Approximate shortest paths avoiding a failed vertex : near optimal data
structures for undirected unweighted graphs *

Surender Baswanal Neelesh Khannat

Abstract

Let G = (V, E) be an undirected unweighted graph. A path between any two vertices u,v € V
is said to be t-approximate shortest path if its length is at most ¢ times the length of the shortest
path between v and v. We address the problem of building a compact data structure which can
efficiently answer the following query for any u,v,x € V and ¢t > 1:

Report t-approzimate shortest path between u and v when vertex x fails

We present data structures for the single source as well as all-pairs versions of this problem.
The query time guaranteed by our data structures is optimal up to a constant factor. Moreover,
the size of each of them nearly matches the size of the corresponding data structure with no
failures.

Keywords: shortest path, distance, approximate distance, oracle.

*The results of the preliminary version of this article appeared in the proceedings of 27th International Symposium
on Theoretical Aspects of Computer Science (STACS) held at Nancy, France during March 6-8, 2010.

TDepartment of Computer Science and Engineering, IIT Kanpur, India. Email : sbaswana@cse.iitk.ac.in. This work
was supported by Research I Foundation, CSE, IIT Kanpur and by Indo-German Max Planck Center for Computer
Science (IMPECS).

tOracle India Pvt. Ltd., Bangalore - 560029, India. Email : neelesh.khanna@gmail.com.

1 Introduction

The shortest paths problem is a classical and well studied algorithmic problem of computer science.
Let G = (V, E) be a given directed weighted graph on n = |V| vertices and m = |E| edges. This
problem requires processing of G to compute a data structure which can report shortest path or
distance between any two vertices. Two well known and thoroughly studied versions of this problem
are the single source shortest paths (SSSP) problem and the all-pairs shortest paths (APSP) problem.
For any set S C V, let G\ S denote the graph G after removing all vertices of set S from it. Consider
the following extension of the shortest paths problem.

Given a graph G = (V, F) and a small integer ¢ > 1, construct a compact data structure which, for
any set S of at most ¢ vertices, and any u,v € V, can efficiently report the shortest path (or distance)
from u to v in G\S.

We may denote this path by P(u,v,S) and the corresponding distance by §(u,v,S). The set S
may represent the set of failed vertices in the graph at any moment, and the path P(u,v,S) is the
shortest path from u to v avoiding these failed vertices at that moment. It is required that each
such query gets answered in optimal time: d(u,v,S) should be reported in O(1) time and the path
P(u,v,S) should be reported in time which is of the order of the number of edges lying on the path.

An ideal goal would be to understand the complexity of the above problem for any arbitrary value
of £. However, the first natural step in this direction would be to thoroughly understand the complexity
of the case £ = 1, that is, the shortest paths avoiding any single failed vertex. We focus on the single
source and all-pairs versions of this problem for undirected unweighted graphs. We show that we can
design extremely compact data structures for these versions at the expense of approximation, that is,
reporting approximate shortest paths avoiding any failed vertex.

Motivation

The problem of shortest paths avoiding a failed vertex is a very natural extension of the classical
shortest paths problem. This fact provides a justification for a thorough study of this problem from
theoretical perspective. Moreover, this problem is also motivated by certain applications as follows.

Almost all real life networks which require efficient solution of shortest paths are prone to fail-
ure of nodes (vertices) and/or links (edges). So these networks have to have some efficient way of
reporting shortest paths avoiding the set of failed nodes (or links) at any given moment. Though
these networks are never immune to failures, it is also a fact that the failures are quite infrequent in
normal circumstances. Moreover, a failed node (or link) does not remain failed indefinitely; instead
it revives and become active after some time due to some repair mechanism which is usually present
in such networks. These features can be modeled as follows. There will be at most ¢ failed nodes at
any moment of time for some ¢ < n. However, the set of failed nodes may keep changing as the time
progresses: The old failed nodes may become active while some active nodes may fail such that the
number of failed nodes at any moment is at most £. A typical shortest path query in such networks
would be the following. Given any subset S of at most ¢ failed nodes, and any u,v € V, report the
shortest path (or distance) from u to v in G\S. Moreover, each such query has to be answered as
quickly as possible. In particular, once a node fails, we should be able to quickly report the new
shortest paths to any affected destination. This requirement seems quite natural, especially in the
communication networks, where any delay in reporting the new shortest path may lead to congestion
due to the queues built up by the packets whose shortest path has changed.

It follows from the discussion above that in addition to being a problem of independent interest
from theoretical perspective, the problem of shortest paths avoiding a failed vertex is motivated by
certain practical applications as well. This problem is also closely related to the replacement paths
problem [4, 16, 19, 21], the most vital node of a shortest path [20], and the k shortest simple paths
problem [18, 25] which have been studied quite extensively.

Past work and the need of approximation

Consider the problem of single source shortest paths avoiding any single failed vertex. Let r be a
designated source vertex. A trivial data structure for this problem is the following. For each vertex

x € V, compute and store the shortest paths tree at r in the graph G\{z}. The size of this data
structure will be ©(n?). Demetrescu et al. [9] proved a worst case lower bound of Q(m) on the size of
any data structure for the problem of single source shortest paths avoiding any failed vertex. m can
be as large as Q(n?). Hence, for the single source version, in the worst case, the trivial O(n?) upper
bound on the size of any data structure is also asymptotically the best one can hope for.

Interestingly, there are better results known for the all-pairs version of the problem of shortest paths
avoiding a failed vertex. The first significant breakthrough on this problem was made by Demetrescu
et al. [9]. They designed an O(n?logn) space data structure for a given directed weighted graph,
namely distance sensitivity oracle. This data structure is capable of reporting the distance (as well
as the shortest path) between any two vertices avoiding any single failed vertex in O(1) time. The
preprocessing time of this data structure is O(mn?). Recently, Bernstein and Karger [5] improved the
preprocessing time to O(mnlogn).

The quadratic lower bound on the space complexity of the single source version of the problem
imposes severe limitations on its solution in practice. This inspires us to explore whether we can achieve
subquadratic or near linear size data structure at the expense of reporting approximate shortest path
from the source avoiding any failed vertex. Even for the all-pairs version of the problem, the O(n? logn)
bound on the size of the data structure, though nearly optimal, is too large for many graphs which
appear in various large scale applications [24]. In most of these graphs it is usual to have m < n?, hence
a table of ©(n?) size may be too large. In fact, due to the same reasons, many algorithms and data
structures have been designed for the all-pairs approximate shortest paths problem (without failures)
in undirected graphs (see [1, 2, 3, 7, 10, 24]). The prime motivation underlying the design of these
algorithms has been to achieve subquadratic space and/or subcubic preprocessing time. However, no
data structure has yet been designed for efficiently reporting approximate shortest paths avoiding any
failed vertex.

1.1 New results and overview of techniques

We present compact data structures for undirected unweighted graphs which are capable of efficiently
reporting approximate shortest path (or distance) between any two vertices avoiding any failed vertex.
A path between u,v € V is said to be t-approximate shortest path if its length is at most ¢ times
that of the shortest path between the two. The factor ¢ is usually called the stretch factor. Using
new ideas combined with the existing results and techniques, we provide efficient construction of such
data structures for both the single source as well as all-pairs versions of this problem. The time taken
by our data structures to answer any approximate shortest path or distance query is optimal up to
a constant factor. The most impressive feature of our data structures is their nearly optimal size. In
fact, the size of each of them almost matches the size of the corresponding data structure with no
failures.

Single source approximate shortest paths avoiding any failed vertex

First we consider any undirected graph with nonnegative edge weights. For such a graph and a source
vertex r, we present an O(mlogn + nlog? n) time computable data structure of size O(nlogn). This
data structure can report a 3-approximate shortest path from r to any vertex v € V avoiding any
x € V. We then consider undirected unweighted graphs and augment this data structure with some
extra information. As a result, this new data structure can report a (1 + ¢)-approximate shortest path
from the source to any vertex avoiding any failed vertex for any given € > 0. The space occupied by
the data structure is O(n/e® + nlogn).

In order to achieve compact space of these data structures, we proceed as follows. Let P be any path
in the shortest paths tree rooted at the source vertex in G. First we present a compact data structure
for reporting approximate shortest paths from the source when the failed vertex belongs to path P.
A key feature of this data structure is that it has only a small number of special vertices for which
the shortest paths from the source avoiding any failed vertex will actually be stored. For reporting
approximate shortest path from the source to any vertex v when any vertex fails, v will employ the

data structure associated with one of these special vertices lying in its vicinity. To facilitate it, the
undirectedness of the graph is used very crucially.

Once we have an efficient data structure for handling failure of any vertex on a given path P, we
extend it to handle failure of any arbitrary vertex using the heavy path decomposition technique given
Sleator and Tarjan [22]. Using this technique, we break the shortest path tree rooted at the source
into vertex disjoint paths and build the data structure mentioned above for each such path. This
extension is quite similar in spirit to any divide and conquer approach. In this manner we get our
data structure for the single source approximate shortest paths avoiding any failed vertex.

An outcome of independent interest from our data structure is the computation of a subgraph of
O(n/e3+nlogn) edges such that each shortest path from the source to any vertex avoiding any single
failed vertex is (1 + €)-approximated in this subgraph.

All-pairs approximate shortest paths oracle avoiding any single failed vertex

Among the existing data structures for all-pairs approximate shortest paths in undirected graphs
[1, 2, 3, 7, 10, 24], the approzimate distance oracle of Thorup and Zwick [24] stands out due to its
amarzing features. This data structure, in true sense, is a milestone in the area of all-pairs approximate
shortest paths. Thorup and Zwick [24] showed that any undirected graph with nonnegative edge
weights can be preprocessed in subcubic time to build a data structure of size O(lm”l/k) for any
k > 1. This data structure, despite of its subquadratic size, is capable of reporting (2k—1)-approximate
distance between any two vertices in O(k) time, and hence the name oracle. The corresponding
approximate shortest path can also be reported in time which is of the order of the number of edges
on the path. The size-stretch trade off achieved by the oracle is essentially optimal assuming the 48
year old girth conjecture of Erdés [12].

