
An efficient strongly connected components
algorithm in the fault tolerant model∗†

Surender Baswana1, Keerti Choudhary2, and Liam Roditty3

1 Department of Computer Science and Engineering, IIT Kanpur, India.
sbaswana@cse.iitk.ac.in

2 Department of Computer Science and Engineering, IIT Kanpur, India.
keerti@cse.iitk.ac.in

3 Department of Computer Science, Bar Ilan University, Israel.
liam.roditty@biu.ac.il

Abstract
In this paper we study the problem of maintaining the strongly connected components of a

graph in the presence of failures. In particular, we show that given a directed graph G = (V,E)
with n = |V | and m = |E|, and an integer value k ≥ 1, there is an algorithm that computes
in O(2kn log2 n) time for any set F of size at most k the strongly connected components of the
graph G \ F . The running time of our algorithm is almost optimal since the time for outputting
the SCCs of G \ F is at least Ω(n). The algorithm uses a data structure that is computed in a
preprocessing phase in polynomial time and is of size O(2kn2).

Our result is obtained using a new observation on the relation between strongly connected
components (SCCs) and reachability. More specifically, one of the main building blocks in our
result is a restricted variant of the problem in which we only compute strongly connected com-
ponents that intersect a certain path. Restricting our attention to a path allows us to implicitly
compute reachability between the path vertices and the rest of the graph in time that depends
logarithmically rather than linearly in the size of the path. This new observation alone, how-
ever, is not enough, since we need to find an efficient way to represent the strongly connected
components using paths. For this purpose we use a mixture of old and classical techniques such
as the heavy path decomposition of Sleator and Tarjan [29] and the classical Depth-First-Search
algorithm. Although, these are by now standard techniques, we are not aware of any usage of
them in the context of dynamic maintenance of SCCs. Therefore, we expect that our new insights
and mixture of new and old techniques will be of independent interest.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Fault tolerant, Directed graph, Strongly connected components

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.

1 Introduction

Computing the strongly connected components (SCCs) of a directed graph G = (V,E), where
n = |V | and m = |E|, is one of the most fundamental problems in computer science. There
are several classical algorithms for computing the SCCs in O(m+ n) time that are taught in
any standard undergraduate algorithms course [9].

∗ This research was partially supported by Israel Science Foundation (ISF) and University Grants
Commission (UGC) of India. The research of the second author was partially supported by Google
India under the Google India PhD Fellowship Award.

† Full version of this article is available at: https://arxiv.org/abs/1610.04010

EA
T

C
S

© Surender Baswana, Keerti Choudhary, and Liam Roditty;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. ; pp. :1–:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 An efficient strongly connected components algorithm in fault tolerant model

In this paper we study the following natural variant of the problem in dynamic graphs.
What is the fastest algorithm to compute the SCCs of G \ F , where F is any set of edges or
vertices. The algorithm can use a polynomial size data structure computed in polynomial
time for G during a preprocessing phase.

The main result of this paper is:

I Theorem 1. There is an algorithm that computes the SCCs of G \ F , for any set F of k
edges or vertices, in O(2kn log2 n) time. The algorithm uses a data structure of size O(2kn2)
computed in O(2kn2m) time for G during a preprocessing phase.

Since the time for outputting the SCCs of G \ F is at least Ω(n), the running time of our
algorithm is optimal (up to a polylogarithmic factor) for any fixed value of k.

This dynamic model is usually called the fault tolerant model and its most important
parameter is the time that it takes to compute the output in the presence of faults. It is
an important theoretical model as it can be viewed as a restriction of the deletion only
(decremental) model in which edges (or vertices) are deleted one after another and queries
are answered between deletions. The fault tolerant model is especially useful in cases where
the worst case update time in the more general decremental model is high.

There is wide literature on the problem of decremental SCCs. Recently, in a major
breakthrough, Henzinger, Krinninger and Nanongkai [18] presented a randomized algorithm
with O(mn0.9+o(1)) total update time and broke the barrier of Ω(mn) for the problem. Even
more recently, Chechik et al. [7] obtained an improved total running time of O(m

√
n logn).

However, these algorithms and in fact all the previous algorithms have an Ω(m) worst
case update time for a single edge deletion. This is not a coincidence. Recent developments
in conditional lower bounds by Abboud and V. Williams [1] and by Henzinger, Krinninger,
Nanongkai and Saranurak [19] showed that unless a major breakthrough happens, the worst
case update time of a single operation in any algorithm for decremental SCCs is Ω(m).
Therefore, in order to obtain further theoretical understanding on the problem of decremental
SCCs, and in particular on the worst case update time it is only natural to focus on the
restricted dynamic model of fault tolerant.

In the recent decade several different researchers used the fault tolerant model to study
the worst case update time per operation for dynamic connectivity in undirected graphs.
Pǎtraşcu and Thorup [26] presented connectivity algorithms that support edge deletions in
this model. Their result was improved by the recent polylogarithmic worst case update time
algorithm of Kapron, King and Mountjoy [21]. Duan and Pettie [13, 14] used this model to
obtain connectivity algorithms that support vertex deletions.

