
h.
• Multiple vertex failures:Can we design approximate shortest paths ora
les whi
h may handle failure of two or moreverti
es ? For the all-pairs exa
t distan
es, Duan and Pettie [11℄ presented a distan
e sensitivityora
le whi
h o

upies O(n2 log3 n) size and
an handle failures of any two verti
es at a time.A
knowledgmentsPart of the work was done while the authors were at Max-Plan
k Institute for Computer S
ien
e,Saarbrue
ken, Germany for the period May-July, 2009. The authors are also grateful to anonymousreferees for providing useful
omments whi
h led to improving the readability of the paper.Referen
es[1℄ D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortestpaths (without matrix multipli
ation). SIAM Journal on Computing, 28(4):1167�1181, 1999.[2℄ S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in undi-re
ted graphs. SIAM Journal on Computing, 39(7):2865�2896, 2010.[3℄ S. Baswana and S. Sen. Approximate distan
e ora
les for unweighted graphs in expe
ted O(n2)time. ACM Transa
tions on Algorithms, 2(4):557�577, 2006.[4℄ A. Bernstein. A nearly optimal algorithm for approximating repla
ement paths and k shortestsimple paths in general graphs. In Pro
eedings of the 21st Annual ACM-SIAM Symposium onDis
rete Algorithms, pages 742�755, 2010.[5℄ A. Bernstein and D. Karger. A nearly optimal ora
le for avoiding failed verti
es and edges. InPro
eedings of the 41st Annual ACM Symposium on Theory of Computing, pages 101�110, 2009.[6℄ S. Che
hik, M. Langberg, D. Peleg, and L. Roditty. f-sensitivity distan
e ora
les and routings
hemes. In Pro
eedings of the 18th Annual European Symposium on Algorithms, pages 84�96,2010.[7℄ E. Cohen and U. Zwi
k. All-pairs small-stret
h paths. Journal of Algorithms, 38(2):335�353,2001.[8℄ C. Demetres
u and G. F. Italiano. A new approa
h to dynami
 all pairs shortest paths. Journalof the ACM, 51(6):968�992, 2004.[9℄ C. Demetres
u, M. Thorup, R. A. Chowdhury, and V. Rama
handran. Ora
les for distan
esavoiding a failed node or link. SIAM Journal on Computing, 37(5):1299�1318, 2008.25

[10℄ D. Dor, S. Halperin, and U. Zwi
k. All-pairs almost shortest paths. SIAM Journal on Computing,29(5):1740�1759, 2000.[11℄ R. Duan and S. Pettie. Dual-failure distan
e and
onne
tivity ora
les. In Pro
eedings of the 19thAnnual ACM-SIAM Symposium on Dis
rete Algorithms, pages 506�515, 2009.[12℄ P. Erd®s. Extremal problems in graph theory. In Theory of Graphs and its Appli
ations (Pro
.Sympos. Smoleni
e,1963), pages 29�36, Publ. House Cze
hoslovak A
ad. S
i., Prague, 1964.[13℄ M. Fredman and R. Tarjan. Fibona

i heaps and their uses in improved network optimizationproblem. Journal of the ACM, 34:596�615, 1987.[14℄ D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest
ommon an
estors. SIAM J.Comput., 13(2):338�355, 1984.[15℄ J. Hershberger and S. Suri. Vi
krey pri
es and shortest paths: What is an edge worth? InPro
eedings of the 42nd IEEE Symposium on Foundations of Computer S
ien
e, pages 252�259,2001.[16℄ J. Hershberger, S. Suri, and A. Bhosle. On the di�
ulty of some shortest path problems. ACMTransa
tions on Algorithms, 3:123�139, 2007.[17℄ D. R. Karger, D. Koller, and S. J. Philips. Finding the hidden path: time bounds for all-pairsshortest paths. SIAM Journal on Computing, 22:1199�1217, 1993.[18℄ E. Lawler. A pro
edure for
omputing the k best solutions to dis
rete optimization problems andits appli
ation to the k shortest paths problem. Management S
ien
e, 18:401�405, 1971/72.[19℄ K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital ar
s in the shortest path problem.Operation Resear
h Letters, 4:223�227, 1989.[20℄ E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path.Theoreti
al Computer S
ien
e, 296(1):167�177, 2003.[21℄ L. Roditty and U. Zwi
k. Repla
ement paths and k simple shortest paths in unweighted dire
tedgraphs. In Pro
eedings of the 32nd International Colloquium on Automata, Languages, andProgramming, pages 249�260, 2005.[22℄ D. D. Sleator and R. E. Tarjan. A data stru
ture for dynami
 trees. Journal of Computer andSystem S
ien
es, 26:362�391, 1983.[23℄ M. Thorup. Fortifying OSPF/IS-IS against link-failure. manus
ript, 2001.[24℄ M. Thorup and U. Zwi
k. Approximate distan
e ora
les. Journal of the ACM, 52(1):1�24, 2005.[25℄ J. Yen. Finding the k shortest loopless paths in a network. Management S
ien
e, 17:712�716,1970/71.

26