It is a very natural question to explore if we can design all-pairs approximate distance oracles which
may handle any single vertex failure. We show that it is indeed possible for undirected unweighted
graphs. For this purpose, we use a couple of new ideas on top of the existing approximate distance
oracle of Thorup and Zwick [24]. There are two basic structures, namely ball and cluster, which
form the building blocks of the approximate distance oracle of Thorup and Zwick [24]. We introduce
an e-trimming of these structures. Using the e-trimming and a simple inverse relationship between
balls and clusters, we succeed in making the approximate distance oracle of Thorup and Zwick [24]
robust enough to handle any single vertex failure. Interestingly, we are able to preserve the original
trade-off between the space and the stretch as well. In precise words, we achieve the following result
here. For any € > 0 and integer £ > 1, we can preprocess a given undirected unweighted graph to
build a data structure of size O(’:—inH% log® n). This data structure is capable of answering a query
about the shortest path between any two vertices avoiding any single failed vertex with a guarantee
of (2k — 1)(1 + €) on the stretch. The query time is optimal up to a constant factor.

Recently and independently, Chechik et al. [6] solved quite a similar problem for edge failures.
They showed that for any undirected graph with nonnegative edge weights and any integer f > 0, a
data structure can be built which can report an approximate shortest path between any two vertices
given any set of at most f failed edges. The stretch of the reported path is at most (8k — 2)(f + 1),
and the size of the data structure is O(fkn'*t'/*lognW) where W is the ratio of the maximum to
the minimum edge weight in the given graph. Though the starting point of their data structure is
the approximate distance oracle of Thorup and Zwick [24], they use many new ideas which are quite
different from ours.

1.2 Related work

Two well researched problems related to the results of this paper are the replacement paths problem
and the k shortest paths problem. Both these problems have primarily been studied for a single source
destination pair (s,t). Let P be the shortest path from s to t. The replacement paths problem aims to
compute the shortest s-t path avoiding any edge e lying on the path P. The k shortest paths problem
aims to compute the k shortest simple paths from s to ¢. These two problems have a lot of similarity.
For example, the second shortest path from s to ¢ will be one of the replacement paths. In fact, as

shown by Yen [25] and Lawler [18], an O(T'(n)) time algorithm for the replacement paths problem
implies an O(kT'(n)) time algorithm for the k shortest paths problem.

Many efficient algorithms have been designed for replacement paths problem in certain classes of
graph [15, 19, 21]. However, there has not been any o(mn) time algorithm till date for this problem
in general graphs. Hershberger et al. [16] proved a lower bound of Q(m+/n) for the replacement paths
problem and the & shortest paths problem in the path comparison model given by Karger et al. [17].
So here again, approximation seems to be a natural direction of research. Recently, Bernstein [4]
designed an algorithm which can report (1 + ¢)-approximation of every replacement path for a given
source destination pair. The running time of the algorithm is O(mlog(nC/c)/e) where C and c are
respectively the maximum and minimum edge weights in the graph.

As described earlier, a practical motivation for the shortest paths problem avoiding vertex failure is
to study the dynamic shortest paths problem in real life graphs and networks. There has been extensive
research on the dynamic shortest path problem in the following model which is quite different from
the one we described. There is an initial graph followed by an on-line sequence of insertion and
deletion of edges interspersed with shortest path (or distance) queries. Each query has to be answered
with respect to the graph which exists at that moment (incorporating all the updates preceding the
query). The algorithmic objective here is to maintain a data structure which can answer any distance
query efficiently, and can be updated after any edge insertion or deletion in an efficient manner. In
particular, the complexity of the algorithm that updates this data structure should be significantly
smaller than that of the best static algorithm. Many novel algorithms have been designed in the last
ten years for the dynamic shortest paths problem in this model (see [8] and the references therein).
On one hand, this model is important since it captures the worst possible hardness of any dynamic
graph problem. However, on the other hand, it can also be considered as a very pessimistic model for
the dynamic shortest paths problem in real life networks.

1.3 Organization

Section 2 provides various notations and lemmas to be used throughout this paper. Section 3 and 4
are devoted to the data structures for single source approximate shortest paths avoiding any failed
vertex. Section 5 is devoted to all-pairs approximate shortest paths oracle avoiding any failed vertex.
Like all the previous algorithms for single vertex failure, our algorithms can be easily adapted for
handling single edge failure as well without any asymptotic increase in the space and time complexity.

2 Preliminaries

We use the following notations in the context of a given undirected graph G = (V, E) with n = |V,
m = |E| and a weight function w : E —R™. We shall use 7 to denote the source vertex.

e T, : the shortest paths tree rooted at . Though the underlying graph is undirected, yet it helps
conceptually to view each edge of T, directed away from r.

e T, (x) : the subtree of T, rooted at x.
e P(z,y) : the shortest path between x and y.

e succ(v,Q) : successor of v on path . The path @ under consideration will usually be a
subpath in T}, and hence succ(v, Q) will be uniquely defined. [We shall omit the symbol @
from succ(v, Q) when the path @ under consideration is known from the context.]

e 0(z,y) : the length of the shortest path between x and y. For any subset B of vertices, we define
d(x, B) as minyep 6(z, y).

e P(z,y,z) : the shortest path between z and y avoiding vertex z.

e 0(x,y,2) : the length of the shortest path between x and y avoiding vertex z. For any subset B
of vertices, we define §(z, B, z) as mingep 6(z,y, 2).

e G, () : the subgraph induced by the vertices of 7,.(z)\{z} and augmented by vertex r and edges
from r as follows. For each v € T).(x),v # x with neighbors outside 7T;.(x), keep an edge (r,v) of

Welght - min(u,v)EE,u¢Tr(m) (5(7ﬁ7 U’) + w(u7 U))

e P-(Q: a path formed by concatenating path @ at the end of path P with an edge (u,v) € E,
where u is the last vertex of P and v is the first vertex of Q.

e E(X) : the set of edges from E with at least one endpoint in X.

We now state a couple of properties and terminologies related to P(r,v,x). These will be used in a
crucial manner in this paper.

1. optimal subpath property
Each subpath of P(r,v, z) is also the shortest path between its endpoints upon failure of x.

2. triangle inequality
For each x,v,2 €V, 4&(r,v,z) <d(r,z,2) + §(z,v,x)

3. detour
Path P(r,v,z) must leave the path P(r,v) at some vertex before z, say a, and join it back at
some vertex after x, say b. The subpath of P(r,v,z) between vertex a and b, say pqp, will
intersect P(r,v) at exactly two vertices, namely a and b. This path p,; is called the detour
associated with P(r,v,x).

The following important observation follows immediately from the optimal subpath property.

Observation 2.1 [9] Let x be any vertex in T, and let v be any vertex belonging to the subtree T, (x).
The path P(r,v,x) must be of the form A- B, where A is a path present in T,\T.(z) and B is a path
present in the subgraph of G induced by T, (x)\{z}.

Observation 2.1 and the definition of G, (z) given above leads to the following lemma immediately.

Lemma 2.1 In order to compute shortest paths from r avoiding x, it suffices to perform Dijkstra’s
algorithm from vertex v in the graph G, (x).

Lemma 2.1 leads to the following result for unweighted graph when the failed vertex lies within small
distance from the source. A generalized version of this result was used by Demetrescu et al. [9] in
efficient construction of all-pairs distance sensitivity oracle.

Lemma 2.2 Consider an unweighted graph G = (V, E) and a vertex r € V. For any integer t, we
can preprocess the graph in O(mt + ntlogn) time to build a data-structure of size O(nt) which can
answer shortest-path/distance queries from r to any vertex upon failure of any single vertex within
distance t from r.

Proof: Observe that for unweighted graph, the shortest path tree 7, is the same as the breadth first
search (BFS) tree. Let z1,...,z; be the vertices lying at any level ¢ < ¢ in T,.. To prove the lemma,
it will suffice if we can construct an O(n) space data structure which can report P(r,v,z;) for any
veV,1<i<j. Weemploy Lemma 2.1 to design such a data structure. First note that each of the
subtrees {T}-(x;) | 1 < i < j} are vertex disjoint. For each 1 <4 < j, we build and store a shortest
path tree rooted at r in the graph G,(z;). These shortest path trees together with 7, can report
P(r,v,xz;) for any v € V,1 < ¢ < j in optimal time. It can be observed that the total space occupied
by these trees will be O(n) and their total computation time will be O(m + nlogn). .

Our data structures will also use an efficient data structure for answering lowest common ancestor
(LCA) queries on 7.

Lemma 2.3 [14] A rooted tree on n vertices can be preprocessed in O(n) time to build a data structure
of size O(n) which can report, for any two vertices u,v, their lowest common ancestor in O(1) time.

For the sake of simplicity, we shall assume that P(u,v,x) exists for every u,v,z € V. In other
words, we assume that the given graph is biconnected. However, we can handle graphs which are not
necessarily biconnected, essentially by breaking the graph into maximal biconnected components and
then solving the problem of approximate shortest paths avoiding vertex failure for each biconnected
component. We also assume that P(u, v, x) is unique. If there are multiple shortest paths between u
and v in G\{z}, we may declare any one of these shortest paths as P(u,v, z).

3 Single source 3-approximate shortest paths avoiding any failed
vertex

In this section we design an O(nlogn) space data structure for any undirected graph with nonneg-
ative edge weights. This data structure is capable of reporting 3-approximate shortest path from a
designated source r to any vertex v € V whenever there is any single vertex failure in the graph.
First, as a warm up, we describe a simple idea for achieving 3-approximation of distance from
source 1 to every vertex avoiding any single failed vertex. Let € V' be the failed vertex at a moment
and vi, ..., v; be its children in 7). as shown in Figure 1. It is easy to observe that the failure of vertex

Figure 1: Storing distances d(r, v;, «) suffices to retrieve 3-approximation of 0(r, z, z) for any 2 € T).(v;)

x may alter the distance from r to vertices belonging to T).(v;),1 < ¢ < j only. Consider any vertex
v; and z € T,(v;). Note that the shortest path P(v;, z) remains intact even after removal of x, and
its length is certainly less than d(r, z). So, in order to travel from r to z when z fails, we may first
travel along shortest route to v; (that is P(r,v;,x)) and then along P(v;, z). The distance traveled in
this manner won’t be too large compared to the distance associated with P(r, z,). In fact, exploiting
undirectedness of the graph and the triangle inequality property, we can show that d(r, v;, x) 4+ (2, v;)
is 3-approximation of d(r, z, x) as follows.

o(r,vi,) + 6(z,v;) o(r,z,2) + 6(z,v5,x) + 6(2,v;)

<
< §(r,z,x) + 26(z,v5)
< 9(r,z,x) +26(r,z) < 3(r, z,x)

Remark 3.1: The approximation factor may be much smaller than 3 in case d(v;, 2) < §(r, z). We
shall employ this observation carefully in the next section to design a data structure for unweighted
graphs which can report (1 + ¢)-approximate shortest paths from source r avoiding any failed vertex.
Therefore, based on the above discussion, storing d(r,v;,x) for all ¢ < j suffices to retrieve 3-
approximate distance from r to any vertex in the graph whenever vertex z fails. Processing each
x € T, in this manner leads to a data structure of O(n) space which can report 3-approximate
distance from r avoiding any single failed vertex. However, to extract the corresponding approximate
shortest path efficiently would require storing the paths P(r,v;,z) for each v;. Since each of these
paths might be quite long and different from all other paths, this approach may lead to ©(n?) space
in the worst case. So the challenging task is to design a data structure which occupies nearly O(n)
space, and yet allows efficient retrieval of 3-approximate shortest paths from r whenever any single
vertex fails. To achieve this objective we first solve a simpler subproblem where the failing vertex
belongs to a given path @ € T,.. Later we use divide and conquer strategy to solve our main problem.