In directed graphs, very recently, Georgiadis, Italiano and Parotsidis [16] considered the
problem of SCCs but only for a single edge or a single vertex failure, that is |F | = 1. They
showed that it is possible to compute the SCCs of G \ {e} for any e ∈ E (or of G \ {v} for
any v ∈ V) in O(n) time using a data structure of size O(n) that was computed for G in
a preprocessing phase in O(m + n) time. Our result is the first generalized result for any
constant size F . This comes with the price of an extra O(log2 n) factor in the running time,
a slower preprocessing time and a larger data structure. In [16], Georgiadis, Italiano and
Parotsidis also considered the problem of answering strong connectivity queries after one
failure. They show construction of an O(n) size oracle that can answer in constant time
whether any two given vertices of the graph are strongly connected after failure of a single
edge or a single vertex.

In a previous work [2] we considered the problem of finding a sparse subgraph that
preserves single source reachability. More specifically, given a directed graph G = (V,E) and

S. Baswana, K. Choudhary, and L. Roditty XX:3

a vertex s ∈ V , a subgraph H of G is said to be a k-Fault Tolerant Reachability Subgraph
(k-FTRS) for G if for any set F of at most k edges (or vertices), a vertex v ∈ V is reachable
from s in G \ F if and only if v is reachable from s in H \ F . In [2] we proved that there
exists a k-FTRS for s with at most 2kn edges.

Using the k-FTRS structure, it is relatively straightforward to obtain a data structure
that, for any pair of vertices u, v ∈ V and any set F of size k, answers in O(2kn) time queries
of the form:

“Are u and v in the same SCC of G \ F?”

The data structure consists of a k-FTRS for every v ∈ V . It is easy to see that u and v
are in the same SCC of G \F if and only if v is reachable from u in k-FTRS(u) \F and u is
reachable from v in k-FTRS(v) \ F . So the query can be answered by checking, using graph
traversals, whether v is reachable from u in k-FTRS(u) \F and whether u is reachable from
v in k-FTRS(v) \ F . The cost of these two graph traversals is O(2kn). The size of the data
structure is O(2kn2).

This problem, however, is much easier since the vertices in the query reveal which two
k-FTRS we need to scan. In the challenge that we address in this paper all the SCCs of
G \ F , for an arbitrary set F , have to be computed. However, using the same data structure
as before, it is not really clear a-priori which of the k-FTRS we need to scan.

We note that our algorithm uses the k-FTRS which seems to be an essential tool but
is far from being a sufficient one and more involved ideas are required. As an example
to such a relation between a new result and an old tool one can take the deterministic
algorithm of Łącki [23] for decremental SCCs in which the classical algorithm of Italiano [20]
for decremental reachability trees in directed acyclic graphs is used. The main contribution of
Łącki [23] is a new graph decomposition that made it possible to use Italiano’s algorithm [20]
efficiently.

1.1 An overview of our result

We obtain our O(2kn log2 n)-time algorithm using several new ideas. Interestingly, one of
the main building blocks is the following restricted variant of the problem.

Given any set F of k failed edges and any path P which is intact in G \ F , output all the
SCCs of G \ F that intersect with P (i.e. contain at least one vertex of P).

To solve this restricted version, we implicitly solve the problem of reachability from x (and
to x) in G\F , for each x ∈ P . Though it is trivial to do so in time O(2kn|P |) using k-FTRS
of each vertex on P , our goal is to preform this computation in O(2kn logn) time, that is, in
running time that is independent of the length of P (up to a logarithmic factor). For this
we use a careful insight into the structure of reachability between P and V . Specifically, if
v ∈ V is reachable from x ∈ P , then v is also reachable from any predecessor of x on P , and
if v is not reachable from x, then it cannot be reachable from any successor of x as well. Let
w be any vertex on P , and let A be the set of vertices reachable from w in G \ F . Then
we can split P at w to obtain two paths: P1 and P2. We already know that all vertices in
P1 have a path to A, so for P1 we only need to focus on set V \A. Also the set of vertices
reachable from any vertex on P2 must be a subset of A, so for P2 we only need to focus on
set A. This suggests a divide-and-conquer approach which along with some more insight
into the structure of k-FTRS helps us to design an efficient algorithm for computing all the
SCCs that intersect P .

ICALP 2017

XX:4 An efficient strongly connected components algorithm in fault tolerant model

In order to use the above result to compute all the SCCs of G \ F , we need a clever
partitioning of G into a set of vertex disjoint paths. A Depth-First-Search (DFS) tree plays
a crucial role here as follows. Let P be any path from root to a leaf node in a DFS tree T . If
we compute the SCCs intersecting P and remove them, then the remaining SCCs must be
contained in subtrees hanging from path P . So to compute the remaining SCCs we do not
need to work on the entire graph. Instead, we need to work on each subtree. In order to
pursue this approach efficiently, we need to select path P in such a manner that the subtrees
hanging from P are of small size. The heavy path decomposition of Sleator and Tarjan [29]
helps to achieve this objective.1

Our algorithm and data structure can be extended to support insertions as well. More
specifically, we can report the SCCs of a graph that is updated by insertions and deletions of
k edges in the same running time.

1.2 Related work
The problem of maintaining the SCCs of a graph was studied in the decremental model. In
this model the goal is to maintain the SCCs of a graph whose edges are being deleted by an
adversary. The main parameters in this model are the worst case update time per an edge
deletion and the total update from the first edge deletion until the last. Frigioni et al.[15]
presented an algorithm that has an expected total update time of O(mn) if all the deleted
edges are chosen at random. Roditty and Zwick [28] presented a Las-Vegas algorithm with an
expected total update time of O(mn) and expected worst case update time for any single edge
deletion of O(m). Łącki [23] presented a deterministic algorithm with a total update time of
O(mn), and thus solved the open problem posed by Roditty and Zwick in [28]. However, the
worst case update time per a single edge deletion of his algorithm is O(mn). Roditty [27]
improved the worst case update time of a single edge deletion to O(m logn). Recently, in
a major breakthrough, Henzinger, Krinninger and Nanongkai [18] presented a randomized
algorithm with O(mn0.9+o(1)) total update time. Very recently, Chechik et al. [7] obtained a
total update time of O(m

√
n logn). Note that all the previous works on decremental SCC

are with Ω(m) worst case update time. Whereas, our result directly implies O(n log2 n) worst
case update time as long as the total deletion length is constant.

Most of the previous work in the fault tolerant model is on variants of the shortest
path problem. Demetrescu, Thorup, Chowdhury and Ramachandran [10] designed an
O(n2 logn) size data structure that can report the distance from u to v avoiding x for any
u, v, x ∈ V in O(1) time. Bernstein and Karger [3] improved the preprocessing time of [10]
to O(mn polylog n). Duan and Pettie [12] designed such a data structure for two vertex
faults of size O(n2 logn). Weimann and Yuster [31] considered the question of optimizing the
preprocessing time using Fast Matrix Multiplication (FMM) for graphs with integer weights
from the range [−M,M]. Grandoni and Vassilevska Williams [17] improved the result of
[31] based on a novel algorithm for computing all the replacement paths from a given source
vertex in the same running time as solving APSP in directed graphs.

For the problem of single source shortest paths Parter and Peleg [25] showed that for
unweighted graphs there is a subgraph with O(n3/2) edges that supports one fault. They
also showed a matching lower bound. Recently, Parter [24] extended this result to two faults
with O(n5/3) edges for undirected graphs. She also showed a lower bound of Ω(n5/3).

1 We note that the heavy path decomposition was also used in the fault tolerant model in STACS’10
paper of [22], but in a completely different way and for a different problem.

S. Baswana, K. Choudhary, and L. Roditty XX:5

Baswana and Khanna [22] showed that there is a subgraph with O(n logn) edges that
preserves the distances from s up to a multiplicative stretch of 3 upon failure of any single
vertex. For the case of edge failures, sparse fault tolerant subgraphs exist for general k. Bilò
et al. [4] showed that we can compute a subgraph with O(kn) edges that preserves distances
from s up to a multiplicative stretch of (2k + 1) upon failure of any k edges. They also
showed that we can compute a data structure of O(kn log2 n) size that is able to report the
(2k + 1)-stretched distance from s in O(k2 log2 n) time.

The questions of finding graph spanners, approximate distance oracles and compact
routing schemes in the fault tolerant model were studied in [11, 8, 5, 6].

1.3 Organization of the paper
We describe notations, terminologies, some basic properties of DFS, heavy-path decomposition,
and k-FTRS in Section 2. In Section 3, we describe the fault tolerant algorithm for computing
the strongly connected components intersecting any path. We present our main algorithm
for handling k failures in Section 4. The details on how to extend our algorithm and data
structure to support insertions as well is provided in the full version.

2 Preliminaries

Let G = (V,E) denote the input directed graph on n = |V | vertices and m = |E| edges. We
assume that G is strongly connected, since if it is not the case, then we may apply our result
to each strongly connected component of G. We first introduce some notations that will be
used throughout the paper.

T : A DFS tree of G.
T (v): The subtree of T rooted at a vertex v.
Path(a, b): The tree path from a to b in T . Here a is assumed to be an ancestor of b.
depth(Path(a, b)): The depth of vertex a in T .
GR: The graph obtained by reversing all the edges in graph G.
H(A): The subgraph of a graph H induced by the vertices of subset A.
H \ F : The graph obtained by deleting the edges in set F from graph H.
In-Edges(v,H): The set of all incoming edges to v in graph H.
P [a, b]: The subpath of path P from vertex a to vertex b, assuming a and b are in P
and a precedes b.
P ::Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last vertex of P is the same as the first vertex of Q.

Our algorithm for computing SCCs in a fault tolerant environment crucially uses the
concept of a k-fault tolerant reachability subgraph (k-FTRS) which is a sparse subgraph
that preserves reachability from a given source vertex even after the failure of at most k
edges in G. A k-FTRS is formally defined as follows.

I Definition 2 (k-FTRS). Let s ∈ V be any designated source. A subgraph H of G is said
to be a k-Fault Tolerant Reachability Subgraph (k-FTRS) of G with respect to s if for any
subset F ⊆ E of k edges, a vertex v ∈ V is reachable from s in G \ F if and only if v is
reachable from s in H \ F .