3.1 Subproblem: Handling failure of a vertex lying on a given path in 7,

Given the shortest path tree T, let @ be any path in 7). from some vertex ¢ to some vertex t.
Without loss of generality assume that ¢ is a leaf node in 7,.. Otherwise, we can always extend @ to
some leaf node. We shall design a data structure which can efficiently report a 3-approximate shortest
path from r to any v € V when some vertex from @ fails. This data structure is inspired by the
algorithm of Nardelli et al. [20] for computing the most vital vertex on a shortest path. Consider any
x € Q,x #t. We may partition the tree T,.\{z} into the following 3 parts as shown in Figure 2.

r

Figure 2: Partitioning of the shortest path tree 7} at z € Q

1. U, : the tree T, after removing the subtree T).(z)
2. D, : the subtree of T, rooted at succ(z)
3. O, : the portion of T, left after removing U,, x, and D,.

It can be observed that whenever a vertex x € @ fails, the shortest path and distance from source
may change only for the vertices of set D, and O,. Based on this observation, the data structure will
actually consist of the following two data structures.

1. Hy(Q) : the data structure to report 3-approximate shortest path from r to any v € D, when
any vertex x € @ fails.

2. H,(Q) : the data structure to report 3-approximate shortest path from r to any v € O, when
any vertex x € @ fails.

Now we describe the above two data structures and their preprocessing algorithms. Let @ = (¢(=
Zo), &1, ..., (= t)) be the given path. In the following discussion, we shall use U;, D;, O; as succinct
notations for Uy,, Dg,, O, respectively.

3.1.1 Description and preprocessing of the data structure H;(Q)

The data structure Hy will report 3-approximate shortest path to any v € D; when x; fails for any
i < k. To achieve this objective, it will store distance d(r,x;+1,2;) and the corresponding path
P(r,xiy1,x;) for each i < k. However, it will store these paths implicitly so that the overall space
occupied by Hy will be O(|T,(x0)|). Replying to a query for P(r,v, z;), for any v € D;, it will report
P(r,xiy1,x;) - P(xiz1,v). It follows from the discussion in the beginning of this section that this path
will be a stretch-3 approximation of P(r, v, x;). To achieve efficient computation and compact storage
of P(r,zit1,z;) for all 0 < i < k, we exploit the following lemma.

Lemma 3.2 The shortest path P(r,zi11, ;) is of the form Py - Py where Py is a shortest path from
r in the subgraph induced by U; U O;, and Py is a path present in T (x;11).

Proof: Let z be the first vertex of the path P(r,x;11,2;) which belongs to D;. Define P; as the
portion of P(r,x;y1,x;) preceding z, and P, as the portion starting from z. All the vertices of Py
belong to U; U O;. So P is certainly a shortest path from r in the subgraph induced by U; U O;. It

follows from the optimal subpath property and undirectedness of the graph that P, = P(zi41, 2, ;).
However, P(zi+1, 2, 2;) is the same as P(x;11, z), and the latter is already present in T (x;11)- .

It follows from Lemma 3.2 that in order to compute P(r, z;+1, 2;), first we need to compute short-
est paths from r in the subgraph induced by U; U O;. Note that the shortest paths from r to all
vertices of U; in this subgraph are the same as in the original graph, and are already present in 7.
So we just need to compute shortest paths from 7 to vertices of O; in this subgraph. We do it by
executing Dijkstra’s algorithm from r in the subgraph induced by vertices O; U {r} and the following
additional edges. For each o € O; with at least one neighbor in U;, we add an edge (r, 0) with weight
= ming, 0)egucu; (0(r,u) + w(u, 0)). Let 77 denote the shortest path tree computed in this manner,
and let §;(r,v) denote the distance from r to any v € U; U O; in the subgraph induced by U; U O;.
It follows from Lemma 3.2 that the first vertex on P(r,z;+1,2;) which belongs to D; is the vertex z
which minimizes 6;(r,y) + w(y, 2) + d(zi+1,2) over all (y,z) € E with y € U; U O;,z € D;. Let us
denote this vertex by z;, and let y; € U; UO; be the vertex which precedes z; on the path P(r, x;11, ;).
It can be observed that the entire shortest path P(r,z;41, ;) can be reported using T, 7%, and the
edge (yi, z;) in time of the order of number of edges on P(r, z;1+1, ;).

Data structure Hy(Q). Based on the above discussion, the data structure Hy will store only the
edge (yi, 7)) and the tree 7° for each i < k. Due to mutual disjointness of O,’s, it follows that the
space required by Hy will be of the order of Y-, _, 7| = O(|T:-(q)]).

Efficient computation of H,(Q). The time required to build 7’s for all i < k will be of the order
of 3, e, (g (deg(v) +logn) due to mutual disjointness of O;’s. The only extra computational task is
the computation of edges (yi, z;) for all i < k which we can perform efficiently as follows.

The key idea used is that (U;, D;, O;) has a lot of overlap with (U;41, 041, Di+1). This overlap
can be exploited to compute all the edges {(y;, 2:)|0 < @ < k} efficiently in an incremental fashion as
follows. We keep a heap data structure storing vertices. At the time of computation of (y;, z;), the
heap consists of vertices of set D; and the key of each vertex z € D; is defined as

key(z) = (W)e]{g};rémuoi(éz(n y) +w(y, 2) +6(r, 2))
With each key(z), we also store the corresponding edge (y, z) which minimizes the value of key(z) as
defined above. It can be seen that z; corresponds to the vertex in the heap with the smallest key. So
the computation of z; (and hence the edge (y;, ;) as well) just requires a FIND_ MIN operation on the
heap. Now observe that D;11 = D;\(O;+1 U {x;11}). Therefore, for computing z;11 we just need to
update the heap as follows.

e DELETE each vertex of set O;11 U {z;11} from the HEAP.
e For each edge (y,2) € F with y € O;41,2 € D;11, perform DECREASE _KEY on z as follows.
key(z) < min(key(z), 0ix1(r,y) + w(y, z) + 4(r, 2))
e For each edge (y,2) € FE with y € O; U{x;}, 2z € D;41, perform DECREASE_KEY on z as follows.
key(z) < min(key(z), o(r,y) + w(y, z) + d(r, 2))

Performing FIND _MIN operation on the heap will now report (y;+1, zi+1). In this manner, we compute
the entire set {(y:,2;)|0 < i < k} by performing certain HEAP operations. In particular, there will
be O(k) FIND _MIN operations and O(|T,(¢)|) DELETE_KEY operations. To bound the number of
DECREASE _KEY operations, note that each of these operations is associated with an edge whose
at least one endpoint is in 7T,.(q). Moreover, it follows from the description given above that there
will be at most two DECREASE _KEY operations associated with each such edge. Hence, the total
number of DECREASE_KEY operations will be at most 23~ 7.) deg(v). Using Fibonacci heap [13],
all these HEAP operations can be performed in 3, .7 (, (deg(v) 4+ logn) time. We can thus conclude
the following lemma.

Lemma 3.3 A shortest path QQ = P(q,t) present in T, can be preprocessed to build a data struc-
ture Hy(Q) of O(|T-(q)|) size. In case of failure of any v € Q, this data structure can report 3-
approzimation of 6(r,v,xz) as well as P(r,v,z) for any v € D,. The query time is optimal up to a
constant factor and the preprocessing time of Hq(Q) is of the order of ZUETT((]) (deg(v) + logn).

3.1.2 Description and preprocessing of the data structure H,(Q)

The data structure H,(Q) will report 3-approximate shortest paths to vertices of O; upon failure of
x; for any i < k. The preprocessing of H, will employ the data structure Hy described above. Recall
that Hy can report 3-approximate shortest paths to vertices of D; upon failure of x; for any i. Here
we shall prove an interesting generic result which states that if we have a data structure to retrieve
a-approximate shortest paths from r to vertices of D; upon failure of z;, then we can use it to have a
data structure to retrieve a-approximate shortest paths to vertices of O; as well. To prove this result,
consider the subgraph induced by O; U {r} and some extra edges which are defined as follows.

e For each o € O; having neighbors from U;, add an edge (r,0) and assign it weight equal to
min(u,O)EE,ueU«L (5(7", u) + w(u7 0))

e For each o € O; having neighbors from D;, add an edge (r,0) and assign it weight equal to
miny, o)e g,uep, (0(r; u, ¥;) + w(u,0)), where §(r,u, ;) is the a-approximate distance to u upon
failure of x;. (In the present situation we have a = 3.)

In case of multiple edges introduced from r to o as a result of the above steps, keep the edge with the
least weight only. Let us denote this graph by G(r, O;).

Lemma 3.4 The shortest paths tree from r in the graph G(r,0;) will store a-approzimate shortest
paths from r to all v € O; avoiding x;.

Proof: Consider the shortest path P(r,o,x;) for any o € O;. If this path does not pass through any
vertex of D;, then it follows from the construction of G(r,0;) that a path of length exactly equal to
d(r,0,x;) is present in the subgraph G(r,O;) also. Now consider the case when the path P(r, o, x;)
passes through one or more vertices of D;. Let (u,v) be the last edge on the path P(r,o,z;) such
that w € D; and v € O;. Consider the prefix of the shortest path P(r, 0, x;) ending at v. It follows
from optimal subpath property that this prefix is also a shortest path from r to v avoiding z;, and
its length is 6(r,u,z;) + w(u,v). Now note that the edge (r,v) in the graph G(r,O;) has weight
6(r,u, ;) +w(u, v) which is bounded by ad(r, u, x;) + w(u, v). Hence the prefix of the path P(r, 0, z;)
up to v is stretched by at most « in G(r, O;). Now the suffix of the path P(r, o, z;) following v consists
of vertices of set O; only, and so it is present entirely in the graph G(r, O;). Hence, the shortest path
from r to o in G(r,0;) is an a-approximation of P(r, o, x;). .

The data structure H,(Q). Based on the above discussion, this data structure stores the shortest
path tree built for the graph G(r,O;) for each i < k. It can be seen that this data structure in
conjunction with tree T, and H4(Q) can report a 3-approximate shortest path from r to any o € O;
upon failure of z; for any 7 < k.

Preprocessing of H,(Q). It will take O(|E(O;)| + |0;|log|O;]) time to build the shortest path
tree on G(r, 0;) using Dijkstra’s algorithm. Once again, note that the sets O;’s are mutually disjoint.
Therefore, the total space required by H,(Q) is O(|Tr(q)|). Furthermore, the total time spent in
building these shortest path trees for each i < k will be O(}_, 7, () (deg(v) +logn)).

Lemma 3.4 and the above discussion imply the following observation which we shall use later for
improving the stretch factor when the graph is unweighted.

Observation 3.1 Given tree T, and a path Q = P(q,t) present in T, if there is a data structure
which can report (1+€)-approzimate shortest paths from r to vertices of D, upon failure of any x € Q,
then we can build a data structure H,(Q) which can report (1 + €)-approzimate shortest paths to all
vertices of Oy upon failure of any x € Q.

10

Query answering: We now show that the data structures H;(Q) and H,(Q) together can be used
for reporting 3-approximate shortest path from source r to any vertex v whenever any vertex x; € @
fails. If LCA(v,x;) # x;, the shortest path from r to v is unaffected by the failure of x;, so we
just report P(r,v). Otherwise, we determine if v € D; or v € O;. It can be seen that v € D; if
LCA(v,xi11) = Zit1, and v € O; otherwise. If v € D; we use Hy(Q), else we use H,(Q) to report the
approximate shortest path between r and v avoiding x;.

Theorem 3.1 An undirected weighted graph G = (V, E), a source r € V, and a shortest path Q) =
P(q,t) in T, can be processed to build a data structure which can report 3-approximate shortest path
from r to any v € V upon failure of any single vertex from Q. The size of this data structure is
O(|T;(q)|) and its preprocessing time is of the order of 3_ .1 (, (deg(v) +logn)).

3.2 Data structure for handling failure of any vertex in 7,

Now we shall describe a data structure H for reporting approximate shortest path from r to any vertex
v € V avoiding any failed vertex x € T,.. We take the following approach. Partition the tree into
vertex disjoint paths, and for each of these paths build data structure described in the previous section
(see Theorem 3.1). However, any arbitrary partitioning of 7, will not lead to efficient construction
and compact size of the final data structure. Therefore, we employ a partitioning scheme devised by
Sleator and Tarjan [22]. The following lemma lies at the heart of this scheme.

Lemma 3.5 [22] There exists an O(n) time algorithm to compute a path Q in T, whose removal
splits T into a set of disjoint subtrees T,(v1),..., T, (vj) such that for each i < j:

o |T.(v;)] <n/2 and QNT,(v;) = 0.

o T,.(v;) is connected to Q) through some edge for each i < j.

Proof: We provide a simple traversal algorithm which computes the path @ and a set 7 of subtrees
satisfying all the properties mentioned above. Initially 7 = (). Let there be £ children 1, ..., z; of the
root 7. Let T,(z;) be the largest subtree among T;.(x1), ..., Tr(z¢). Add every subtree T;.(x;),¢ # j
to 7, and traverse the edge (r,z;). Now from x;, we traverse the edge to that descendant through
which hangs the largest subtree, and add the remaining subtrees to 7. Keep on traversing 7;. in this
manner and stop when we reach a leaf vertex. This defines the path). It can be seen that each sub-
tree in the set 7 is connected to @ through some edge and has size < n/2. This completes the proof. e

Procedure Partition(7") employs Lemma 3.5 to compute a partition of any rooted tree T into a
set P of vertex disjoint paths. It is easy to execute this procedure in O(nlogn) time. See Figure 3

Procedure Partition(7T")
if |T| =1 then return {T};

else
compute the path @ originating from root in 17" as described by Lemma 3.5;
P—{Q};
let vy, ...,v; be the roots of the subtrees of T" directly connected to the path @ through an
edge;
foreach 1 <i<jdo P+« P UPartition(T,(v;)) ;
return P ;

for a better illustration of this procedure. Each maximal sequence of solid edges represents a path in
P . Each dashed edge represents an edge which joins two different paths in P . Moreover, if (z,y) is a
dashed edge then it follows from Lemma 3.5 that |T}.(y)| < 3|Z,(z)|. Thus while traversing from root
to any leaf of 7)., we shall encounter at most logn dashed edges. This leads to the following lemma.

Lemma 3.6 For any vertex v, the path to the root in T, intersects at most logn paths in P .

Data structure H. The data structure H will consist of two data structures Hy and H, which are
computed as follows.

11

Figure 3: Partitioning of T;. into disjoint paths as computed by Partition(T;)

1. P« Partition(7}).
2. For each vertex, store pointer to the path in P to which it belongs.
3. Ha — {Ha(Q) |QEP }; Ho — {Ho(Q)| Qe P}

For reporting 3-approximation of P(r,v,z) for any v,z € V, first we determine the path Q € P to
which z belong and then query the data structure Hg(Q) or H,(Q) accordingly as described earlier.

Analysis of the space and preprocessing time of the data structure.

Counsider any path @ = P(q, t) in the partition P . Theorem 3.1 implies that each vertex v € T,.(q)
contributes O(1) amount to the size and O(deg(v)+logn) amount to the preprocessing time of H(Q).
Furthermore, it follows from Lemma 3.6 that any vertex v will make this contribution to at most
logn such paths in P . Thus the data structure will have O(nlogn) space and O(mlogn + nlog2 n)
preprocessing time. Hence we can conclude with the following theorem.

Theorem 3.2 An undirected weighted graph G = (V,E) and a vertex v € V can be processed in
O(mlogn + nlog?n) time to build a data structure H of size O(nlogn). This data structure can
report a S-approzimate shortest path from r to any vertex v € V avoiding any failed vertex x € V in
time which is optimal up to a constant factor.

4 Single source (1-+¢)-approximate shortest paths avoiding any
failed vertex

The data structure described above can report 3-approximate shortest paths from a given fixed vertex
r whenever some vertex in the graph fails. Note that this data structure is actually a collection of basic
data structures H,(Q) and H4(Q) defined for various paths in the partition P of T;.. Here, the reader
is recommended to recall the dependency of H,(Q) on Hy(Q) which led to Observation 3.1. Not only
the construction of H,(Q) requires Hy(Q), but the stretch factor associated with H,(Q) is also defined
by the stretch factor associated with H4(Q). We shall use this fact in a crucial manner. We shall
show that for unweighted graphs, it is possible to augment the collection Hg = {Hq(Q) | Q € P }
with supplementary data structures to build a data structure Hj which guarantees a stretch factor of
(1 + €) for arbitrarily small e. Now, it is an immediate implication of Observation 3.1 that if we now
construct H, = {H,(Q) | Q € P } using H,}, the stretch factor associated with H, will also be 1+ .
In this way, Hj and H, together will constitute a data structure for reporting (1 + ¢)-approximate
shortest paths from r avoiding any failed vertex in the graph. With this overview of our approach,
we now provide the key ideas to augment H, in order to achieve improved stretch.

Let us first revisit the strategy underlying H,; which guarantees an approximation factor of 3.
Consider failure of any vertex x. Let Q € P be the path to which x belongs. For reporting approximate
distance between r and v € D, when z fails, the data structure H, employs H4(Q). The approximate
distance reported is 6(r, succ(z),) + §(succ(x),v) which is bounded by o(r, v, z) + 2d(succ(zx), v).
(Here succ(x) = succ(z, @) is the successor of x on path @).) Hence the stretch is

o(r,v,z) + 26(succ(z), v)
o(r,v,x)

(1)

12

Though the above stretch is bounded by 3 in the worst case, it is bounded by (1 + €) for any € > 0 if
the following condition holds.
C : succ(z) is close to v, that is, d(succ(xz),v) < §6(r,v).
Whenever the condition C does not hold, we shall ensure that there will be some ancestor w of v
lying on P(x,v), called a special vertex, satisfying the following two properties.

1. 6(w,v) < §(r,v), that is w is much closer to v than r.

2. Vertex w stores approximate shortest path to r avoiding x (with the approximation factor
arbitrarily close to 1).

These two properties will ensure that whenever condition C does not hold, vertex v may query its
special vertex w first to retrieve the approximate shortest path from r to w avoiding . This path is
concatenated with the path P(w,v) which remains intact when « fails. The resulting path will turn
out to be (1 + €)-approximation of P(r, v, z) for any desired e > 0. The data structure M will be just
the union of H, and the supplementary data structures associated with each special vertex.

We shall first describe the construction of the set of special vertices in T;.. Note that T;. is identical
to the breadth first search (BFS) tree rooted at r. We shall use LEVEL(v) to denote the level (or
distance from r) of vertex v in T,.. After defining the set of special vertices, we shall describe the data
structure stored for each special vertex. However, before all this, we would like to address a minor
technical point. We shall employ Lemma 2.2 to handle the failure of any vertex which lies up to level
o = O(logn) in T,.. This will require O(m logn +nlog?n) time and O(nlogn) space. So, henceforth
we shall focus on the failure of only those vertices in T, which lie at level > 4.