In [2], we present the following result for the construction of a k-FTRS for any k ≥ 1.

ICALP 2017

XX:6 An efficient strongly connected components algorithm in fault tolerant model

I Theorem 3 ([2]). There exists an O(2kmn) time algorithm that for any given integer
k ≥ 1, and any given directed graph G on n vertices, m edges and a designated source vertex
s, computes a k-FTRS for G with at most 2kn edges. Moreover, the in-degree of each vertex
in this k-FTRS is bounded by 2k.

Our algorithm will require the knowledge of the vertices reachable from a vertex v as
well as the vertices that can reach v. So we define a k-FTRS of both the graphs - G and
GR with respect to any source vertex v as follows.
G(v): The k-FTRS of graph G with v as source obtained by Theorem 3.
GR(v): The k-FTRS of graph GR with v as source obtained by Theorem 3.

The following lemma states that the subgraph of a k-FTRS induced by A ⊂ V can serve
as a k-FTRS for the subgraph G(A) given that A satisfies certain properties.

I Lemma 4. Let s be any designated source and H be a k-FTRS of G with respect to s. Let
A be a subset of V containing s such that every path from s to any vertex in A is contained
in G(A). Then H(A) is a k-FTRS of G(A) with respect to s.

Proof. Let F be any set of at most k failing edges, and v be any vertex reachable from s

in G(A) \ F . Since v is reachable from s in G \ F and H is a k-FTRS of G, so v must be
reachable from s in H \ F as well. Let P be any path from s to v in H \ F . Then (i) all
edges of P are present in H and (ii) none of the edges of F appear on P . Since it is already
given that every path from s to any vertex in A is contained in G(A), therefore, P must be
present in G(A). So every vertex of P belongs to A. This fact combined with the inferences
(i) and (ii) implies that P must be present in H(A) \ F . Hence H(A) is k-FTRS of G(A)
with respect to s. J

The next lemma is an adaptation of Lemma 10 from Tarjan’s classical paper on Depth
First Search [30] to our needs (for proof see the full version).

I Lemma 5. Let T be a DFS tree of G. Let a, b ∈ V be two vertices without any ancestor-
descendant relationship in T , and assume that a is visited before b in the DFS traversal of G
corresponding to tree T . Every path from a to b in G must pass through a common ancestor
of a and b in T .

2.1 A heavy path decomposition
The heavy path decomposition of a tree was designed by Sleator and Tarjan [29] in the
context of dynamic trees. This decomposition has been used in a variety of applications since
then. Given any rooted tree T , this decomposition splits T into a set P of vertex disjoint
paths with the property that any path from the root to a leaf node in T can be expressed as
a concatenation of at most logn subpaths of paths in P. This decomposition is carried out
as follows. Starting from the root, we follow the path downward such that once we are at a
node, say v, the next node traversed is the child of v in T whose subtree is of maximum size,
where the size of a subtree is the number of nodes it contains. We terminate upon reaching
a leaf node. Let P be the path obtained in this manner. If we remove P from T , we are
left with a collection of subtrees each of size at most n/2. Each of these trees hangs from
P through an edge in T . We carry out the decomposition of these trees recursively. The
following lemma is immediate from the construction of a heavy path decomposition.

I Lemma 6. For any vertex v ∈ V , the number of paths in P which start from either v or
an ancestor of v in T is at most logn.

S. Baswana, K. Choudhary, and L. Roditty XX:7

We now introduce the notion of ancestor path.

I Definition 7. A path Path(a1, b1) ∈ P is said to be an ancestor path of Path(a2, b2) ∈ P ,
if a1 is an ancestor of a2 in T .

In this paper, we describe the algorithm for computing SCCs of graph G after any k edge
failures. Vertex failures can be handled by simply splitting each vertex v into edge (vin, vout),
where the incoming and outgoing edges of v are directed to vin and from vout, respectively.

3 Computation of SCCs intersecting a given path

Let F be a set of at most k failing edges, and X = (x1, x2, . . . , xt) be any path in G from
x1 to xt which is intact in G \ F . In this section, we present an algorithm that outputs in
O(2kn logn) time the SCCs of G \ F that intersect X.

For each v ∈ V , let X in(v) be the vertex of X of minimum index (if exists) that is
reachable from v in G \ F . Similarly, let Xout(v) be the vertex of X of maximum index (if
exists) that has a path to v in G \ F . (See Figure 1).

Figure 1 Depiction of X in(v) and Xout(v) for a vertex v whose SCC intersects X.

We start by proving certain conditions that must hold for a vertex if its SCC in G \ F
intersects X.

I Lemma 8. For any vertex w ∈ V , the SCC that contains w in G \ F intersects X if and
only if the following two conditions are satisfied.

(i) Both X in(w) and Xout(w) are defined, and
(ii) Either X in(w) = Xout(w), or X in(w) appears before Xout(w) on X.

Proof. Consider any vertex w ∈ V . Let S be the SCC in G \ F that contains w and assume
S intersects X. Let w1 and w2 be the first and last vertices of X, respectively, that are in S.
Since w and w1 are in S there is a path from w to w1 in G \ F . Moreover, w cannot reach a
vertex that precedes w1 in X since such a vertex will be in S as well and it will contradict the
definition of w1. Therefore, w1 = X in(w). Similarly we can prove that w2 = Xout(w). Since
w1 and w2 are defined to be the first and last vertices from S on X, respectively, it follows
that either w1 = w2, or w1 precedes w2 on X. Hence conditions (i) and (ii) are satisfied.

Now assume that conditions (i) and (ii) are true. The definition of X in(·) and Xout(·)
implies that there is a path from Xout(w) to w, and a path from w to X in(w). Also, condition
(ii) implies that there is a path from X in(w) to Xout(w). Thus w, X in(w), and Xout(w) are
in the same SCC and it intersects X. J

The following lemma states the condition under which any two vertices lie in the same
SCC, given that their SCCs intersect X.

I Lemma 9. Let a, b be any two vertices in V whose SCCs intersect X. Then a and b lie in
the same SCC if and only if X in(a) = X in(b) and Xout(a) = Xout(b).

ICALP 2017

XX:8 An efficient strongly connected components algorithm in fault tolerant model

Proof. In the proof of Lemma 8, we show that if SCC of w intersects X, then X in(w) and
Xout(w) are precisely the first and last vertices on X that lie in the SCC of w. Since SCCs
forms a partition of V , vertices a and b will lie in the same SCC if and only if X in(a) = X in(b)
and Xout(a) = Xout(b). J

It follows from the above two lemmas that in order to compute the SCCs in G \ F that
intersect with X, it suffices to compute X in(·) and Xout(·) for all vertices in V . It suffices
to focus on computation of Xout(·) for all the vertices of V , since X in(·) can be computed
in an analogous manner by just looking at graph GR. One trivial approach to achieve this
goal is to compute the set Vi consisting of all vertices reachable from each xi by performing
a BFS or DFS traversal of graph G(xi) \ F . Using this straightforward approach it takes
O(2knt) time to complete the task of computing Xout(v) for every v ∈ V , while our target
is to do so in O(2kn logn) time.

Observe the nested structure underlying Vi’s, that is, V1 ⊇ V2 ⊇ · · · ⊇ Vt. Consider any
vertex x`, 1 < ` < t. The nested structure implies for every v ∈ V` that Xout(v) must be
on the portion (x`, . . . , xt) of X. Similarly, it implies for every v ∈ V1 \ V` that Xout(v)
must be on the portion (x1, . . . , x`−1) of X. This suggests a divide and conquer approach to
efficiently compute Xout(·). We first compute the sets V1 and Vt in O(2kn) time each. For
each v ∈ V \ V1, we assign NULL to Xout(v) as it is not reachable from any vertex on X;
and for each v ∈ Vt we set Xout(v) to xt. For vertices in set V1 \ Vt, Xout(·) is computed by
calling the function Binary-Search(1, t− 1, V1 \ Vt). See Algorithm 1.

Algorithm 1: Binary-Search(i, j, A)
1 if (i = j) then
2 foreach v ∈ A do Xout(v) = xi;
3 else
4 mid← d(i+ j)/2e;
5 B ← Reach(xmid, A); /* vertices in A reachable from xmid */
6 Binary-Search(i,mid-1, A\B);
7 Binary-Search(mid, j, B);
8 end

In order to explain the function Binary-Search, we first state an assertion that holds true
for each recursive call of the function Binary-Search. We prove this assertion in the next
subsection.
Assertion 1: If Binary-Search(i, j, A) is called, then A is precisely the set of those vertices

v ∈ V whose Xout(v) lies on the path (xi, xi+1, . . . , xj).

We now explain the execution of function Binary-Search(i, j, A). If i = j, then we assign
xi to Xout(v) for each v ∈ A as justified by Assertion 1. Let us consider the case when
i 6= j. In this case we first compute the index mid = d(i+ j)/2e. Next we compute the set
B consisting of all the vertices in A that are reachable from xmid. This set is computed
using the function Reach(xmid, A) which is explained later in Subsection 3.2. As follows
from Assertion 1, Xout(v) for each vertex v ∈ A must belong to path (xi, . . . , xj). Thus,
Xout(v) for all v ∈ B must lie on path (xmid, . . . , xj), and Xout(v) for all v ∈ A \ B must
lie on path (xi, . . . , xmid-1). So for computing Xout(·) for vertices in A \B and B, we invoke
the functions Binary-Search(i,mid-1, A\B) and Binary-Search(mid, j, B), respectively.

S. Baswana, K. Choudhary, and L. Roditty XX:9

3.1 Proof of correctness of algorithm
In this section we prove that Assertion 1 holds for each call of the Binary-Search function.
We also show how this assertion implies that Xout(v) is correctly computed for every v ∈ V .

Let us first see how Assertion 1 implies the correctness of our algorithm. It follows from the
description of the algorithm that for each i, (1 ≤ i ≤ t−1), the function Binary-Search(i, i, A)
is invoked for some A ⊆ V . Assertion 1 implies that A must be the set of all those vertices
v ∈ V such that Xout(v) = xi. As can be seen, the algorithm in this case correctly sets
Xout(v) to xi for each v ∈ A.