4.1 Constructing the set of special vertices

Let h be the height of BFS tree rooted at r. Let us introduce a variable ¢ < 1 whose value will be
defined later in terms of e. Without loss of generality assume that £y = |(1 + €)% | for some ig. We
now describe the construction of the set of special vertices. A

Let L be the set of positive integers defined as L = {i | £y < |(1+€)"'] < h}. For a given i € L,
let us define a subset S; as

S;={ueV|LEVEL(u) = |(1+¢)'] and |T)(u)| > € LEVEL(u)}

The set of special vertices is S = U;erS;. We introduce two terminologies in the context of these
special vertices.

e For any vertex v € V, S(v) denotes the nearest ancestor of v which belongs to set S. (In case
v €S, then S(v) =v.)

e For a vertex u € S, V(u) denotes the set of vertices v € V with S(v) = w. In essence, the
vertex u will serve as the special vertex for each vertex from V(u). Upon failure of any vertex
x € P(r,u), each vertex of set V(u) may access the data structure stored at u for retrieval of
approximate shortest path/distance from the source.

Observation 4.1 If a special vertex u lies at level £, then there are at least €'¢ vertices in V(u).

Figure 4 provides a description of the special vertices and the set V() in tree T,.. The following
lemma states that each vertex v is much closer to S(v) than the source vertex.

Lemma 4.1 Letv € V\S, then 6(v,S(v)) < (IQJ:;,)LEVEL(’U).

Proof: Let ¢ be the level of v in T;.. Then, there must be an i € L such that [(1 +é)'] <
¢ < |(14+€)"]. Let a be the ancestor of v at level |(1 + €)i|. If S(v) = a, then it can

be observed that d(v,S(v)) = £ — |[(1+¢)"] < € — # = 11‘;,. Else, let b be the ancestor

of v at level [(1+¢)"]. Clearly |T,(b)] > €[(1+¢)""]. Thus b € S and S(v) = b. Now
¢

5(v.SW) < €= [(1+¢) ™' <1 -) < 25

A

Figure 4: Splitting the tree 7). into geometrically increasing levels to constitute the special vertices.

4.2 The data structure for a special vertex

We shall process the special vertices in a top down fashion in 7T, while constructing the data structure
associated with them. Consider a special vertex v with LEVEL(v) = |(1+¢€')?| and i > ig. (Recall that
for special vertices at level £o = [(1 + €') |, we already store exact shortest path to r upon failure of
any vertex). We shall now describe a compact data structure to be stored at v which will facilitate
retrieval of (1 4+ 2¢’)-approximate shortest path from r to v upon failure of any vertex x € P(r,v).
The vertex v will store the corresponding path in a field PATH(v, z).

Let v’ be the special vertex which is present at level [(1 + ¢/)*~!]| and is ancestor of v. The data
structure stored at v will be defined in terms of various cases of the failing vertex = € P(r,v) as
follows.

If x € P(v',v), then consider the path P(r,succ(x),x) - P(succ(x),v) which is already available
in Hy. It follows from Equation 1 that this path is (14 2¢’)-approximation of P(r, v, z). So PATH(v, x)
may store this path implicitly by keeping a pointer to P(r, succ(z), x) stored in H,. Hence we require
only O(1) extra storage in this case.

Let us now consider the nontrivial case when x € P(r,v’) and z # v'. Let p,, be the detour
associated with P(r,v,z). This detour can be of any of the following two types as shown in Figure 5.

e 1:bis present on P(r,v').

e II: b is not present on P(r,v’).

(i)
Figure 5: pg,p is the detour of P(r,v,z). (i) detour of type I, (ii) detour of type II

Let us consider the case when the detour p, 3 is of type I. In this case, let w be the farthest ancestor
of v such that w € S and the level of w is greater or equal to the level of b. Note that p,; is also
the detour of P(r,w,), and so w would already have handled it in its data structure (this is because
we process the special vertices in a top down fashion while building their data structures). Hence

14

PATH(w, z) would be storing (1 + 2€')-approximation of P(r,w,z). The structure of detour of type I
can be exploited to make the following crucial observation.

Observation 4.2 If PATH(w, x) is 1+ 2€ -approzimation of P(r,w,z), then PATH(w, z) - P(w,v) will
be (1 + 2€')-approzimation of P(r,v,x).

Using Observation 4.2, PATH(v,) just stores a pointer to PATH(w,z) to handle this case (of detour
D).

Let us now consider the case when the detour p, is of type II. Unfortunately, Observation 4.2 no
longer holds in this case. So for vertex v, we cannot rely on its ancestors to take care of detour of
type II. However, we can employ the following observation associated with the detours of type II.

Observation 4.3 Let oy, ag,---,a; be the vertices on P(r,v") (in increasing level order) such that
the detour of P(r,v,«;) is of Type II for all i. Then §(r,v,a1) > d(r,v,a2) > -+ > 6(r,v, ay).

may as well serve as (1 + €’)-approximate shortest path from r to v avoiding «;. In this situation, we
need not store the path P(r, v, a;) if we are already storing P(r,v, a;). Using this observation, special
vertex v will have to explicitly store only O(log, . n) paths for all detours of type II. Moreover, we
do not need to store explicitly those paths whose length is much larger than LEVEL(v). Specifically,
if §(r,v,2) > LLEVEL(v), then it follows from Equation 1 that 6(r,succ(z),z) + §(succ(z),v) is
(14 2€¢’)-approximation of §(r,v,z). Hence the data structure Hg itself takes care of such a case. This
ensures that each path which v has to store explicitly will have O(ZLEVEL(v)) length.

Based on the detailed description of various cases as given above, Algorithm 2 presents the construc-
tion of the data structure associated with a special vertex v. The following lemma is a consequence

It follows from Observation 4.3 that if §(r,v, ;) < (14 €)d(r,v, ;) for any ¢ < j, then P(r,v, ;)

Algorithm 2: Computation of the data structure for a special vertex v

£ — LEVEL(v); d « oo; P « NULL;
foreach (vertex x € P(r,v) in the increasing order of level) do
if (6(r,v,z) > %) or (LEVEL(z) > (H%,)) then
| PATH(v,) keeps a pointer to P(r, succ(z), z) which is stored in Hg;
else
Let p,., be the detour of P(r, v, x);
if pop is of type I then
Let w € S be the farthest ancestor of v with LEVEL(w) > LEVEL()) ;
PATH(v,) stores pointer to PATH(w, z);
else
if d<(1+¢€)§(r,v,z) then
| PATH(v,x) stores a pointer to P;
else
PATH(v,) explicitly stores the entire path P(r, v, z);
L d—é(r,v,x); P« P(rv,x);

of the discussion above.

Lemma 4.2 Let u be a special vertex and x € P(r,u) be such that u € D,. Then PATH(u,x) is an
(1 + 2€¢')-approzimation of P(r,u,x).

4.3 Reporting (1 + ¢)-approximate shortest paths from r using H_

Consider failure of any vertex x € V. Let v be any vertex in D, and v ¢ S. Let u be the special
vertex to which v is assigned, that is, u = S(v). We can report approximate shortest path from r to
v avoiding z as follows.

If x lies on P(u,v), we resort to the data structure Hy and report the path P(r,succ(zx),x) -
P(succ(x),v). Its length is bounded by d(r, v, z) +26(succ(z),v). Now observe that d(succ(z),v) <

15

d(u,v), and it follows from Lemma 4.1 that 6(u,v) is at most 2€¢'d(r,v). Hence in this case, the
reported path will have length at most (1 + 4€¢)d(r, v, x).

If 2 does not lie on P(u,v), then we employ the data structure associated with special vertex w.
We report PATH(u, z) - P(u,v) as approximate path from r to v avoiding z. Length of this path can
be bounded using Lemma 4.2 as follows.

(1+2¢)o(r,u,x) + 6(u,v) < (1+2)5(r,v,2) +2(1 + €)d(u,v)
< (1+2€)d(r,v,z) +4€'6(r,v) {using Lemma 4.1 }
<

1+ 6€)d(r, v,)

~— ~—

Thus setting ¢ = ¢/6 implies the following lemma.

Lemma 4.3 For any failed vertex x and any vertex v € D, the data structure 'H(J{ can report (1+4¢€)-
approzimate shortest path from r to v avoiding x.

4.4 Analysis of the data structure for (1 + ¢)-approximate shortest paths
4.4.1 Space analysis

Recall that the data structure for singe source 3-approximate shortest paths avoiding any failed vertex
requires O(nlogn) space. The only extra space in the data structure for (1 + ¢)-approximate shortest
paths is due to the data structures associated with the set of special vertices. We can bound this extra
space as follows. We need to analyze the space occupied by the data structures associated with all the
special vertices. Let v be any special vertex. For each failed vertex « € P(r,v), if 6(r, v, z) > w
or the detour associated with P(r,v,z) is of type I, PATH(v, z) requires only O(1) space. Thus the
total space required for such vertices in the data structure of v is clearly O(LEVEL(v)). So let us
consider the remaining vertices on P(r,v). Let y be one such vertex. The detour associated with the

path P(r,v,y) must be of type II and (r,v,y) = O(%)
LEVEL(v)

must hold. It follows from Algorithm

2 that we shall store only O(log, such paths explicitly. Furthermore, the sequence of
lengths of these paths is a geometrically decreasing sequence with common ratio (1 + ¢). Hence the
space required for storing all such paths in the data structure associated with v is O(LEVEL(v)/€?). So
the overall space required by the data structure associated with v is O(LEVEL(v)/€?). Now it follows
from Observation 4.1 that there are Q(eLEVEL(v)) descendants of v in T, which are uniquely assigned
to v. So all special vertices contribute a total of O(n/e®) space to the data structure. Hence we have
proved the following Lemma.

Lemma 4.4 The data structure for single source (1 + €)-approzimate shortest paths avoiding any
failed vertex occupies O(Z +nlogn) space.

4.4.2 Preprocessing time

Let us address the preprocessing time for computing the data structure associated with special vertices.
For each special vertex v, we employ Algorithm 2 to compute the data structure associated with it.
The entire running time of Algorithm 2 for a special vertex v is dominated by the computation of
P(r,v,z) and 6(r,v,z) for each z € P(r,v). We provide below a two-step algorithm to compute
P(r,v,x) and 6(r,v, x) for each special vertex v € S and x € P(r,v).

e For each special vertex v lying at level > \/n_/e in T,., we employ O(m) time algorithm of Nardelli
et al. [20] to compute §(r,v,z) and P(r,v,x) for all z € P(r,v). It follows from Observation
4.1 that there are at least eLEVEL(v) descendants from 7, which are uniquely assigned to v.
Therefore, the number of special vertices at level > y/n/e is not more than O(y/n/e). So the

total running time of this step is O(m+/n/e).

e We execute the algorithm mentioned in Lemma 2.2 for handling failure of any vertex lying up
to level < y/n/e in T;.. This would support efficient retrieval of §(r,v,x) and P(r,v, z) for each
special vertex v up to level < y/n/e. The total running time of this step is O(m+/n/e).