We now show that Assertion 1 holds true in each call of the function Binary-Search. It
is easy to see that Assertion 1 holds true for the first call Binary-Search(1, t − 1, V1 \ Vt).
Consider any intermediate recursive call Binary-Search(i, j, A), where i 6= j. It suffices to
show that if Assertion 1 holds true for this call, then it also holds true for the two recursive
calls that it invokes. Thus let us assume A is the set of those vertices v ∈ V whose Xout(v)
lies on the path (xi, xi+1, . . . , xj). Recall that we compute index mid lying between i and j,
and find the set B consisting of all those vertices in A that are reachable from xmid. From
the nested structure of the sets Vi, Vi+1, . . . , Vj , it follows that Xout(v) for all v ∈ B must lie
on path (xmid, . . . , xj), and Xout(v) for all v ∈ A \B must lie on path (xi, . . . , xmid-1). That
is, B is precisely the set of those vertices whose Xout(v) lies on the path (xmid, . . . , xj), and
A \B is precisely the set of those vertices whose Xout(v) lies on the path (xi, . . . , xmid-1).
Thus Assertion 1 holds true for the recursive calls Binary-Search(i,mid-1, A\B) and Binary-
Search(mid, j, B) as well.

3.2 Implementation of function Reach
The main challenge left now is to find an efficient implementation of the function Reach which
has to compute the vertices of its input set A that are reachable from a given vertex x ∈ X in
G \F . The function Reach can be easily implemented by a standard graph traversal initiated
from x in the graph G(x) \ F (recall that G(x) is a k-FTRS of x in G). This, however, will
take O(2kn) time which is not good enough for our purpose, as the total running time of
Binary-Search in this case will become O(|X|2kn). Our aim is to implement the function
Reach in O(2k|A|) time. In general, for an arbitrary set A this might not be possible. This
is because A might contain a vertex that is reachable from x via a single path whose vertices
are not in A, therefore, the algorithm must explore edges incident to vertices that are not
in A as well. However, the following lemma, that exploits Assertion 1, suggests that in our
case as the call to Reach is done while running the function Binary-Search we can restrict
ourselves to the set A only.

I Lemma 10. If Binary-Search(i, j, A) is called and ` ∈ [i, j], then for each path P from x`

to a vertex z ∈ A in graph in G \ F , all the vertices of P must be in the set A.

Proof. Assertion 1 implies that A is precisely the set of those vertices in V which are
reachable from xi but not reachable from xj+1 in G\F . Consider any vertex y ∈ P . Observe
that y is reachable from xi by the path X[xi, x`]::P [x`, y]. Moreover, y is not reachable from
xj+1, because otherwise z will also be reachable from xj+1, which is not possible since z ∈ A.
Thus vertex y lies in the set A. J

Lemma 10 and Lemma 4 imply that in order to find the vertices in A that are reachable
from xmid, it suffices to do traversal from xmid in the graph GA, the induced subgraph of A
in G(x) \ F , that has O(2k|A|) edges. Therefore, based on the above discussion, Algorithm 2
given below, is an implementation of function Reach that takes O(2k|A|) time.

ICALP 2017

XX:10 An efficient strongly connected components algorithm in fault tolerant model

Algorithm 2: Reach(xmid, A)
1 H ← G(xmid) \ F ;
2 GA ← (A, ∅); /* an empty graph */
3 foreach v ∈ A do
4 foreach (y, v) ∈ In-Edges(v,H) do
5 if y ∈ A then E(GA) = E(GA) ∪ (y, v);
6 end
7 end
8 B ← Vertices reachable from xmid obtained by a BFS or DFS traversal of graph GA;
9 Return B;

The following lemma gives the analysis of running time of Binary-Search(1, t− 1, V1 \ Vt).

I Lemma 11. The total running time of Binary-Search(1, t− 1, V1 \ Vt) is O(2kn logn).

Proof. The time complexity of Binary-Search(1, t− 1, V1 \Vt) is dominated by the total time
taken by all invocation of function Reach. Let us consider the recursion tree associated with
Binary-Search(1, t− 1, V1 \ Vt). It can be seen that this tree will be of height O(logn). In
each call of the Binary-Search, the input set A is partitioned into two disjoint sets. As a
result, the input sets associated with all recursive calls at any level j in the recursion tree
form a disjoint partition of V1 \ Vt. Since the time taken by Reach is O(2k|A|), so the total
time taken by all invocations of Reach at any level j is O(2k|V1 \ Vt|). As there are at most
logn levels in the recursion tree, the total time taken by Binary-Search(1, t− 1, V1 \ Vt) is
O(2kn logn). J

We conclude with the following theorem.

I Theorem 12. Let F be any set of at most k failed edges, and X = {x1, x2, . . . , xt} be any
path in G \ F . If we have prestored the graphs G(x) and GR(x) for each x ∈ X, then we can
compute all the SCCs of G \ F which intersect with X in O(2kn logn) time.