16

Thus the total preprocessing time of the data structures associated with all the special vertices is
O(m+/n/¢). This bound along with Lemmas 4.3 and 4.4 lead to the following Theorem.

Theorem 4.1 Given an undirected unweighted graph G = (V| E), source v € V, and any ¢ > 0,
we can build a data structure of size O(n/e* + nlogn) in O(m+/n/e) time which can report (1 + €)-
approzimate shortest path from r to any v € V avoiding any single failed vertex x € V in time which
is optimal up to a constant factor.

4.5 A miscellaneous application

We would like to mention one application where our data structure for single source (1+¢)-approximate
shortest paths avoiding any failed vertex proves to be useful.

4.5.1 Nearest marked vertex problem under single vertex failure

Suppose there is a set S C V of, so called, marked vertices in a given graph. Consider the problem
of building a data structure which, for any v,x € V, can report the vertex from S nearest to v
when 2z has failed. We can use Theorem 4.1 to design a compact data structure for the approximate
version of this problem. For any v,z € V, this data structure will report a vertex w € S such that
d(v,w,z) < (14 ¢€)d(v,S,x) in O(1) time.

1. Add a dummy vertex r to the graph and join it to every vertex of set S. Let G’ be the new
graph thus formed.

2. With source vertex r and graph G’, build the data structure for (1 + ¢)-approximate shortest
paths avoiding any failed vertex as mentioned in Theorem 4.1. We can easily augment this data
structure suitably so that it takes constant time to report the neighbor of r on the (1 + ¢)-
approximate shortest path between r and v upon failure of any vertex x.

We can thus state the following theorem.

Theorem 4.2 For any unweighted graph G = (V,E) and a set S C V of marked vertices, there
exists a data structure of size O(n/e® +nlogn) which can solve the approximate version of the nearest

marked vertex problem under single vertex failure. The preprocessing time of the data structure is
O(m+/n/e) and the query time guaranteed is O(1).

5 All-pairs (2k — 1)(1 + ¢)-approximate shortest paths oracle
avoiding a failed vertex

We start with an overview of the approximate distance oracle of Thorup and Zwick [24]. We then
provide a brief description of our ideas which extend this oracle to handle any single vertex failure.

5.1 Overview of the approximate distance oracle of Thorup and Zwick [24]

The most impressive features of the (2k — 1)-approximate distance oracle of Thorup and Zwick [24] are
O(k) query time and O(kn'T'/¥) size. Note that the size is subquadratic for any k > 1. To achieve
such a compact size, the oracle stores distances from each vertex to only a small set of vertices that
ensures the following key property. For every pair of vertices u,v € V, there is some vertex w which
is near to both v and v, and its distance to each of them is known. This property allows the oracle to
report 0(u,w) + d(v, w) as an approximation for the distance §(u,v).

The building block of the approximate distance oracle of Thorup and Zwick [24] is a novel structure
called Ball which is defined as follows.

Definition 5.1 Given a graph G = (V, E), a vertex v € V, and two subsets of vertices X and Y, the
set Ball(v, X,Y) consists of all those vertices of set X which lie within distance §(v,Y") from v. In
precise words,

Ball(v, X,Y) ={zx € X|0(v,2) < d(v,Y)}

17

It is easy to observe that Ball(v,X,Y) =) for any v € Y and Ball(v, X,0) = X. The following
lemma shows that randomization (in construction of Y') can be used to achieve a small size of a ball.
Its proof requires an elementary application of Chernoff bound.

Lemma 5.1 [24] For a given subset X C V, let Y C X be formed by selecting each vertex from X
independently with probability p > 0. Then the size of Ball(v,X,Y) is O(1/p) in expectation and
O(logn/p) with high probability, that is, with probability exceeding 1 — # for any positive constant c.

We now provide an overview of the (2k — 1)-approximate distance oracle of Thorup and Zwick [24].
It builds a k + 1 level hierarchy Ay, = {Ao, A1, ..., Ax—1} of subsets of vertices defined as follows.

Ao =V, A =0, and A; for any 0 < i < k is formed by selecting each vertex of A;_; independently
with probability n~!/*. The oracle stores the following information for each vertex v € V and i < k.

e distance to each vertex of the set Ball(v, A;, A;+1) (this information is kept in a hash table).
e the vertex from A; nearest to v (to be denoted as p;(v)).

For a better illustration, see Figure 6 for the distance information stored at a vertex v € V' in case
of 3-approximate distance oracle, that is, k = 2.

Figure 6: 3-approximate distance oracle : v stores distances to all the vertices pointed by arrows.

It follows from Lemma, 5.1 that the space occupied by the entire data structure will be O(kn'*/* log n)
with high probability. The data structure supports the following basic operation in O(1) time.

Report distance between v and w if w € Ball(v, A;, Aiy1) for any given v € V and w € A;\A;11.

In order to report approximate distance between any pair of vertices v and v, the oracle performs
a series of such basic operations. At the end of O(k) such operations, it succeeds in finding a vertex
w € A;\A;41 for some ¢ < k which has the following properties. w is present in Ball(u, A;, A;11) as
well as Ball(v, A;, A;+1), and either §(u, w) < id(u,v) or §(v,w) < id(u,v). The oracle finally reports
d(u,w)+0(v,w) as approximate distance between v and v. Using triangle inequality and the fact that
i < k, the distance reported is at most (2k — 1)d(u, v).

We would also like to mention about one more novel structure defined by Thorup and Zwick [24].
This structure, called cluster, is basically inverse of a ball. For any sets X C V, Y C X and any
vertex w € X, cluster C(w, X,Y’) is defined as

Clw,X,Y)={veV|§v,w) < v, Y)}

The following equality is an immediate consequence of the fact that balls and clusters are inverses of
each others.

> |Bali(v, X,Y)| = Y |C(w,X,Y)] (2)

veV weX

18

5.2 Overview of all-pairs approximate distance oracle avoiding any failed
vertex

The basic structures and notations introduced by Thorup and Zwick [24] for the approximate distance
oracle get extended in the case of single vertex failure quite naturally as follows.

e Balls and clusters in case of vertex failure are defined as:
Ball®(v, A, B) = {w € A|§(v,w,z) < §(v, B,z)}
C*(w,A,B) ={veV|§(v,w,z) < (v,B,z)}
e p?(v) : the vertex from A; which is nearest to v in G\{x}.
Lemma 5.1 also gets extended easily as follows.

Lemma 5.2 [24] For a given subset X C V, let Y C X be formed by selecting each vertex from
X independently with probability p > 0. Then, with high probability, the size of Ball®*(v,X,Y) is
O(logn/p) for each x,v € V.

Along the lines of the approximate distance oracle of Thorup and Zwick [24], the basic operation
which the oracle avoiding any failed vertex should support is the following :

o : Report (exact or approximate) shortest path between v and w if w € Ball*(v, A;, A1) for any
given v,z €V and w € A;\A;11.

However, it can be observed that we will have to support this operation implicitly. This is because
storing Ball®(v, A;, Ai+1) explicitly for all v,z,i can not be achieved in subquadratic space. To
achieve this goal, our starting point is the simple observation that clusters and balls are inverses of
each other. As a result we realize that w € Ball®(v, A;, A;+1) if and only if v € C*(w, 4;, Aiy1).
Now we make use of the following insightful observation about the subgraph G;(w) induced by the
vertices of set UyeyC*(w, A;, A;+1): This subgraph preserves the path P(w,v,x) for each z,v € V
if w € Ball*(v, A;, Aix1). So we may build the data structure for single source approximate shortest
paths avoiding vertex failure on graph G;(w) with w as the source. Keeping this data structure for
each w € A; provides an implicit way for supporting the operation o. Using Theorem 4.1 and ignoring
the logarithmic factors, it can be seen that the space required at a level ¢ will be of the order of
Y owea, | Uz CF(w, Aj; Ajy1)]. However, it is not clear whether we can get an upper bound of the
order of n'*1/% on this quantity. Here, as a new tool, we introduce the notion of e-trimmed balls and
clusters.

Definition 5.2 Given a vertex x, any subsets A, B of vertices, and € > 0

Ball®(v, A, B,¢e) = {w € Alo(v,w,x) < Ml’if’x)}
€

. B 0(v, B, x)
C*(w, A, B,e) = {v e V]|d(v,w,z) < T }

Instead of dealing with the usual balls (and clusters), we deal with e-trimmed balls (and clusters).
The key role played by e-trimmed balls is that there exists a small set S of O(lo%) vertices such that

Uzev Ball® (v, Ai, Aiy1,€) C UgesBall® (v, A, Aiy1) (3)

This equation and Lemma 5.2 provide a bound of O(n'/* @) on the size of Uyey Ball®(v, A;, Ait1,€)
with high probability. Once again, we make use of the inverse relationship between clusters and balls.
Note that Equation 2 gets extended seamlessly to e-trimmed balls and clusters under single vertex
failure as well. That is,

Z | Uz C'T(’LU,A“AH_MGH = Z | Uz Ballm(vaiaAH-lvG” (4)

wEA; veV

19

This leads to an upper bound of O(n”l/klogTz") on Y, ca, | Uz C%(w, Aj, Ait1,€)| with high proba-
bility. In this way the overall space required by the data structure turns out to be greater than that
of the (2k — 1)-approximate distance oracle of Thorup and Zwick [24] by polynomial in 1/e and logn
only.

Having given an overview we now proceed to provide the complete details of the all-pairs approxi-
mate distance oracle avoiding any failed vertex. The following subsection describes the key role played
by e-trimmed balls and the subgraph G, (w).

5.3 e-trimmed balls and the subgraph G,(w)

We first state and prove an important lemma.

Lemma 5.3 In a given graph G = (V, E), let v be any vertex and let w = p;y1(v). Let 1 and
xo be any two vertices on the path P(v,u) from v to u with x1 preceding xo and 6(v, Aj41,21) <
(1+€)o(v, Ajt1,22). Then

Ball‘“ (1}, Ai, Az’-{—l; 6) g Ball(v, Ai, A7;+1) U BCLllm2 (1}, Ai, A7;+1)

Proof: To prove the lemma it suffices to prove the following equivalent statement. Let w be any
vertex in A;. If w does not belong to Ball(v, A;, Aj+1) U Ball*2(v, A;, Ai+1), then w does not belong
to Ball®™ (v, A;, Aiy1,€) as well. We prove this statement by analyzing the following two cases.
Case 1 : The vertex x5 is present in P(v,w,x1).
Since w ¢ Ball(v, A;, Aiy1), therefore, 6(v,w) > §(v,u). Hence, using triangle inequality, it follows
that d(v, z2) + d(z2, w) > §(v,w) > 6(v,u) = 6(v, z2) + 0(x2,u). Hence §(z2,w) > §(x2,u). Moreover,
since 7 precedes x5 on the path P(v,u), so z; does not appear on P(z2,u), and so §(ze,u,x1) =
d(xo,u). Hence

(5(152,11},%1) > 5($Q,U,$1) (5)

Now it is given that x2 € P(v,w, 1), so using optimal subpath property it follows that
d(v,w,1) = O(v,x2,21) + d(T2, W, 271)

d(v,x2,21) + d(z2,u,x1) {using Equation 5}

6(v,u, 1) > 6(v, Aigr, 1)

(AVARAY

Hence it follows that w does not even belong to Ball® (v, A;, Ai+1). So, w won’t belong to Ball® (v, A;, Aiy1,¢€)
as well since the latter is a subset of the former.

Case 2 : The vertex z2 is not present in P(v, w,x1).

In this case, we proceed as follows.

S(v,w,x1) = §(v,w,{x1,22}) > §(v, W, T2)
0(v, Aiy1,22) {since w ¢ Ball™(v, A;, Aiy1)}
0(v, Ajy1, 1)
1+e
Hence it follows that w ¢ Ball* (v, A;, Aiy1,€). .

Y

v

Now we shall use Lemma 5.3 to establish an upper bound on the size of set U,cy Ball* (v, A;, Ait1,€).
Let u = p;1+1(v) and let the shortest path P(u,v) be (v(= x¢), 1, ...,z¢(= u)). It is easy to observe
that Uzev Ball® (v, A;, Ait1,€) = Ui<j<eBall® (v, A;, Ai11,€). We shall show that there is a sequence
a of O(@) monotonically increasing integers from the interval [1,¢] such that for each i, we have

Ua(i,1)<j§a(i)Ballmj (v, Ai, Ajr1,€) C Ball®™® (v, Ay, Aiy1) U Ball(v, A;, Aiy1)

Now we describe an algorithm to construct the sequence «. For each vertex x € P(v,u) (including
vertex u), we define value(x) as §(v, A;y1,x). Let h be the maximum value of any node on the path
P(v,u).

20

We define hy = h. We define a(1) to be the largest integer in the interval [1,/] such that
value(rq(y)) > h1/(1 4+ ¢€). It can be seen that for all 1 < j < a(l), 0(v,Aiy1,25) < (1 +
€)0(v, Ait1,24(1))- Therefore, it follows from Lemma 5.3 that for each vertex » € {z1,...,2401)},
Ball*(v, A;, Ait1,€) C Ball®® (v, A;, Aj+1) U Ball(v, A;, A;1+1). Hence

U0<j§a(1)Ballm-7’ (1}, Ai, Az’-{—l; 6) g Ball‘”“(l) (’U, Ai, Ai+1) U Ball(v, Ai, A7;+1)

We define hy = max{value(x;)|a(l) < j < £}. It follows from the construction that he < h/(1+¢),
We define a(2) to be the largest integer in the interval [a(1) 4 1,...,£] such that value(zy2)) >
ha/(1+¢). It can be seen that for all a(1) < j < «(2), d(v, Aiy1,25) < (1+€)0(v, Ait1, Za(2)). There-
fore, it follows from Lemma 5.3 that for each vertex x € {Tq(1)41, .-, Ta(2)}, Ball*(v, Ai, Aiy1,€) C
Ball*«@ (1}, Ai, Ai+1) U BCL”(’U, A;, Ai+1). Hence

Ua(1)<j§a(2)Ballw" (v, Ai, Ajr1,€) C Ball®™® (v, A;, Ajv1) U Ball(v, A;, A1)

We define hy = max{value(z;)|a(2) < j < ¢}. It follows from the construction that hsy <
ha/(1+¢€) < h/(1+ €)%, We define a(3) to be the largest integer in the interval [a(2) + 1, ..., ¢] such
that value(zq(s)) > h3/(1+¢€). In this manner, we continue scanning the path P (v, u) from v to u to
compute the elements of sequence o. The last element to be added to this sequence will be £. Note
that (h;) is a geometrically decreasing sequence with common ratio (1+¢€). So the number of elements
in the sequence will be of the order of log, . h = O(lo%h). Our desired set S is defined as {z;|j € a}.
Note that u € S and also observe that Ball(v, A;, Ai+1) C Ball“(v, A;, A;41) since u € A; 1. We can
thus conclude that there is a set S of O(@) vertices such that

Uzev Ball®(v, A, Ait1,€) C UzesBall® (v, A, Aitr)
Using Lemma 5.2 and the above equation, we can conclude the following Theorem.
Theorem 5.1 Let G = (V, E) be an unweighted graph and Ay, be the hierarchy of vertices as defined

earlier. For any vertex v, integer i < k — 1, and constant ¢ > 0, with very high probability

1 2
| Usey Ball® (v, A, Aia,¢)| = O (nl/kﬂ>
€

Now recall Equation 4 which states that balls and clusters are inverses of each others, even under
vertex failure. This equation and Theorem 5.1 imply the following corollary.

Corollary 5.1 Let G = (V, E) be an undirected unweighted graph and Ay be the hierarchy of vertices
as defined earlier. For any integer i < k — 1, and constant € > 0, with high probability

loo?
Z | Uzev C%(w, Ai, Ait1,€)| = O <n1+1/kﬂ>

€
wEA;

Now we describe the key role played by the graph G;(w). Recall that G;(w) is the subgraph of the
original graph induced by vertices of the set UyeyC*(w, A;, A;1+1,€). The following lemma highlights
an important fact about G;(w).

Lemma 5.4 If w € Ball*(v, A;, Ai+1,€), then the shortest path P(w,v,x) is present in the subgraph

Gi(w)\{z}.

Proof: Let y be any vertex on the shortest path P(w,v,z). We shall first prove that w belongs to
Ball®(y, Ai, Aiy1,€). The proof is based on contradiction. Let w ¢ Ball®(y, A;, Ait1,€). So there
must be a vertex z € A;41 such that

0y, z,z) < (14 €)d(y,w,x)

21

Since the vertex y belongs to the shortest path between w and v in G\{z}, therefore, the following
inequality can be concluded.
6(v,z,z) < (1+€)é(v,w,x)

However, it implies that w ¢ Ball®(v, A;, Ai+1, €), a contradiction.

So for each vertex y on the shortest path P(w,v,z), w belongs to Ball*(y, A;, Ait+1,¢). Hence
y € C%(w,A;, Air1,¢), and so the entire path P(w,v,z) is present in G;(w). Moreover, since
x ¢ P(w,v,x), the shortest path P(w,v,z) is present in G;(w)\{z}. D

So if w € Ball®*(v, A;, Ai+1,€), then (1 4 ¢)-approximate distance between v and w avoiding x
can be reported using the data structure for single source (1 + €)-approximate shortest paths from w
avoiding any failed vertex in the graph G;(w) (see Theorem 4.1).

5.4 The data structures

The (2k — 1)(1 + €)-approximate distance oracle avoiding any failed vertex will keep the following data
structures for each ¢ < k.

e Let N; be the data structure for the nearest marked vertex problem with S = A; as described in
Theorem 4.2. Recall that for any v,z € V, this data structure reports a vertex w € A; such that
d(v,w,z) < (14€)d(v, A;, x). Henceforth, we shall use p? (v, €) to denote this vertex as reported
by N;.

e For each w € A;, let D;(w) be the data structure for (1 + ¢)-approximate shortest paths from w
avoiding any failed vertex in the graph G;(w).

It follows from Theorem 4.2 that the total space required by all Aj’s will be O(nk(logn + %)) =
O(nkloe%). It follows from Theorem 4.1 that the space required by D;(w) will be of the order
of | Uy C%(w, A, Aiv1)] - loﬁ%". Therefore, using Corollary 5.1, the total space required by D;(w)
for all w € A; will be O(&n'*1/*log® n) with high probability. So the total space occupied by the
approximate distance oracle avoiding any failed vertex will be O(%n”l/ klog? n) with high probability.
We may rebuild the oracle if the size exceeds this bound by a factor of 2. This will require only O(1)
rebuildings in expectation. Hence we can state the following lemma.

Lemma 5.5 The total space occupied by the approximate distance oracle avoiding any failed vertex
is O(Ln!+1/k10g% n).

Now we describe the algorithm to retrieve approximate distance between any two vertices v and
v upon failure of any vertex x. First we define a notation S(U,w,x) for any w € A; as follows. If
w = p¥(u,€), then) (u,w, x) represents the approximate distance between v and w upon failure of
as reported by N;. Otherwise, 5(u, w, x) denotes the approximate distance between v and w upon
failure of x as reported by D;(w). We now state the following simple observations.

Observation 5.1 For any verter uw € V and a verter w € A;, if w = p¥(u,€) then 3(u,w,x) <
(1+€)o(u, A, x)

Observation 5.2 If w € Ball*(v, A;, Aiy1,¢€), then (v, w,z) < (14 €)d(v, w, z).

We describe our query answering procedure in Algorithm 3. In this algorithm we assume that
S(v,y,2) =00 if v & Gi(y) and 6(u, z,x) = oo if u ¢ Gi(z).

Let us now analyze the query answering algorithm to bound the stretch ggjz;g To retrieve
approximate distance between v and v upon failure of vertex x, the aim is to find a vertex w which is
close to both u and v, and its approximate distance to both v and v is known. The query answering
algorithm confines the search for such vertices to the set {p¥(u,€)|li < k} U {p¥(v,€)|i < k}. The
following lemma plays the key role in the analysis.