4 Main Algorithm

In the previous section we showed that given any path P , we can compute all the SCCs
intersecting P efficiently, if P is intact in G \ F . In the case that P contains ` failed edges
from F then P is decomposed into ` + 1 paths, and we can apply Theorem 12 to each of
these paths separately to get the following theorem:

I Theorem 13. Let P be any given path in G. Then there exists an O(2kn|P |) size data
structure that for any arbitrary set F of at most k edges computes the SCCs of G \ F that
intersect the path P in O((`+ 1)2kn logn) time, where ` (` ≤ k) is the number of edges in
F that lie on P .

Now in order to use Theorem 13 to design a fault tolerant algorithm for SCCs, we need
to find a family of paths, say P, such that for any F , each SCC of G \ F intersects at least
one path in P. As described in the Subsection 1.1, a heavy path decomposition of DFS tree
T serves as a good choice for P . Choosing T as a DFS tree helps us because of the following
reason: let P be any root-to-leaf path, and suppose we have already computed the SCCs in
G \ F intersecting P . Then each of the remaining SCCs must be contained in some subtree
hanging from path P . The following lemma formally states this fact.

S. Baswana, K. Choudhary, and L. Roditty XX:11

I Lemma 14. Let F be any set of failed edges, and Path(a, b) be any path in P. Let S
be any SCC in G \ F that intersects Path(a, b) but does not intersect any ancestor path of
Path(a, b) in P. Then all the vertices of S must lie in the subtree T (a).

Proof. Consider a vertex u on Path(a, b) whose SCC Su in G\F is not completely contained
in the subtree T (a). We show that Su must contain an ancestor of a in T , thereby proving
that it intersects an ancestor-path of Path(a, b) in P. Let v be any vertex in Su that is not
in the subtree T (a). Let Pu,v and Pv,u be paths from u to v and from v to u, respectively,
in G \ F . From Lemma 5 it follows that either Pu,v or Pv,u must pass through a common
ancestor of u and v in T . Let this ancestor be z. Notice that all the vertices of Pu,v and Pv,u

must lie in Su. In particular, z must also lie in Su. Moreover, since v /∈ T (a) and u ∈ T (a),
their common ancestor z in T is an ancestor of a. Since z ∈ Su and it is an ancestor of a in
T , the lemma follows. J

Lemma 14 suggests that if we process the paths from P in the non-decreasing order
of their depths, then in order to compute the SCCs intersecting a path Path(a, b) ∈ P, it
suffices to focus on the subgraph induced by the vertices in T (a) only. This is because the
SCCs intersecting Path(a, b) that do not completely lie in T (a) would have already been
computed during the processing of some ancestor path of Path(a, b).

We preprocess the graph G as follows. We first compute a heavy path decomposition P
of DFS tree T . Next for each path Path(a, b) ∈ P , we use Theorem 13 to construct the data
structure for path Path(a, b) and the subgraph of G induced by vertices in T (a). We use the
notation Da,b to denote this data structure. Our algorithm for reporting SCCs in G \ F will
use the collection of these data structures associated with the paths in P as follows.

Let C denote the collection of SCCs in G \ F initialized to ∅. We process the paths from
P in non-decreasing order of their depths. Let Path(a, b) be any path in P and let A be
the set of vertices belonging to T (a). We use the data structure Da,b to compute SCCs of
G(A) \ F intersecting Path(a, b). Let these be S1, . . . , St. Note that some of these SCCs
might be a part of some bigger SCC computed earlier. We can detect it by keeping a set W
of all vertices for which we have computed their SCCs. So if Si ⊆W , then we can discard Si,
else we add Si to collection C. Algorithm 3 gives the complete pseudocode of this algorithm.

Algorithm 3: Compute SCC(G,F)
1 C ← ∅; /* Collection of SCCs */
2 W ← ∅; /* A subset of V whose SCC have been computed */
3 P ← A heavy-path decomposition of T , where paths are sorted in the non-decreasing

order of their depths;
4 foreach Path(a, b) ∈ P do
5 A← Vertices lying in the subtree T (a);
6 (S1, . . . , St)← SCCs intersecting Path(a, b) in G(A) \ F computed using Da,b;
7 foreach i ∈ [1, t] do
8 if (Si *W) then Add Si to collection C and set W = W ∪ Si;
9 end

10 end
11 Return C;

Note that, in the above explanation, we only used the fact that T is a DFS tree, and
P could have been any path decomposition of T . We now show how the fact that P is a

ICALP 2017

XX:12 An efficient strongly connected components algorithm in fault tolerant model

heavy-path decomposition is crucial for the efficiency of our algorithm. Consider any vertex
v ∈ T . The number of times v is processed in Algorithm 3 is equal to the number of paths in
P that start from either v or an ancestor of v. For this number to be small for each v, we
choose P to be a heavy path decomposition of T . On applying Theorem 13, this immediately
gives that the total time taken by Algorithm 3 is O(k2kn log2 n). In the next subsection, we
do a more careful analysis to give a bound of O(2kn log2 n).