22

Algorithm 3: Retrieving approximate distance between v and v upon failure of vertex x

d(u,v,) «— 00;
1+ 0;
foreach i < k do
Compute y < p¥(u,€) and z < p¥(v, €) using N;;
d(u,v,z) < min (d(u, v, x),8(u,y,) + 0(v,y, x),0(u, z,x) + 0(v, 2, x)) ;

return d(u, v, z);

Lemma 5.6 Let G = (V,E) be an undirected unweighted graph, with uw,v € V and j being any
positive integer < k. If for each i < j, neither p¥(u,e) € Ball®(v,A;, Air1,€) nor p¥(v,e) €
Ball*(u, A;, Ait1,€), then

6(u, pj (u,€),) < (1+)¥jo(u,v,z) as well as §(v,pj(v,€),2) < (1 + €)¥§6(u, v,)

Proof: We provide a proof by induction on j.

Base Case : j =1

Note that pf(u,€) = v and pf(v,e) = v. If u ¢ Ball®(v, Ao, A1, €), then it must be that 6(v, A1, z) <
(14 €)é(u,v,z). Hence, by definition of pj (v, €),

5(v, p¥(v,€),x) < (1 +€)?0(u, v, x)

Along similar lines, we can prove that d(u, pf(u,€),x) < (1 + €)25(u,v,). Hence the assertion holds
for the base case.

Induction step :

Suppose the assertion holds for j = ¢ — 1. We shall prove the assertion for j = t. So we are given that
for each i < t, neither p¥(u,€) € Ball*(v, A;, Aiy1,€) nor p?(v,e) € Ball®(u, A;, Aj+1,€). Firstly, it
follows from the induction hypothesis that

O(u,pf_q(uye),x) < (1+ e)Q(t_l)(t —1)(u,v,x) (6)
5(v,pf 1 (v,€),2) < (14 ¢V (t = 1)6(u, v, x) (7)

Now consider the vertex p? ;(u,€). Note that p? ;(u,e) belongs to A;—1. Since it is given that
p¥_q(u,€) ¢ Ball®(v, Ai_1, A¢, €), therefore

0(v, Ag,) < (1 + €)0(v, pi_y (u, €),)
Hence
3(v,pf (v,€),2) < (1+€)*8(v, pi_y (u, €),2)
Now using triangle inequality
(v, pi_1(u,€),x) < 0(u,pi_; (u,€),x) + 6(u,v,x)
Combining the above two inequalities, we get
§(v,pf(v,€),2) < (146 (6(u,pi_i(u,€),z) + 0(u, v, z))
< (1+¢€)? ((1 +)2V (¢ — 1)6(u, v,) + 6(u, v, a:)) {using Equation 6}
< (1+e)*t5(u,v,2)

A

Along similar lines we can prove that 6(u, p¥(u,€),z) < (1 + €)*¢5(u,v,x). This concludes the proof
for j = t. Hence by principle of mathematical induction, the assertion holds for all j. °

We finally prove a bound on d(u, v, z) using Lemma 5.6.

23

Lemma 5.7 Let d(v,u,x) be the approximate distance between u and v avoiding x as output by our
query answering algorithm. Then, d(u,v,z) < (14 €)2*71(2k — 1) (u, v,).

Proof: Let j be the smallest positive integer for which either p%(u,e) € Ball®(v,A;, Aji1,€) or
pi(v,€) € Ball®(u,Aj, Aji1,€) holds true. Since Ball®(v, Ax—1,Ag,€) = Ag-1, so pi_,(u,€) €
Ball*(v, Ag—1, Ag,€) as well as pf_,(v,€) € Ball®(u, Ax—1, Ai,€). Hence j < k — 1 always. Now
without loss of generality, let pf(u,€) € Ball®(v, Aj, Ajt1,€). So, it follows from Lemma 5.6 that

0(u,pf (u, €),2) < (1 +€)*jo(u, v, z) (8)
Using triangle inequality, it follows that
8(v,p5 (u,€),2) < (1+ €)Y (j +1)8(u, v, 2) (9)
Furthermore, it follows from Observations 5.1 and 5.2 respectively that
0(u, pf (u, €),x) < (1+ €)d(u, pf (u,€),2) and d(v,pf (u,€),x) < (14 €)d(v, pf (u,), z)

Therefore, at the end of jth iteration, d(u,v,z) can be bounded as follows.

d(u,v,2) < 8(u,pj(u,€),x) + (v, pf (u, €), 7)
< (146 (0(u, 05 (u, €),2) + 8(v, pf (u, €), 7))
< (1+e)¥T(2j 4+ 1)6(u,v,z) {using Equations 8 and 9}
< (A+e* 12k —1)6(u,v,x) {since j <k —1}

This completes the proof.
L]
For bounding (1 + €)2*~! below (1 + ¢') for a given ¢, we may select sufficiently small value of ¢ (let
= O(€'/k)). So combining Lemma 5.5 and Lemma 5.7, we can thus conclude with the following
theorem.

Theorem 5.2 Given an integer k > 1 and a fraction € > 0, an unweighted graph G = (V, E) can be
processed to construct a data structure which can answer (2k — 1)(1 + ¢)-approzimate distance query
between any two nodes u € V and veV upon failure of any vertex x € V in O(k) time. The total

size of the data structure is O(n* 1% log® n).

We would like to state that the data structure mentioned in Theorem 5.2 can be preprocessed in
O(kmn'*+1/%) time. The preprocessing algorithm is quite straightforward and employs the O(kmn'/*)
time algorithm of approximate distance oracles of Thorup and Zwick [24].

6 Conclusions

In this paper, we presented compact data structures for approximate shortest paths avoiding any
failed vertex in undirected unweighted graphs. The size of these data structures is nearly optimal
and the query time guaranteed is optimal up to a constant factor. We presented almost linear (in
n) size data structures for single source approximate shortest paths avoiding any failed vertex. We
also presented an all-pairs approximate shortest paths oracle avoiding any failed vertex in undirected
unweighted graphs. This oracle is obtained by suitable adaptation of the approximate distance oracle
of Thorup and Zwick [24] using clever insights and new ideas. Interestingly, the size stretch trade-off
of the oracle remains nearly preserved though the oracle is now tolerant to any single vertex failure.
We would like to conclude with the following open problems for future research.

e Single source (1 + €)-approzimate shortest paths in a weighted graph:
Can we design a data structure for undirected weighted graphs which occupies O(n polylogn)
space and can report (1 + €)-approximate shortest paths from a designated source avoiding any
failed vertex for any e > 0 ?

24

e Data structures for distributed environment:
The data structure for the single source approximate shortest paths avoiding any failed vertex,
as presented in this article, is for centralized environment only. Note that there are plenty of
distributed settings in networks, where one is interested in traveling from a source node to any
given destination, avoiding a reported failure (see [23]). It would be interesting and useful to
adapt our centralized data structure in the distributed environment.

o All-pairs approzimate distance oracle for weighted graphs:

Our data structure for the single source 3-approximate shortest paths avoiding any failed vertex
in weighted graphs (Theorem 3.2) can be used to build all-pairs approximate distance oracles
capable of tolerating any single vertex failure for weighted graphs. Though the space occupied
will be O(n”l/k polylogn), the stretch would be exponential in k. Therefore, it would be an
interesting problem in the domain of weighted graphs to design all-pairs approximate distance
oracles capable of tolerating any single vertex failure which occupy O(n't'/* polylogn) space
and still guarantee O(k) stretch.

o Multiple vertex failures:
Can we design approximate shortest paths oracles which may handle failure of two or more
vertices ? For the all-pairs exact distances, Duan and Pettie [11] presented a distance sensitivity
oracle which occupies O(n? 10g3 n) size and can handle failures of any two vertices at a time.

Acknowledgments

Part of the work was done while the authors were at Max-Planck Institute for Computer Science,
Saarbruecken, Germany for the period May-July, 2009. The authors are also grateful to anonymous
referees for providing useful comments which led to improving the readability of the paper.

References

1

2]

3]

4]

[5]

[6]

7]

18]

[9]

D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest
paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167-1181, 1999.

S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in undi-
rected graphs. STAM Journal on Computing, 39(7):2865-2896, 2010.

S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected O(n?)
time. ACM Transactions on Algorithms, 2(4):557-577, 2006.

A. Bernstein. A nearly optimal algorithm for approximating replacement paths and k shortest
simple paths in general graphs. In Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 742-755, 2010.

A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and edges. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 101-110, 2009.

S. Chechik, M. Langberg, D. Peleg, and L. Roditty. fsensitivity distance oracles and routing
schemes. In Proceedings of the 18th Annual European Symposium on Algorithms, pages 84-96,
2010.

E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38(2):335-353,
2001.

C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. Journal
of the ACM, 51(6):968-992, 2004.

C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. Oracles for distances
avoiding a failed node or link. STAM Journal on Computing, 37(5):1299-1318, 2008.

25

[10] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on Computing,
29(5):1740-1759, 2000.

[11] R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506515, 2009.

[12] P. Erdgs. Extremal problems in graph theory. In Theory of Graphs and its Applications (Proc.
Sympos. Smolenice,1963), pages 29-36, Publ. House Czechoslovak Acad. Sci., Prague, 1964.

[13] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network optimization
problem. Journal of the ACM, 34:596—615, 1987.

[14] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput., 13(2):338-355, 1984.

[15] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge worth? In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 252—259,
2001.

[16] J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest path problems. ACM
Transactions on Algorithms, 3:123-139, 2007.

[17] D. R. Karger, D. Koller, and S. J. Philips. Finding the hidden path: time bounds for all-pairs
shortest paths. SIAM Journal on Computing, 22:1199-1217, 1993.

[18] E. Lawler. A procedure for computing the k best solutions to discrete optimization problems and
its application to the k shortest paths problem. Management Science, 18:401-405, 1971/72.

[19] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem.
Operation Research Letters, 4:223-227, 1989.

[20] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path.
Theoretical Computer Science, 296(1):167-177, 2003.

[21] L. Roditty and U. Zwick. Replacement paths and % simple shortest paths in unweighted directed
graphs. In Proceedings of the 32nd International Colloguium on Automata, Languages, and
Programming, pages 249-260, 2005.

[22] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and
System Sciences, 26:362—-391, 1983.

[23] M. Thorup. Fortifying OSPF /IS-IS against link-failure. manuscript, 2001.
[24] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1-24, 2005.

[25] J. Yen. Finding the k shortest loopless paths in a network. Management Science, 17:712-716,
1970/71.

26