4.1 Analysis of time complexity of Algorithm 3
For any path Path(a, b) ∈ P and any set F of failing edges, let `(a, b) denote the number
of edges of F that lie on Path(a, b). It follows from Theorem 13 that the time spent in
processing Path(a, b) by Algorithm 3 is O

(
(`(a, b) + 1)× 2k|T (a)| × logn

)
. Hence the time

complexity of Algorithm 3 is of the order of

∑
P ath(a,b)∈P

(`(a, b) + 1)× 2k|T (a)| × logn

In order to calculate this we define a notation α(v, Path(a, b)) as `(a, b) + 1 if v ∈ T (a),
and 0 otherwise, for each v ∈ V and Path(a, b) ∈ P. So the time complexity of Algorithm 3
becomes

2k logn×
(∑

P ath(a,b)∈P

(`(a, b) + 1)× |T (a)|
)

= 2k logn×
(∑

P ath(a,b)∈P

∑
v∈V

α(v, Path(a, b))
)

= 2k logn×
(∑

v∈V

∑
P ath(a,b)∈P

α(v, Path(a, b))
)

Observe that for any vertex v and Path(a, b) ∈ P , α(v, Path(a, b)) is equal to `(a, b)+1 if
a is either v or an ancestor of v, otherwise it is zero. Consider any vertex v ∈ V . We now show
that

∑
P ath(a,b)∈P α(v, Path(a, b)) is at most k + logn. Let Pv denote the set of those paths

in P which starts from either v or an ancestor of v. Then
∑

P ath(a,b)∈P α(v, Path(a, b)) =∑
P ath(a,b)∈Pv

`(a, b) + 1. Note that
∑

P ath(a,b)∈Pv
`(a, b) is at most k, and Lemma 6 implies

that the number of paths in Pv is at most logn. This shows that
∑

P ath(a,b)∈P α(v, Path(a, b))
is at most k + logn which is O(logn), since k ≤ logn.

Hence the time complexity of Algorithm 3 becomes O(2kn log2 n). We thus conclude with
the following theorem.

I Theorem 15. For any n-vertex directed graph G, there exists an O(2kn2) size data
structure that, given any set F of at most k failing edges, can report all the SCCs of G \ F
in O(2kn log2 n) time.

References

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443,
2014.

S. Baswana, K. Choudhary, and L. Roditty XX:13

2 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for
single source reachability: generic and optimal. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 509–518, 2016.

3 Aaron Bernstein and David Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In STOC’09: Proceedings of the 41st annual ACM symposium on Theory of
computing, pages 101–110, New York, NY, USA, 2009. ACM.

4 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-
tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14,
2016.

5 Shiri Chechik. Fault-tolerant compact routing schemes for general graphs. Inf. Comput.,
222:36–44, 2013.

6 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + epsilon)-approximate
f -sensitive distance oracles. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1479–1496, 2017.

7 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and Nikos
Parotsidis. Decremental single-source reachability and strongly connected components in
O(m
√
n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 315–324, 2016.

8 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance
oracles and routing schemes. Algorithmica, 63(4):861–882, 2012.

9 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

10 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008.

11 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011.

12 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In SODA’09:
Proceedings of 19th Annual ACM -SIAM Symposium on Discrete Algorithms, pages 506–
515, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

13 Ran Duan and Seth Pettie. Connectivity oracles for failure prone graphs. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachu-
setts, USA, 5-8 June 2010, pages 465–474, 2010.

14 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 490–509, 2017.

15 Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. An experi-
mental study of dynamic algorithms for transitive closure. ACM Journal of Experimental
Algorithmics, 6:9, 2001.

16 Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis. Strong connectivity in
directed graphs under failures, with applications. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1880–1899, 2017.

17 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles
via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations

ICALP 2017

XX:14 An efficient strongly connected components algorithm in fault tolerant model

of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
748–757, 2012.

18 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decre-
mental algorithms for single-source reachability and shortest paths on directed graphs. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 674–683, 2014.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 21–30, 2015.

20 Giuseppe F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Inf.
Process. Lett., 28(1):5–11, 1988.

21 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131–1142, 2013.

22 Neelesh Khanna and Surender Baswana. Approximate shortest paths avoiding a failed ver-
tex: Optimal size data structures for unweighted graphs. In 27th International Symposium
on Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France,
pages 513–524, 2010.

23 Jakub Lacki. Improved deterministic algorithms for decremental transitive closure and
strongly connected components. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1438–1445, 2011.

24 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 481–490, 2015.

25 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 779–790, 2013.

26 Mihai Patrascu and Mikkel Thorup. Planning for fast connectivity updates. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007,
Providence, RI, USA, Proceedings, pages 263–271, 2007.

27 Liam Roditty. Decremental maintenance of strongly connected components. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1143–1150, 2013.

28 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008.

29 Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26:362–391, 1983.

30 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

31 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Transactions on Algorithms, 9(2):14, 2013.

	Introduction
	An overview of our result
	Related work
	Organization of the paper

	Preliminaries
	A heavy path decomposition

	Computation of SCCs intersecting a given path
	Proof of correctness of algorithm
	Implementation of function Reach

	Main Algorithm
	Analysis of time complexity of Algorithm 3

